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Abstract—Recently, discontinuous reception mechanisms
(DRX) and wake-up schemes (WuS) have been proposed to
enhance the energy efficiency of 5G mobile devices and prolong
the battery lifetime. The existing DRX and WuS use commonly
pre-configured parameters that cannot be adjusted dynamically.
In this paper, a novel wake-up scheduling (WuSched) concept
is introduced to further improve the energy efficiency of
WuS-enabled mobile devices while controlling the buffering
delay in a dynamic manner. The main idea of WuSched is to
use a fixed configuration of the wake-up scheme and adjust the
scheduling of the wake-up signals dynamically based on actual
traffic arrivals. For this purpose, two different optimization
approaches of the wake-up scheduling concept are proposed,
analyzed, and compared, namely offline and online wake-up
schedulers (WuSched-Offline and WuSched-Online). First, the
WuSched-Offline is analyzed analytically for Poisson traffic
arrivals and optimized (offline) to balance the average delay and
power consumption. Second, the WuSched-Online is proposed to
take online decisions based on traffic prediction, which is able
to deal with general and more complex traffic models. Towards
this end, we develop a framework for the prediction of packet
arrivals based on recurrent neural networks. Numerical results
show that both wake-up schedulers outperform the ordinary
WuS-based system where wake-up scheduler is not deployed. In
particular, for predefined delay requirements of video streaming,
audio streaming, and mixed traffic flow, the WuSched-Online
reduces the power consumption of the baseline WuS by up to
36%, 28% and 9%, respectively. Results also show that the
WuSched-Offline has slightly better energy efficiency than the
WuSched-Online in the case of Poisson packet arrivals, as it
is optimized for that, while its power consumption is slightly
higher than that of the WuSched-Online scheduler for realistic
traffic scenarios.

Index Terms—5G, machine learning, wake-up scheme, energy
efficiency, scheduling, LSTM.

I. INTRODUCTION

The emerging fifth generation mobile networks (5G) have a
promising capability to offer super-fast and ultra-low latency
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connectivity to the end users, and are expected to enable a
wide range of futuristic mobile applications and services such
as augmented/virtual reality, cloud gaming, and ultra-high-
definition video streaming [2]. Such magnificent improve-
ments are vital to accommodate the ever-growing needs for
increased data rates and enhanced quality-of-service (QoS).
In particular, they are realized in New Radio (NR) based 5G
systems by adopting larger transmission bandwidths, higher
modulation orders, advanced coding techniques, and sophisti-
cated multi-antenna schemes [3]. However, the utilization of
such computationally intensive techniques comes commonly
at the cost of higher energy consumption that can deplete the
mobile devices’ battery power rather quickly, which in itself
is one of the major causes of dissatisfaction for the users [4].

In general, the cellular modem is one of the primary
energy-consuming elements of mobile devices, while the other
units only contribute when they are used intensively [5], [6].
Furthermore, in current and future traffic trends, the data traffic
of mobile users is mainly downlink-dominated [7]. Therefore,
the development of power-saving mechanisms for cellular
modems in receive mode has paramount importance in order
to extend the mobile devices’ functionalities in 5G networks
and beyond. To this end, the 3rd generation partnership project
(3GPP) has specified discontinuous reception (DRX) as the de
facto power-saving mechanism for long-term evolution (LTE)
based fourth-generation (4G) systems [8], [9] and NR based
5G systems [3], [10]. DRX enables the mobile device to reduce
energy consumption by switching off the radio-frequency (RF)
circuitry and other modules for long periods, activating them
only for short intervals [11]. However, it has been shown
in [12] that the time period for which a mobile device
monitors the physical downlink control channel (PDCCH)
without any data allocation has still a major impact on the
battery consumption. Thus, further power-saving mechanisms
are of large importance.

A. Wake-up based Access and State-of-the-Art

In the context of non-cellular networks, different power-
saving mechanisms have been extensively studied and im-
plemented, with specific focus on the low-power wide-area
networks (LPWAN) and wireless sensor networks (WSN) [13].
In this context, duty cycling has been the major mechanism
for energy conservation in LPWANs/WSNs [14], [15]. In duty
cycling, which resembles cellular DRX, nodes wake up and
sleep periodically, thus leading to idle listening and potential
overhearing. Therefore, to reduce idle listening, the concept
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of wake-up radio based access has been recently studied,
e.g., [16], [17]. Demirkol et al [18] provided a comprehen-
sive overview and insight into wake-up receiver (WRx), and
investigated the benefits achieved with WRx along with the
challenges observed in WSNs. In addition, they presented an
overview of state-of-the-art hardware and networking protocol
proposals as well as classification of WRx schemes. Moreover,
authors in [19] introduced the concept of wireless-powered
wake-up receiver, reducing the energy consumption of the
wireless node considerably. The proposed receiver scavenges
the RF energy from the received signal to power its sensor,
communication and processing blocks. The proposed scheme
can be utilized for a wide range of energy-constrained wire-
less applications such as wireless sensor actuator networks
and machine-to-machine communications. Due to the large
energy saving potential of such wake-up radio based methods,
similar concepts are raising increasing interest also in cellular
networks, primarily 5G NR [20], in which this paper is also
focused on.

In order to reduce the energy consumption of unscheduled
cycles in DRX, cellular wake-up schemes (WuS) have been
recently proposed, e.g., in [5], [21]. In cellular WuS, or WuS
for short, the mobile device monitors a narrow-band wake-
up signaling periodically (every wake-up cycle) at specific
time instants and subcarriers, which indicates to the device
whether to process the upcoming PDCCH or remain in sleep
mode. As soon as a packet arrives at the transmission buffer
of the base station, the wake-up indicator is assumed to be
sent at the next upcoming wake-up instant. Furthermore, a
low-complexity WRx is required to decode the corresponding
wake-up signaling and to acquire the necessary time and
frequency synchronization [5], [22]. Additionally, in [22],
synchronization is one of our main design factors in the design
of wake-up signaling and WRx. To this end, we utilized built-
in self-synchronizing signal structure and assumed high-power
high-precision oscillator to remove the need for a separate
synchronization stage for WRx. Our extensive simulation
results [5], [22] verify that the proposed scheme can achieve
very low misdetection (less than 1%) and false alarm rates for
signal-to-noise ratios (SNRs) even below 0 dB. Furthermore,
very high-quality synchronization can be obtained down to
SNRs of −4 dB [22]. We also showed that the impact of
such negligible errors is very low on power consumption
and buffering delay. Furthermore, in our previous work [23],
[24], we introduced an offline method to optimize the WuS
configuration (i.e., the wake-up cycle period) based on a delay
bound under the assumption of Poisson traffic. In cases where
traffic dynamics vary over time, the WuS optimization method
in [23], [24] requires reconfiguration of the WuS parameters,
which need to be communicated to the mobile device, and
thus increases the control signaling overhead as well as the
associated energy consumption.

B. Contributions and Novelty

In this paper, we introduce a novel concept called wake-up
scheduling (WuSched) to further improve the energy efficiency
of mobile devices in cellular networks. The main idea is in

starting with a fixed WuS configuration and then adjusting the
scheduling of the wake-up signals dynamically by determining
whether to wake-up the mobile device or not. More precisely,
in wake-up scheduling, the network does not send the wake-
up indicator to the mobile device as soon as there is one (or
more) packet arrival(s), but rather it may wait to send it while
at the same time taking different QoS and other requirements
into account, specifically the latency constraint and the mobile
device power consumption. The proposed concept not only
concerns to the physical layer (PHY), but mainly, it uses
WuS as a mechanism to reduce energy consumption at PHY
and then uses adequately scheduled wake-up signals from
the medium access control (MAC) layer. In particular, offline
and online optimizations of the wake-up scheduler parameters
are proposed in this paper, namely WuSched-Offline and
WuSched-Online. The offline optimization (WuSched-Offline)
is based on the assumption that traffic arrivals follow a Poisson
distribution and it is analyzed analytically. The objective is
to reduce the power consumption of the mobile device while
satisfying delay requirements. The optimal solution for the
tunable operational parameter of the WuSched-Offline, which
is referred to as the buffer size threshold and which only
concerns the network side (so that it can be easily reconfigured
based on traffic dynamics), is obtained in closed form. Then,
for a general and thus very likely more complex traffic models,
an online optimization is proposed through the WuSched-
Online. It uses a proactive scheduler that takes decisions every
wake-up cycle based on traffic predictions over a forecast
horizon. A multi-step Long Short-Term Memory (LSTM)
neural network is trained with data from real user applications
and tailored for traffic prediction purposes. To the best of our
knowledge, this is the first attempt to introduce online wake-
up scheduling decisions with traffic prediction capabilities into
the wake-up scheme. Unlike previous works [5], [23], [24], the
WuSched-Online is not tied to any specific traffic models and
operates dynamically.

The rest of this paper is organized as follows. Section II
summarizes the WuS principle of operation1, and introduces
the proposed wake-up scheduling concept. Section III math-
ematically models and optimizes offline the parameters of
the wake-up scheduler (WuSched-Offline) for Poisson traf-
fic. Then, the online optimization of the wake-up scheduler
(WuSched-Online), which is valid for any traffic distribution,
is presented and described in Section IV. These are followed
by simulation results and conclusions in Sections V and VI, re-
spectively. Finally, some proofs related to the WuSched-Offline
are reported in the Appendices. For readers’ convenience,
the most relevant variables and mathematical operations used
throughout this paper are listed in Table I. Terminology-wise,
we use gNB to refer to the base-station unit and UE to denote
the mobile device, according to NR specifications [3].

1Throughout this work, the term WuS refers to ’WuS without scheduler’,
which is used as a baseline reference method.
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Table I: Most important variables and mathematical operations used throughout the article.
Variable / Operation Definition

PWwrx / PWon / PWoff power consumption of WRx / modem at ON /OFF modes
tp inter-packet arrival time
tr residual time between γth packet arrival time and end of w-cycle
c current TTI
λ packet arrival rate

tsu / tpd start-up / power-down time of cellular module
tw wake-up cycle
ti maximum allowable length of inactivity timer
ω length of inactivity timer
ton on-duration time
ta delay windows size
γ buffer size threshold

et/tt overall energy consumption/length of transitional states
L length of scheduling cycle

Le/Ld/La length of empty/dormant/active period
N number of packet arrivals during scheduling cycle

Nd/Na number of packet arrivals during dormant/active period
Tn inter-arrival times of nth and n+1th packets at gNB
An packet arrival times of nth packets at gNB
Dn nth packet’s buffering delay
D̄n estimated delays of nth packet (buffered or forecast)
Wn time duration between decoding nth and n+1th packets by UE
Hn (Wn − 1)

(
Wn + 1− 2(Tn −Dn)

)
C0/C1/C2 constant values

Xd set of packet arrivals during dormant period
X1 / X2 / X3 {n|Tn ≤ Dn + 1} / {n|Dn + 1 < Tn ≤ Dn + 1 + ti} / {n|Dn + 1 + ti < Tn}

Pc average power consumption
D average buffering delay

Dmax maximum tolerable average delay or delay bound
D̂ estimated delay for k packets including served, buffered and forecast packets
k number of packets that delay estimator uses to calculate average delay
p number of past TTIs that traffic predictor observes in every w-cycle
z size of dataset

E[.] expectation value of random variable
Var[.] variance of random variable

Cov[., .] covariance of two random variables
Pr[.] probability
{.}C absolute complement of {.}
xt packet arrival time on tth TTI
xt|t2t1 set of elements of xt from t = t1 to t = t2

II. WAKE-UP SCHEDULING CONCEPT

A. WuS Overview

In WuS, the cellular modem is configured with a WRx, as
a companion low-complex single-purpose receiver in order to
decode the wake-up signaling [5]. WuS allows the terminal to
reduce the energy consumption by switching off the modem
for long periods of time, activating the modem (ON mode)
only for short intervals to decode data and control plane
signals.

At every wake-up cycle (w-cycle), represented as tw, the
WRx monitors the wake-up signaling for a specific on-duration
time (ton) to determine if any data is scheduled or not (see
Fig. 1). Occasionally, based on the interrupt signal from WRx,
the modem switches ON, decodes both PDCCH and physical
downlink shared channel (PDSCH), and performs connected-
mode procedures. The wake-up signaling on each w-cycle is
represented by 1-bit, referred to as wake-up indicator (WI),
where 0 indicates WRx not to wake up the modem (remaining
in OFF mode) and 1 triggers WRx to wake up the modem
(moving to ON mode) because there is a packet to receive [5].
When WI=1 is sent to WRx, the gNB expects the target
mobile device to decode the PDCCH with a time offset

equal to the start-up time (tsu). After successful decoding of
PDCCH/PDSCH, the UE initiates its inactivity timer with a
duration of ti. After the inactivity timer is initiated, if a new
PDCCH message is received before the expiration of inactivity
timer, the UE re-initiates its inactivity timer. However, if there
is no PDCCH message received before the expiration of the
inactivity timer, a sleep period starts (modem goes through
transitional periods of power down, with a duration of tpd).

In WuS, if there are one or more packet arrivals during
the sleep state, the gNB sends WI=1 to the target UE at
the next upcoming wake-up instant (as shown in Fig. 1).
However, if the WuS configuration (namely, tw and ti) is not
correctly optimized for the upcoming traffic, the immediate
waking up of the UE can either adversely increase its energy
consumption, eventually decreasing the benefits of using WuS
(meaning that the UE can tolerate longer w-cycles), or even
create a worst-case scenario, in which the UE may not even
satisfy its delay requirements (implying the need for shorter
w-cycles) [24].
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Figure 1: Operation and corresponding parameters of WuS, without
scheduler.

B. Wake-up Scheduling

In our proposal, both w-cycle (tw) and inactivity timer
(ti) are configured semi-statically, and the desired power
and delay trade-off is achieved by adjusting the wake-up
instant. More precisely, the wake-up scheduler does not send
WI=1 as soon as there is a packet in the w-cycle, but waits
until some condition is met; for instance, until the number
of buffered packets at the gNB for a given UE is larger
than a predefined buffer size threshold (γ), or until the esti-
mated average buffering delay exceeds a predefined threshold
(Dmax). The former condition is the core part of the WuSched-
Offline and is illustrated in Fig. 2, where the gNB does not
send WI=1 until the number of buffered packets reaches to
γ = 3, and it takes four w-cycles to reach the threshold. This
way, instead of switching ON the UE for three times, it is
switched ON only once after the fourth w-cycle. Note that the
buffer size threshold γ influences the packet delays and so it
establishes a trade-off in between the energy consumption and
the experienced delays. On the other hand, the latter condition
mentioned above is used in the WuSched-Online, in order to
allow the network to meet maximum tolerable delays of the
target applications.

The main motivation behind not sending WI=1 as soon
as a packet arrives at the gNB but instead waiting and
sending the packets consecutively, is that the state-of-the-art
modems suffer from large start-up and power-down stages [5].
Therefore, it is desired in terms of energy-efficiency that once
the modem is at ON mode, it receives multiple packets and
not a single packet. Although, waiting for longer times to
buffer packets can eventually increase the buffering delay. This
extra buffering delay should not be problematic as long as
the average delay is maintained within a maximum bound. It
is worth mentioning that WuS is a specific example of the
WuSched-Offline when γ = 1.

Under the wake-up scheduling, the ON and OFF periods of
the UE vary based on its traffic dynamics. For this purpose,
we define the scheduling cycle as the length of a full cycle
of empty, dormant and active periods. The scheduling cycle
starts from the expiry of the inactivity timer of the previous
scheduling cycle and ends by the expiry of the current cycle’s
inactivity timer. The scheduling cycle’s length (L) is a random
variable that depends on the buffer size threshold and the
packet arrivals. During each scheduling cycle, only a single
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Figure 2: An example of wake-up scheduling and corresponding definitions
when γ = 3. The number of packet arrivals during the corresponding

scheduling cycle is equal to N = 5 (Nd = 3 and Na = 2).

WI of 1 is sent to the target UE. We assume N (random
variable) packets in the scheduling cycle are served (equivalent
to the overall number of packet arrivals in the corresponding
scheduling cycle).

In order to help the readers to follow up, the different
periods of the scheduling cycle are illustrated in Fig. 2, and
defined in what follows:
• empty period: It starts right after the beginning of the

scheduling cycle and lasts until the arrival of the first
packet of such scheduling cycle at the gNB. During the
empty period, the number of buffered packets is zero. The
length of the empty period is a random variable that we
refer to as Le.

• dormant period: It starts as soon as the first packet
arrives and lasts until the end of the start-up stage. During
the dormant period, packets are buffered at the gNB until
the number of buffered packets reaches γ. As a result,
by the end of the corresponding w-cycle, the modem is
switched ON and, after the start-up stage, the UE is ready
to receive the packets. The length of the dormant period
is a random variable, denoted by Ld, and the number of
packets buffered during the dormant period is referred to
as Nd, which is greater than or equal to γ.

• active period: It starts after the end of the start-up
period and lasts until the end of the scheduling cycle.
During the active period, the modem is at ON mode
and consumes the high power of PWon, and either it is
processing the packets or its inactivity timer is running.
The active period’s length is a random variable that is
denoted by La. The number of packets that arrive at
the gNB during the active period is referred to as Na.
During the active period, the UE serves N = Nd + Na
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packets, before it enters the next scheduling cycle. The
relationship between the length of the different periods
of each scheduling cycle is L = Le + Ld + La.

For the modem during OFF mode, packets are buffered, and
it consumes low power of PWoff . In general, the UE power
consumption in different operating states is highly implemen-
tation dependent, while also depends on the operational con-
figurations. Stemming from the specifically-designed narrow-
band WuS signal structure, the WRx power consumption
(PWwrx) is generally much lower than that of the modem dur-
ing ON mode (PWon). Following [5], [22], [25], PWwrx=57
mW, PWon=850 mW, and PWoff=16 mW can be considered
as representative numbers, while the start-up/power-down pe-
riods read tsu=15 ms, and tpd=10 ms. Additionally, regarding
the WuS parameters, we consider ton=3/14 ms and ti=1
ms [5]. Furthermore, since the on-duration period of WuS sig-
naling is very short, only three OFDM symbols [22], the WRx
contribution to the device energy consumption is very minor.
Therefore, in our system model, WRx power consumption is
eventually ignored, i.e., we consider PWwrx≈0. However, it
is noted that in later numerical results, non-zero WRx power
consumption is considered.

The wake-up scheduler can be located at the network side
(e.g., MAC layer of the gNB), and hence all the computa-
tionally intensive processing is performed by the network.
Without loss of generality, we assume that the UE can process
a single packet (regardless of its size) per transmission time
interval (TTI) and that the packet arrival rate (λ) is at most
one packet per TTI. TTI of 1 ms is assumed. In general,
because NR supports wide bandwidth operation, packets can
be served in a very short time duration. In addition, in case
the user packet sizes are small, packet concatenation in NR
for duration of a TTI is used, so that all packet arrivals in
a relatively short time window can be served in a single
TTI. Accordingly, we assume that radio-link control entity
(located at the gNB) concatenates all those packets arriving
during the slot, and as soon as the BBU is triggered on, the
device can receive and decode the concatenated packets for
a duration of a single TTI. During the corresponding slot, if
there was a new packet arrival, the BBU starts serving the
corresponding packet by the end of current slot time. Also,
we assume that packets are served individually based on first-
input first-output (FIFO). One of the key components of the 5G
NR design is a flexible self-contained slot-based framework
that allows delivering significantly lower latency than LTE.
This slot structure framework includes the opportunity for
uplink and downlink scheduling, data, and acknowledgement
to occur in the same slot. In other words, in each time slot,
UEs can send their acknowledgment to network, and network
can decide to re-transmit the packet or not in next inactivity
period. In our work, we assume that the self-contained slot-
based framework is utilized.

In the case of multimedia packet-data traffic, there is not a
strong need to provide a maximum delay budget per packet.
Rather, from a user perspective, the delay over the radio
interface should simply be lower than maximum average
packet delay (Dmax), whose value is set based on the service
type. Even in case of typical constant-rate services such as

voice and video, (short-term) exceeding delays are often not an
issue, as long as the average delay remains constant, assuming
averaging over some relatively short time interval. Moreover,
maximum delay requirements are mainly used for ultra reliable
and low latency communications (URLLC). However, since
our main focus in this paper is on multimedia type traffic, we
consider average packet delay as QoS indicator of services.

III. OFFLINE OPTIMIZATION OF WAKE-UP SCHEDULING
FOR POISSON TRAFFIC

In this section, the average power consumption and buffer-
ing delay of the wake-up scheduler are derived as a function
of the buffer size threshold (γ) and the packet arrival rate of
a Poisson process (λ). Then, γ is optimized for a given λ and
a maximum delay bound (Dmax).

The WuSched-Offline can be modeled as a stationary
GI/G/12 FIFO queuing system [26]. We use such system’s
properties to analyze the wake-up scheduler’s average delay
and power consumption. In this section, packet arrivals are
modeled as according to a Poisson process for analytic sim-
plicity and due to its attractive theoretical properties.

Let us refer to the packet inter-arrival times of the nth and
n+1th packets at the gNB as Tn, where T is exponentially
distributed, and hence E[T ] = 1/λ and Var[T ] = 1/λ2.
Furthermore, we define the nth packet’s buffering delay caused
by the wake-up scheduler as Dn. Based on Fig. 2, the
following expression is always valid,

Dn+1 = Wn +Dn − Tn, (1)
where Wn is the time duration between decoding nth and
n+1th packets by UE.

Depending on the relation between Tn and Dn, three
disjoint sets of packets can be defined,
• X1: If n ∈ X1, the n+1th packet arrives before the end

of serving nth packet (Tn ≤ Dn + 1). Therefore, the UE
serves n+1th packet immediately after serving nth packet,
i.e., Wn = 1. All packet arrivals during the dormant
period (referred to as Xd) are part of X1 (last packet
of the dormant period may or may not3 belong to X1).
Therefore, Xd − {Nd} ⊆ X1.

• X2: If n ∈ X2, the n+1th packet arrives after inactivity
timer is triggered and before its expiry time (Dn + 1 <
Tn ≤ Dn + 1 + ti). In such conditions, n+1th packet is
served immediately, Dn+1 = 0, and based on (1), then
Wn = Tn −Dn.

• X3: If n ∈ X3, the n+1th packet arrives after inactivity
timer is expired (Dn+1+ti < Tn). X3 has a single packet
which is the last served packet. Therefore, n+1th packet
belongs to the next scheduling cycle. As a result Wn =
Ld + Tn − Dn, where Ld = Dn+1 is the length of the
next scheduling cycle’s dormant period or, equivalently,
the delay of the first packet in the next scheduling cycle.

For compactness purposes, in the rest of the paper, the
subscript n from random variables Tn, Dn and Wn are

2In queuing theory, GI/G/1 represents the queue length in a system with a
single server where inter-arrival times have a general distribution and service
times have a general distribution.

3In such a scenario, Nth
d packet belongs to either X2 or X3.
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removed, unless there is a need to emphasize their dependence
of n explicitly. The summary of Wn calculation is drawn in
the second column of Table II.

We note that the WuSched-Offline is analyzed for Poisson
traffic arrivals and thus it cannot strictly-speaking cover the
case of retransmissions. This is because retransmissions would
change the statistics of the packet arrivals (including new
packets and retransmission) based on the channel quality, error
model, and retransmission timings.

A. Stationary Probabilities
The stationary probabilities that the nth packet belongs to

one of the three sets (X1, X2, X3) need to be calculated
to derive the delay and power expressions of the wake-up
scheduler analytically. For this purpose, based on the definition
of X1 and X3, we can write,

Pr[n ∈ X1] = Pr[T − 1 ≤ D] =∫ ∞
0

(1− e−λ(t+1))fD(t)dt = 1−
∫ ∞
0

e−λ(t+1)fD(t)dt,

(2)
and

Pr[n ∈ X3] = Pr[T − ti − 1 > D] =

1−
∫ ∞
0

(1− e−λ(t+ti+1))fD(t)dt =

e−λti
∫ ∞
0

e−λ(t+1)fD(t)dt,

(3)

where fD(t) is the probability density function (PDF) of D.
Therefore, based on (2) and (3), we can model their relation
as follows,

Pr[n ∈ X3] = e−λti(1− Pr[n ∈ X1]). (4)
Also by using (4) and the probability assignment rule
(
∑3
j=1 Pr[n ∈ Xj ] = 1), we attain,

Pr[n ∈ X2] = (1− e−λti)(1− Pr[n ∈ X1]). (5)
Furthermore, we can model the expected value of W based

on all possible values of Wn (second column of Table II) by
using the law of total probability formula as follow,

E[W ] = Pr[n ∈ X1] + Pr[n ∈ X2]E[(T −D)|n ∈ X2]+

Pr[n ∈ X3]E[(Ld + T −D)|n ∈ X3].
(6)

Appendices B, C, D and E include the derivations of
E[(T −D)|n ∈ X2], E[(T −D)|n ∈ X3], E[Ld], and E[W ],
respectively. Then, by substituting (4), (5), (31), (33), (34) and
(36) into (6), we can obtain,

Pr[n ∈ X1] =
γ + (eλti + C0)λ

γ + eλti + C0λ
. (7)

Then, Pr[n ∈ X3] and Pr[n ∈ X2] can be calculated based
on (4) and (5), respectively. The summary of the calculation
of the stationary probabilities is drawn in the fourth column
of Table II.

B. Average Holding Times
In this section, the average holding times (i.e., the length)

of the empty and active periods, as well as the average number
of packet arrivals during the dormant and active periods, are
calculated. Note that we already derived the average length of
dormant period in Appendix D.

Table II: Summary of analysis of Wn, Hn and stationary probabilities.
n ∈ Wn Hn Pr[n ∈ Xi]
X1 1 0

γ+(eλti+C0)λ

γ+eλti+C0λ

X2 Tn −Dn −(Tn −Dn − 1)2
(1−λ)(eλti−1)

γ+eλti+C0λ

X3 Ld + Tn −Dn Ld
2 − (Tn −Dn − 1)2 1−λ

γ+eλti+C0λ

1) Empty Period: If the nth packet belongs to X3, then the
n+1th packet is the first packet of the next scheduling cycle and
hence the length of the empty period equals to T −D−1− ti.
As a result, based on (32),

E[Le] = E[(T −D − 1− ti)|n ∈ X3] =
1

λ
. (8)

2) Dormant Period: Based on (34), E[Nd] can be calculated
as,

E[Nd] = γ + λC0 + 1, (9)

where 1 is raised due to presence of the first packet in each
scheduling cycle.

3) Active Period: During the active period, first, Nd packets
are served for a duration of Nd TTIs, and then other packet
arrivals, during the serving time of Nd TTIs, with average
number of Ndλ packets, are served. After some rounds, there
will be a point in which the inactivity timer expires, and no
buffered packets remain in the queue. Therefore, the average
number of received packets during the active period can be
modeled by a geometric progression as follows,

E[Na] =
( ∞∑
i=0

λiE[Nd]
)

Pr[T −D − 1 > ti|n ∈ X3] =

γ + λC0 + 1

1− λ
e−λti .

(10)
4) Scheduling Cycle: The average number of packets that

is served during each scheduling cycle can be obtained as
follows,

E[N ] = E[Nd] + E[Na] = (γ + λC0 + 1)(1 +
e−λti

1− λ
). (11)

Furthermore, the length of the inactivity timer (ω) is depen-
dent on the packet inter-arrival time (tp). If a packet arrives
before ti, ω is equal to the inter-packet arrival time, otherwise
ω equals to ti. Therefore, ω can be calculated as a function
of tp as,

ω(tp) =

{
tp, for tp ≤ ti ,
ti, for tp > ti .

(12)

Hence, E[ω] can be expressed as,

E[ω] =

∫ ∞
0

ω(t)λe−λt(t)dt =
1− e−λti

λ
. (13)

By utilizing (11) and (13), we can obtain the average length
of the active period as follows,

E[La] = E[N ]+E[ω] = (γ+λC0+1)(1+
e−λti

1− λ
)+

1− e−λti
λ

.

(14)
Finally, the average length of the scheduling cycle (L) can be
calculated as follows,

E[L] = E[Le] + E[Ld] + E[La] = (γ + λC0 + 1)C1 + C2,
(15)
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Table III: Summary of analysis of average holding times and average number of packets per period/cycle.
period/cycle Holding Time Number of packet arrivals

empty E[Le] =
1
λ 0

dormant E[Ld] =
γ
λ + C0 E[Nd] = γ + λC0 + 1

active E[La] = (γ + λC0 + 1)(1 + e−λti
1−λ ) + C2 E[Na] =

(γ+λC0+1)λ
1−λ e−λti

scheduling E[L] = (γ + λC0)C1 + C2 E[N ] = (γ + λC0 + 1)(1 + e−λti
1−λ )

where C1 and C2 are constants given by,

C1 =
1

λ
+ 1 +

e−λti

1− λ
, and C2 =

1− e−λti
λ

. (16)

The summary of the calculation of the average holding times
and the average number of packets is shown in Table III.

C. Average Power Consumption
The average power consumption of the UE with wake-up

scheduler, denoted by Pc, can be calculated as the ratio of
the average energy consumption and the corresponding overall
observation period, expressed as,

Pc =
et + (E[Le] + E[Ld]− tt)PWoff + E[La]PWon

E[L]
, (17)

where et and tt are the energy consumption of transitional
states and the overall time period that the UE spends on
transitional periods, which respectively read as,

tt = tsu + tpd, and et = tt
PWon − PWoff

2
. (18)

Due to the negligible value of the power consumption of the
UE at OFF mode, we can further assume that PWoff ≈ 0.
Therefore, (17) can be expanded as a function of γ as follows,

Pc(γ) = PWon

tt/2 + (γ + λC0 + 1)(C1 − 1
λ ) + C2

(γ + λC0 + 1)C1 + C2
. (19)

From the above equation, it is clear that the average power
consumption Pc(γ) is a strictly decreasing function with
respect to γ at γ ≥ 1, i.e., dPc(γ)

dγ < 0. As expected, increasing
the buffer size threshold reduces the power consumption.

D. Average Buffering Delay
By squaring both sides of (1) and using basic sum and

multiplications, we can obtain the following equation,
Dn+1

2 = Hn + (Tn −Dn)2 − 2(Tn −Dn) + 1, (20)
where

Hn = (Wn − 1)
(
Wn + 1− 2(Tn −Dn)

)
. (21)

Then, by averaging both sides of (20), we get,

E[D] =
E[T 2]− 2E[T ] + 1− 2Cov[D,T ] + E[H]

2(E[T ]− 1)
=

1

λ
+

1

2(1/λ− 1)
− Cov[D,T ]

1/λ− 1
+

E[H]

2(1/λ− 1)
.

(22)

In Appendices G and H, we present the calculations of
Cov[D,T ] and E[H]. Finally, the average delay can be ob-
tained by replacing (43) and (51) into (22), as follows,

D(γ) = E[D] =
1

λ
+

λ

2(1− λ)
− 1

λ(1− λ+ e−λti)
+

eλti

λ((1− λ)eλti + 1)(γ + λC0 + 1)
+

−eλti + γ−1
2

λ(γ + eλti + C0λ)
+

1

γ + eλti + C0λ

[
γ2

2λ
+ γC0 +

λC2
0

2
+
λt2w
24

]
.

(23)

For presentation purposes, we represent E[D] as D(γ).
Similar to Pc(γ), the derivative of D(γ) with respect to
continuous variable γ can be calculated (refer to Appendix
I), from which it can be concluded that the average buffering
delay D(γ) is a strictly increasing function with respect to γ
at γ ≥ 1, i.e., dD(γ)

dγ > 0.
As expected, contrary to the behavior of Pc(γ), increasing

the buffer size threshold increases the buffering delay. There-
fore, a clear energy-delay trade-off appears in the selection of
γ for the wake-up scheduler.

E. Offline Optimization of Wake-Up Scheduler

From the system-level point of view, the tunable parameter
of the WuSched-Offline is the buffer size threshold (γ ≥ 1),
assuming a fixed configuration of the w-cycle and the inactiv-
ity timer. For the sake of presentation compactness, we will not
investigate how to set both parameters; readers can refer to our
recent work in [24]. The remaining parameters of the wake-
up scheduler (ton, tpd, tsu) depend on physical constraints and
signal design, and accordingly, we assume them to be fixed as
well. Based on these assumptions, we focus on optimizing the
buffer size threshold (γ) in order to minimize the UE’s power
consumption while satisfying a specific delay requirement (i.e.,
average buffering delay should be less than or equal to a
maximum tolerable delay, Dmax), under Poisson traffic model
assumption, for given values of tw, ti, ton, tpd and tsu.

By using the analytical models of the power consumption
and the buffering delay, as well as their behaviour as a function
of γ (i.e., Pc(γ) in (19) is a decreasing function and D(γ) in
(23) is an increasing function), and by following a similar
approach as the one in [24], the optimal buffer size threshold
(γ∗) can be easily obtained. The result is included in the next
Theorem 1.

Theorem 1. The optimal buffer size threshold that minimizes
the UE’s power consumption while satisfying a specific delay
requirement is γ∗ = bγmc, being γm the boundary point of
the delay constraint, i.e., D(γm) = Dmax.

Proof. Thanks to dPc(γ)
dγ < 0 and dD(γ)

dγ > 0, we can easily
show that γ = bγmc is the optimal solution to minimize
the UE’s power consumption subject to a specific delay
requirement, as detailed next. Fig. 3 (a) and Fig. 3 (b)
show the decreasing trend of the power consumption and the
increasing behaviour of the delay constraint as a function of
γ, respectively, which satisfies dPc(γ)

dγ < 0 and dD(γ)
dγ > 0.

Consider an arbitrary point C in the interior of the feasible
region for γ (γC < bγmc where D(γm) = Dmax). As it can be
seen from Fig. 3, there is always a point close to the boundary
of the delay constraint, denoted by D (γD = bγmc), where its
power consumption PcD is lower than that of C (PcD < PcC ).
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Figure 3: Schematic proof of Theorem 1.
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Figure 4: Optimal value of buffer size threshold as function of packet arrival
rate for tw = 15 ms and ti = 1 ms.

Then, we can conclude that under a given delay constraint,
the point bγmc always exists and attains the lowest power
consumption within the feasible region, and hence it is the
optimal solution. The γm can be calculated using any standard
root-finding algorithm that meets D(γm) = Dmax.

Fig. 4 shows how γ∗ changes when λ varies for delay
bounds of 30 ms, 75 ms and 500 ms, for ti = 1 ms
and tw = 15 ms. It clearly shows that by increasing λ,
γ∗ increases too. The high buffered size threshold reduces
energy consumption; however, if the packet arrival rate is low,
configuring a high buffer size threshold can increase buffering
delay and cannot satisfy the maximum delay bound. As a
result, a smaller γ should be configured for a low λ to satisfy
the delay requirement. For high λ, it is necessary to increase
γ to reduce energy consumption. Similarly, for higher delay
bounds, γ can be configured high, due to the much-relaxed
delay requirements. Interestingly, for high packet arrival rates
close to 1 p/TTI, γ reduces to one, implying that the UE
is on ON mode most of the time (because of the inactivity
timer, most of the time the UE does not enter to OFF mode).
This is the main reason for limiting λ for less than 1 p/TTI.
Therefore, the wake-up scheduler is not effective anymore for
packet arrival rates close to or beyond 1 p/TTI. Instead, other
power-saving mechanisms, such as microsleep, could be used.
Finally, as can be observed in Fig. 4, γ∗ (precisely γm) has
a linear trend concerning λ for lower packet arrival rates, and
this can be exploited to reduce the computational complexity
of root-finding algorithms.

traffic
estimatorpredictor
delay

true

false

WI=0

WI=1

Figure 5: Overall block diagram of the WuSched-Online.

IV. ONLINE OPTIMIZATION OF WAKE-UP SCHEDULING
BASED ON TRAFFIC PREDICTION

In this section, we present the online optimization of the
wake-up scheduler, which aims at trading-off in between
power consumption and packet delay in a dynamic manner
by adaptively and autonomously determining when to send
the WI, according to the traffic pattern and a maximum
tolerable delay (Dmax). Differently from the WuSched-Offline
that was presented and modeled analytically in Section III,
the WuSched-Online does not assume any a priori knowledge
about the traffic statistics, and thus it is general and can be
applied to all traffic distributions as well as mixed traffic
combinations.

Proactively knowing the packet arrival times for a forecast
horizon, allows the UE to remain at OFF mode for longer pe-
riods. In this regard, the proposed wake-up scheduler increases
the sleep period of the UE as much as possible in a greedy
manner by not sending WI=1 until the average buffering
delay approaches Dmax. For this purpose, the average delay
is estimated for k packets, in every w-cycle.

In the proposed scheme, traffic predictor forecasts the
packet arrival times of the target UE for the forecast horizon of
one w-cycle based on past packet arrival times. In other words,
the traffic predictor observes the session’s packet arrival time
for p previous TTIs until beginning of the current TTI (c) and
then predicts the packet arrival times for the upcoming w-cycle
with TTI indexes of [c, c + tw). Note that, differently from
the WuSched-Offline, the WuSched-Online can also cover
retransmissions, by taking the packet arrival times of previous
retransmitted packets and then predicting packet arrivals of
either new packets or retransmission packets.

Furthermore, every w-cycle, a delay estimator block esti-
mates the average buffering delay (D̂) of k packets, assuming
that the UE is switched on at the end of the upcoming w-
cycle. If D̂ is higher than Dmax, the network realizes that the
only way to have shorter delay is by sending WI=1 promptly.
Otherwise (if D̂≤Dmax), it leaves the UE to remain in OFF
mode for at least another w-cycle. Finally, a delay comparator
block performs the task of comparison and decision making
(i.e., whether to send WI=1 or WI=0) accordingly.

The overall block diagram of the proposed WuSched-Online
is shown in Fig. 5. The different modules and variables are
described below.
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A. Dataset from Real Traces

In this paper, the performance of the WuSched-Online is
investigated using real video and audio streaming traces. For
this, we monitored one operative network in Spain during one
month using the online watcher presented in [27]. We have
selected only those traces gathered during the night hours (1am
- 6am) to be sure that the selected cell is serving very few
users. This allows us to assume that our traces are not affected
by the packet scheduler at the base station, since an adequate
number of radio resources per TTI is available to accommodate
all the transmitting UEs.

Our dataset includes two columns: the Identifier of the UE,
and the timestamp of the packet arrival (with TTI granularity).
The classifier introduced in [28] is used to properly select the
traces of the apps of interest. The collected dataset consists
of 1500 sessions of different traffic type. For the sake of
comparison, we also generated Poisson traffic with mean
packet arrival rate of 0.2 p/TTI, and added them to the dataset.

B. Traffic Predictor

The traffic prediction can be formulated as a time series
forecasting problem, where the packet arrivals at each TTI are
defined as the values of the time series. The dataset with size
z for a particular traffic type is represented by xt|z1, where xt
indicates the packet arrival time during the tth TTI. In this
work we tailor a stacked LSTM neural network architecture
[29] to predict the next packet arrivals over a finite horizon.
We choose LSTM since it has been proven in [29]–[31] to
have lower prediction errors than other time series forecasting
approaches, such as auto regressive integrated moving average
(ARIMA) [32].

In the proposed architecture, multiple LSTM units are
concatenated to form one layer of the LSTM network. Each
unit computes the operations on single TTI and transfer the
output to the next LSTM unit. The number of concatenated
units indicates the number of TTIs (p) that are considered
before making the prediction. The proposed architecture for
the traffic predictor is depicted in Fig. 6. The LSTM unit
of each layer extracts a fixed number of features, which are
passed to the next layer. The depth of the network (e.g.,
the number of layers) is to increment the accuracy of the
prediction, which is done by the last fully connected layer.

As shown in Fig. 5 and 6, the proposed network observes
xt|c−1c−p and, then, predicts the traffic in the upcoming w-cycle
x̃t|c+tw−1c by delaying the prediction for the duration of tw.
Finally, the output of the LSTM network (ht|c+tw−1c ) is fed
to a fully connected neural network that performs the actual
prediction. The last feed-forward layer applies the softmax
activation function, which is needed during the training phase
to optimize the weights of the network neurons [30]. The first
layer size corresponds to p observed TTIs, while the last layer
output has a length equal to future horizon tw.

The traffic predictor is trained using the dataset in Sec-
tion IV-A and specified for each of the considered traffic type.
In particular, we have trained the LSTM for four traffic pro-
files: Youtube videos, Spotify audios, Mixed Youtube/Spotify,
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Figure 6: Proposed architecture for the packet arrival time prediction.

Table IV: Training hyperparameters

Initial learning rate 0.001
Number of epochs 100
Number of LSTM hidden states 64
Number of LSTM hidden layers 5
Number of feed-forward hidden layers 1
Optimization algorithm Adam
Loss function MAPE

and Poisson traffic. The implementation of the traffic pre-
diction algorithm was performed in Python, using Keras
and Tensorflow, as backend. The chosen hyperparameters are
reported in Table IV. The number of hidden layers is fixed
to 5, which is the number giving a good trade-off between
prediction accuracy and model complexity. For the training
part, we used the Adam’s algorithm [33] as optimizer and the
Mean Absolute Percentage Error (MAPE) as loss function. We
define the MAPE as follows,

MAPE =
100%

tw

c+tw−1∑
t=c

|x̃t − xt|
xt

, (24)

where x̃t is the predicted packet arrival time on the tth TTI.

C. Delay Estimator
We categorize packet arrivals during past observation

[c−p, c) and forecast horizon [c, c+tw) into three disjoint
sets: (1) already served packets with index of 1≤n≤i, (2)
buffered packets with index of i+1≤n≤j where j≤p, and
(3) forecast packet arrivals for upcoming w-cycle with index
of j+1≤n≤k, where k−j≤tw. Delay estimator utilizes the
served packets’ delay times (Dn, for 1≤n≤i), and estimated
delays of buffered and forecast packets (D̄n, for i+1≤n≤k),
to estimate the average buffering delay (D̂), as follows,

D̂ =

∑i
n=1Dn +

∑k
n=i+1 D̄n

k
. (25)

Finally, the decision whether to send WI=1 or not is decided
by comparing D̂ with Dmax. If the estimated delay is larger
than maximum delay bound, WI=1 is sent to the target UE.

V. NUMERICAL RESULTS

In this section, a set of numerical results are provided
in order to evaluate the accuracy of the traffic predictor
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used for the online optimization of the wake-up scheduler
(WuSched-Online, in Section V-A) and validate the function-
ality of the proposed wake-up schedulers (WuSched-Offline
and WuSched-Online) for different traffic patterns including
Poisson traffic (in Section V-B) and realistic traffic (in Sec-
tion V-C).

As previously mentioned, four traffic types are considered:
video streaming, audio streaming, mixed audio/video stream-
ing, and Poisson traffic. One of the distinguishing features of
the video and audio streaming is their low playback latency.
The average latency to have high quality playback of a track is
265 ms [34]. Accordingly, for audio streaming, we assume that
the maximum delay bound (Dmax) is 265 ms. Similarly, we
assume that the maximum delay bounds for video streaming,
mixed flow and Poisson traffic are 40 ms, 40 ms, and 30
ms, respectively. Furthermore, for the numerical results, the
UE power consumption model similar to [5], [8], [22], [25]
is deployed, for which PWwrx=57 mW, PWon=850 mW,
PWoff=16 mW, tsu=15 ms, and tpd=10 ms. Regarding the
WuS parameters, we assume ton=3/14 ms and ti=1 ms [5].

Three different sets of performance results, in terms of
power consumption and delay, are presented. Namely, (1)
wake-up scheme without scheduler (‘WuS’) that is considered
as a benchmark scheme, (2) offline optimization of the wake-
up scheduler (‘WuSched-Offline’), and (3) online optimization
of the wake-up scheduler (‘WuSched-Online’). Furthermore, to
verify the performance of the WuSched-Offline under Poisson
traffic model, both the results obtained from mathematical
analysis (‘ana. WuSched-Offline’) given in Theorem 1 and
simulation results (‘sim. WuSched-Offline’) are provided in
Section V-B.

According to Theorem 1 and (23), it is necessary for the
WuSched-Offline to know the packet arrival rate a priori in
order to calculate the optimal buffer size threshold. Therefore,
in this work we assume that packet arrival rate is estimated
based on an exponential moving average, as proposed in [35].
Authors in [35] introduce an approach to estimate the packet
arrival rate, and they show that their method converges to the
actual packet arrival rate under a wide range of traffic types.

A. Prediction Accuracy

In this section, we seek to evaluate the accuracy of pre-
dictions of the proposed traffic predictor as a function of the
number of previous observations (p), the length of the horizon
(tw), and the type of applications generating the traffic. For
that, we use the MAPE in (24) to quantify the accuracy of
traffic prediction.

The impact of tw and p on the prediction errors is illustrated
in Fig. 7. For shorter w-cycles, the predictions follow the
actual values closely, whereas for larger w-cycles, the pre-
diction error is bigger: longer forecast horizons (tw) decrease
the accuracy of the predictor, as expected. Furthermore, as it
can be observed, the MAPE reduces with a larger number of
observations (p) for all four traffic types. Also, the accuracy
decreases (i.e., MAPE increases) based on the different traffic
type. The accuracy rate is smaller for Poisson packet arrivals
than for video and audio traffics, due to its simpler traffic

pattern. For Poisson traffic, the MAPE increases around 15%
when tw increases from 10 to 30 TTIs for given p = 20 TTIs;
however, for other traffics the accuracy reduction is high and
MAPE increases around 50% for the same tw change.

As shown in Fig. 7, from prediction accuracy point of view,
it is desirable to reduce tw and enlarge p. However, in terms
of power consumption, such a reduction of the w-cycle would
contribute to a higher energy consumption due to frequent
checking of wake-up signaling. Additionally, a higher number
of past observations p involves a longer memory length of the
LSTM network and a large amount of information that must be
stored for a precise traffic prediction. As a result, the floating
point operations per second (FLOPS) of the LSTM network
increases. This complexity overhead can become very high,
especially if the number of users per cell increases.

Note that different parameters of the traffic predictor can be
configured in such a way that they provide adequate precision
for the WuSched-Online, which is measured in terms of the
estimated delay over a certain number of packets k (i.e., D̂ in
(25)). In particular, the impact of traffic prediction errors on
the estimated delay depends on p, k and tw. To ensure efficient
usage of the forecast horizon and, at the same time, limit the
long-term differences in the quality-of-service to an acceptable
level, k should be set longer than tw for the upcoming w-
cycle. At the same time, k should be sufficiently short so that
prediction errors are not strongly noticed by a user. In this
work, we set k to 45 packets.

From (25), it can be inferred that the estimated delay has
lower sensitivity with respect to prediction accuracy. To illus-
trate this, we evaluate the impact of the prediction errors on the
actual WuSched-Online performance. Fig. 8 depicts the power
consumption of the WuSched-Online as a function of p and
tw, for each traffic type, considering the associated maximum
delay bounds. It can be observed that configuring p and tw
to 20 and 15 TTIs, respectively, can achieve reasonable power
saving. Indeed, further reducing tw and/or further increasing p
beyond such values, reduces the power consumption slightly.
Accordingly, for the rest of paper, we assume k=45 packets,
tw=15 TTIs, p=20 TTIs.

B. Performance Evaluation: Poisson Packet Arrivals

In this section, we investigate the performance of the three
methods (WuSched-Online, WuSched-Offline, and WuS) in
terms of average buffering delay and average power consump-
tion when traffic follows a Poisson pattern, and packet arrival
rate (λ) is increased from 0 to 1 p/TTI. For this purpose, Fig.
9 and 10 show the average delay and power consumption of
proposed mechanisms under two different delay bounds of 23
ms and 30 ms, respectively.

Fig. 9 (a) depicts the average packet delay experienced by
the WRx-enabled UE when packet arrival rates vary. As it can
be observed, the average delay for WuS is about Dmax = 23
ms for lower arrival rates. Note that, in case of WuS, the
average delay is dependent on start-up period and w-cycle. For
the WuSched-Offline, the experienced delay follows closely
the maximum delay bound for wider range of packet arrival
rates, and is slightly shorter than the maximum tolerable delay.
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Figure 7: MAPE as function of number of past observations p and forecast horizon tw for different traffic types.
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Figure 8: Power consumption of the WuSched-Online as function of number of past observations p and forecast horizon tw for different traffic types, while
maintaining the corresponding delay requirements of each traffic (k = 45 packets).

This is because of selecting the greatest integer less than or
equal to the optimal buffer size threshold of the optimization
problem. For the WuSched-Online, the actual average delay
is slightly higher than the maximum delay bound. The main
reason for such negligible excess delay is the unavoidable
errors in the traffic predictions, whose impact depends on
the w-cycle. In practice, to compensate for such small excess
delay, the delay bound can be set slightly smaller than the
actual average delay requirement. Finally, for larger arrival
rates, all three methods’ delays reduce sharply. This is because
of the inactivity timer, which causes the UE to remain on active
state most of the time, due to high arrival rates, and therefore
the overall delay reduces to the packet processing delay.

Fig. 9 (b) compares the average power consumption of
the three methods under Poisson arrivals. As it can be seen,
the simulated results of the WuSched-Offline closely follow
the analytical results. Interestingly, one may observe that that
the optimal buffer size threshold increases when increasing
λ, as shown in Fig. 4. Based on dPc

dγ < 0, it is expected
that the average power consumption would decrease when
increasing λ, however Fig. 9 (b) contradicts it. This can be
justified by the fact that at same time that γ∗ increases, λ
also increases, which increases the power consumption due to
frequent packet processing, and it is a dominant contributor to
the mean power consumption than the power reduction due to
increasing γ. Additionally, there are some sharp reductions
on the power consumption for lower packet arrival rates,
caused by increasing γ with one unit. Furthermore, WuS
and WuSched-Offline yield similar power consumption for
lower packet arrivals, however, it is clear that WuSched-
Offline consumes less power than WuSched-Online and WuS
for larger packet arrival rates. This shows that there is need
to reconfigure and optimize WuS for different packet arrival

rates. Also, the WuSched-Online outperforms WuS for higher
packet arrival rates. Finally, for high packet arrival rates, all
three methods approach to a fully modem ON scenario with
power consumption of 850 mW.

Similar to Fig. 9, Fig. 10 is drawn to show the buffer-
ing delay and average power consumption of the proposed
methods under 30 ms delays. As it can be observed in Fig.
10 (a), the average delay for WuS is much lower than for
the Dmax = 30 ms case. However, the proposed wake-up
schedulers behave consistently, and adapt themselves to new
delay requirement, similar to Fig 9 (a). Furthermore, Fig. 10
(b) compares the average power consumption of the three
methods. It is clear that WuSched-Offline consumes less power
than WuSched-Online and WuS. Also, the WuSched-Online
outperforms WuS.

C. Performance Evaluation: Realistic Traffic

In this section, the average power consumption and the
buffering delay of the three methods (WuSched-Online,
WuSched-Offline, and WuS) are evaluated for different realis-
tic traffic patterns.

Fig. 11 shows the empirical cumulative distribution function
(CDF) of packet delay for the four different traffic types.
Generally, the video streaming’s session is much longer than
that of the audio traffic, and packets arrive burstly (implying
high self-similarity). As it can be observed in video results
of the WuSched-Online, a large number of packets are served
with near to zero delay, and the reason is due to the consecutive
packet arrivals that are served while the inactivity timer is
triggered. At the same time, a large number of packets are
served with delays larger than the maximum delay budget
of video (40 ms), and this comes from the fact that the
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Figure 9: (a) Average buffering delay and (b) power consumption of WuS, WuSched-Offline and WuSched-Online, as function of packet arrival rate for
Dmax = 23 ms.
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Figure 10: (a) Average buffering delay and (b) power consumption of WuS, WuSched-Offline and WuSched-Online, as function of packet arrival rate for
Dmax = 30 ms.

WuSched-Online is a greedy method and waits until the
average buffering delay approaches to Dmax. As compared
to the WuSched-Online, WuSched-Offline achieves similar
average buffering delay (sketched with dashed vertical lines),
however it has packets with longer delays (e.g., for video,
there are packets with delays over 65 ms). Furthermore, WuS
has a lower and consistent delay regardless of the traffic types.
However, this comes at cost of an extra energy consumption
(as it will be shown in Table V).

For mixed traffic flow (aggregation of video and audio
traffics), the average delays are similar to video traffic rather
than to audio traffic. The reason is that the delay bound plays
a pivotal role in the operation of wake-up scheme, which
is the same for both traffics. The small difference between
mixed and video traffic comes from the inaccuracy of the
traffic predictor. Additionally, the WuSched-Offline satisfies
the delay requirements by optimizing the buffer size threshold
based on estimated packet arrival rate and delay bound. As
shown in Fig. 11, the average delays of the WuSched-Online
for different traffic types are slightly higher than Dmax, which
is stemmed from prediction inaccuracy. Therefore, in order to

satisfy the delay requirements, Dmax for the WuSched-Online
could be set slightly lower than the actual delay requirements.

To complete the study, Table V shows the average delay and
the average power consumption in third and fourth columns,
respectively. It is clear that the average power consump-
tion of WuS for all traffic types is higher than that of the
WuSched-Online; however, it achieves a much lower buffering
delay. Furthermore, the WuSched-Offline only outperforms
the WuSched-Online for the case of Poisson traffic, and for
rest of realistic types the WuSched-Online outperforms the
WuSched-Offline. To illustrate the benefits of the wake-up
schedulers better, we define the wasted energy (Ew) as the
ratio (in percentage) of the energy that the UE consumes
for transitory states plus inactivity timer over the overall
energy consumption of the UE. Note that the rest of energy
is consumed for processing the packets. The wasted energy
Ew is shown in the fifth column of Table V. As it can be
observed, the gain of the WuSched-Online is coming from
having less amount of wasted energy, owing to the use of an
intelligently and greedily strategy so that packets are served
mainly in a consecutive manner without the need for frequent
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Figure 11: The CDF graphs of buffering delay of packets for all three methods under different traffic types. The dashed lines and corresponding numbers
represent average delays caused by the particular method.

Table V: Average delay, power consumption and the wasted energy for
different methods and traffic types.

Method Traffic D [ms] Pc [mW] Ew [%]

WuS

Poisson 23 600 36
Video 21 625 44
Audio 22 405 48
Mixed 23 655 16

WuSched-Offline

Poisson 29 399 7
Video 41 450 22
Audio 265 335 37
Mixed 42 606 10

WuSched-Online

Poisson 31 450 15
Video 43 395 12
Audio 269 290 26
Mixed 42 590 7

start ups and power downs. For the case of Poisson arrivals,
both wake-up schedulers have similar CDF shape, with a small
difference that is stemmed from prediction errors. Moreover,
it can be observed that audio streaming requires lower power
consumption than the rest of traffic types, due to the small
packet arrivals per given time period. Furthermore, due to the
fact that packets in video streaming and mixed traffic flow have
much higher self-similarity characteristics, the wasted energy
is slightly lower than that of other traffics.

The computational complexity of the WuSched-Offline can
be less than that of the WuSched-Online due to not using the
predictive framework, which requires additional processing.
However, the computational complexity for a cell can be most
likely kept feasible even for larger UE populations, especially
in applications such as machine-type-communication, where
group-specific wake-up signaling could be utilized – instead
of UE-specific, which further reduces the signaling overhead.
Those users that may have similar traffic type can be grouped
and network can utilize the same wake-up sequences and
same predictive entities. Overall, the computing capabilities in
the base-stations and other network entities are continuously
growing, hence we believe that executing the predictive entity
is feasible when the networks evolve.

VI. CONCLUSIONS

In this work, the concept of wake-up scheduling and two
optimizations (offline and online) of its parameters are pro-
posed. The offline optimization of the wake-up scheduler
is analyzed mathematically for Poisson packet arrivals. On
the other hand, the feasibility of the online optimization of

the wake-up scheduler based on user traffic prediction has
been investigated. For this purpose, a traffic predictor which
leverages on LSTM networks is also proposed. A detailed
and extensive analysis comparing the power consumption and
buffering delay of both wake-up schedulers was carried out,
under different traffic types and various design parameters.
Both wake-up schedulers were shown to facilitate a lower
energy consumption compared to the wake-up scheme without
scheduler. Moreover, the online optimization of the wake-
up scheduler outperforms the offline one for realistic traffic
types. These promising results motivate jointly considering
user traffic prediction and wake-up scheduler in order to
reduce the energy consumption of users under different traffic
conditions.

Based on the numerical results provided in this paper, our
view regarding the wake-up scheduling is that there is no
’One-Size-Fits-All Solution’, unless the UE is well-defined
and narrowed to a specific traffic type. Further interesting
research areas include extending the proposed framework to
autonomously combine and utilize different wake-up sched-
ulers and power saving mechanisms together, and selecting
the method that better fits for particular circumstances. While
FIFO was considered in this work which does not discriminate
between different traffic QoS requirements, our future work
will consider the weighted fair queuing for wake-up scheduling
in order to satisfy the diverse QoS requirements of different
services.

APPENDIX A

In this section, we prove that if T has an exponential distribution
with mean 1/λ, then T ′ = T − t has the same distribution as T
for t > 0. Due to fact that T has an exponential distribution, it has
memory-less property as follows (s ≥ 0),

Pr[T > s+ t|T > t] = Pr[T > s] = e−λs. (26)

Furthermore, by assuming T ′ = T − t, and based on the above
equation, we can write,

Pr[T ′ > s|T ′ > 0] =
1− FT ′(s)
Pr[T ′ > 0]

= e−λs, (27)

where FT ′(s) is the CDF of T ′. Additionally, by expanding (27), we
can obtain,

FT ′(s) = 1− Pr[T ′ > 0]e−λs. (28)

Since s is assumed to be non-negative, therefore, FT ′(0) = 0, and
based on (28), we can conclude that Pr[T ′ > 0] = 1. As a result,
we can can express that T ′ has an identical exponential distribution
with T .
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APPENDIX B
By replacing t with D + 1 and using the proof explained in

Appendix A, we can state that T − D − 1 has an exponential
distribution that is the same as that of T , and hence,
E[(T −D−1)|(D+1 < T ≤ D+1+ ti)] = E[T |(T ≤ ti)]. (29)

Furthermore, based on the law of total expectation, for any exponen-
tially distributed random variable we can write,

E[T |(T ≤ ti)] =
E[T ]− Pr[T > ti]E[T |(T > ti)]

Pr[T ≤ ti]
=

1/λ− e−λti(1/λ+ ti)

1− e−λti =
1

λ
− tie

−λti

1− e−λti .
(30)

Then, based on (29) and (30),

E[(T −D)|n ∈ X2] = E[T |(T ≤ ti)] + 1 =
1

λ
− tie

−λti

1− e−λti + 1.

(31)

APPENDIX C
Similarly to the derivation of E[(T −D)|n ∈ X2] in Appendix B,

by utilizing Appendix A, replacing t = D + 1 + ti, and assuming
n ∈ X3 or equivalently T > D + 1 + ti, we can write,

E[(T −D − 1− ti)|(T > D + 1 + ti)] = E[T ], (32)

so that,

E[(T −D)|n ∈ X3] = E[T ] + 1 + ti =
1

λ
+ 1 + ti. (33)

APPENDIX D
The first packet that arrives in each scheduling cycle has to wait

for the arrival of other γ − 1 packets plus the time period until the
end of the w-cycle (referred to as tr , as shown in Fig. 2) as well
as WRx’s on time (ton) and the start-up period (tsu). Since Poisson
arrivals are independently and uniformly distributed on any interval
of time, we can assume that the arrival instant of the γ-th packet is
uniformly distributed along the last w-cycle, which can be justified
due to the relatively short length of tw. Hence, an average extra
delay of tw/2 is introduced. Consequently, the mean transmission
time of the first packet is delayed as follows (which is equivalent to
the average holding time of the dormant period),

E[Ld] =
γ

λ
+ C0, (34)

where C0 is a constant that can be obtained as follows,

C0 = − 1

λ
+
tw
2

+ ton + tsu. (35)

APPENDIX E
By averaging both sides of (1), and assuming a stationary system,

we can obtain,
E[W ] = E[T ] =

1

λ
. (36)

APPENDIX F
In this section, we prove that E[T 2|(T > ti)] = t2i + 2ti/λ +

2/λ2. By using the result in Appendix A, the PDF of conditional
exponential distribution T |(T > ti) is the same as T with time-
shift ti, i.e., λe−λ(t−ti). Therefore, the expected value of T 2 can be
obtained as follows,

E[T 2|(T > ti)] =

∫ +∞

ti

t2λe−λ(t−ti)dt = t2i + 2ti/λ+ 2/λ2.

(37)

APPENDIX G
Due to the independence of Dn and Tn for n ∈ XC

d ∪ {Nd},
the covariance of D and T is zero for those packets arriving during
the active period (see second row of (41)). Similarly, if γ = 1, the
covariance of D and T is zero for all values of n, as written in the
second row of (41). However, it is obvious that Dn for the dormant
period (except the last packet in the dormant period) depends on

the following packet arrivals until the end of the dormant period
(provided that γ is greater than one),

Dn = Tn + Tn+1...+ TNd−1 + tr + ton + tsu + n− 1, (38)

for all n ∈ Xd − {Nd}.
In order to find Cov[D,T ], we follow a similar approach as the

one described in [26] for GI/G/1 queuing system. According to the
law of total covariance, the covarinace relation between any three
random variables (i.e., n, D, T ) can be written as follows,

Cov[D,T ] = E
[
Cov[D,T |n]

]
− Cov

[
E[D|n],E[T |n]

]
. (39)

The above equation for the exponentially distributed T can be
simplified to the following,

Cov[D,T ] = E
[
Cov[D,T |n]

]
− Cov

[
E[D|n], 1

λ

]
=

E
[
Cov[D,T |n]

]
.

(40)

Furthermore,

Cov[D,T |n] =

Var[T ] =
1

λ2
, for n ∈ Xd − {Nd} and γ ≥ 2,

0, . for n ∈ XC
d ∪ {Nd} or γ = 1.

(41)

Proof. By utilizing (38), the additive law of covariance, and also
due to the independence of different inter-arrival times for n ∈ Xd−
{Nd}, then,

Cov[D,T |n] = Cov[Tn, Tn] + · · ·+Cov[TNd , Tn]+

Cov[n− 1, Tn] = Cov[Tn, Tn] = Var[T ].
(42)

Based on (40) and (41), by averaging Cov[D,T |n] over the N
packets of the scheduling cycle, we can obtain the covariance of D
and T ,

Cov[D,T ] =

E
[
Cov[D,T |n ∈ (Xd − {Nd})]

]
Pr[n ∈ (Xd − {Nd})]+

E
[
Cov[D,A|n ∈ (XC

d ∪ {Nd})]
]
Pr[n ∈ (XC

d ∪ {Nd})] =
E[Nd]− 1

E[N ]λ2
=

1− λ
λ2(1− λ+ e−λti)

(
1− 1

γ + λC0 + 1

)
.

(43)

APPENDIX H
The expected value of Hn (already expressed in (21)) can be

calculated by using the law of total probability formula, as follows
(summarized in third column of Table II),

Hn =


0, for n ∈ X1.

−(Tn −Dn − 1)2, for n ∈ X2.
Ld

2 − (Tn −Dn − 1)2, for n ∈ X3.

(44)

Therefore,
E[H] = −Pr[n ∈ X2]E

[
(T −D − 1)2|n ∈ X2

]
+

Pr[n ∈ X3]E
[
Ld

2 − (T −D − 1)2|n ∈ X3

]
.

(45)

We need to calculate E[(T −D−1)2|n ∈ X2], E[(T −D−1)2|n ∈
X3] and E[L2

d] before calculating E[H].
a) E[(T−D−1)2|n ∈ X2] : Similar to (29), by utilizing Appendix

A, we can obtain,

E[(T −D − 1)2|n ∈ X2] = E[T 2|T < ti]. (46)
Furthermore, similar to (30) by utilizing the law of total expectation,
we can obtain,

E[T 2|(T ≤ ti)] =
E[T 2]− Pr[T > ti]E[T

2|(T > ti)]

Pr[T ≤ ti]
=

2/λ2 − e−λti(t2i + 2ti/λ+ 2/λ2)

1− e−λti .

(47)

where E[T 2|(T > ti)] = t2i +2ti/λ+2/λ2, and its proof is included
in Appendix F.

b) E[(T − D − 1)2|n ∈ X3] : Similar to (33), thanks to the
memory-less property of Poisson distribution, we can obtain,

E[(T −D − 1− ti)2|n ∈ X3] = E[T 2] =
2

λ2
. (48)
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Furthermore, by utilizing (33) and (48), we get,
E[(T −D − 1)2|n ∈ X3] = E[(T −D − 1− ti)2|n ∈ X3]+

2tiE[(T −D)|n ∈ X3]− t2i − 2ti = t2i + 2ti/λ+ 2/λ2.
(49)

c) E[L2
d]: We can calculate E[L2

d], based on (34) and (35) as
follows,

E[L2
d] = Var[Ld] + E[Ld]

2 =
γ − 1

λ2
+
t2w
12

+ (
γ

λ
+ C0)

2, (50)

where Var[tr] =
t2w
12

is the variance of uniformly distributed tr .
Then, by substituting (4), (5), (46), (49) and (50) into (45) while

using basic sums and multiplications, we finally obtain,

E[H] = − (1− λ)(eλti − 1)

γ + eλti + C0λ

[
2/λ2

1− e−λti

]
+

1− λ
γ + eλti + C0λ

[
γ − 1

λ2
+
t2w
12

+ (
γ

λ
+ C0)

2

]
.

(51)

APPENDIX I
In this section, we prove that dD(γ)

dγ
> 0 for γ ≥ 1. For this

purpose, the derivative of (23) with respect to γ is calculated as
follows,

dD(γ)

dγ
=
eλti

λ
z1(γ) + z2(γ) + z3(γ), (52)

where,

z1(γ) =
−1

((1− λ)eλti + 1)(γ + λC0 + 1)2
+

3/2

(γ + eλti + C0λ)2
,

(53)

z2(γ) =
C0λ+ 1

λ(γ + eλti + C0λ)2
, (54)

z3(γ) =
γ2

2λ
+ ( γ

λ
)(eλti + C0λ) + C0(e

λti + C0λ)− λC2
0

2
− λt2w

24

(γ + eλti + C0λ)2
.

(55)

z1(γ) is positive because it can be shown that
3
2
((1− λ)eλti + 1)(γ + λC0 + 1)2 ≥ (γ + eλti + C0λ)

2.
z2(γ) is always positive, because according to (35), C0λ+ 1 > 0 is
met. z3(γ) is always positive, because its numerator (refer to it as
Nz3(γ)) is an increasing function with respect to γ, and Nz3(1) ≥ 0
is met for all values of the parameters, so that we can conclude that
z3(γ) is always positive for γ ≥ 1. Since z1(γ), z3(γ) and z3(γ)

are positive, then dD(γ)
dγ

> 0 is demonstrated.
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