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Abstract
It has been previously shown that human cardiac 

disorders can be modeled with induced pluripotent stem cell 
differentiated cardiomyocytes (iPSC-CM), which enables to 
study disease characteristics and pathophysiology in more 
detail. We have shown that some genetic cardiac diseases 
can be separated from each other and from healthy controls 
by applying machine learning methods to calcium transient 
signals measured from these cells. In this study, separation 
of four genetic cardiac diseases and controls were studied 
by applying classification methods such as nearest 
neighbor searching algorithm, decision trees, least squares 
support vector machines and random forests to peak 

data computed from calcium transient signals measured 
from beating induced pluripotent stem cell-derived (iPSC) 
cardiomyocytes. The best classification accuracy obtained 
was 77.8% being very promising. The result strengthens 
our previous finding that the machine learning method 
can be exploited to identification of several genetic cardiac 
diseases, but also to separate mutations in different genes 
resulting in the same clinical phenotype.
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1. Introduction
Comprehensive functioning of calcium cycling is crucial for 
excitation-contraction coupling of cardiomyocytes. Abnormal 
calcium cycling is linked to arrhythmogenesis, which is associated 
with cardiac disorders and heart failure. Induced pluripotent 
stem cell-derived cardiomyocytes (iPSC-CMs) [1] have enabled 
the study of different genetic cardiac diseases. Cardiac diseases 
can cause changes and variability in calcium cycling that affect the 
function and phenotype of CMs and previous studies have shown 
substantial defects and abnormalities in the calcium cycling of 
iPSC-CMs, reflecting the cardiac phenotype observed in patients 
[2,3]. Characterizing these disturbances and abnormalities is 
vital to improve the studies of disease pathology as well as disease 
diagnostics and treatment.

As we have shown early, machine learning can be utilized as a 
comprehensive tool for calcium cycling signal analysis of iPSC-
CMs [4-6]. Besides that, so far machine learning has obviously 
been only infrequently used for data extracted from iPSC-CMs. 

Nevertheless, it has been used to analyze mechanistic action 
of drugs in cardiology [7] and electrophysiological effects of 
chronotropic drugs [8].

Previously, we studied how to efficiently separate abnormally 
beating iPSC-CMs from those normally beating ones [4]. 
Thereafter, we continued by developing machine learning 
methods in order to separate diseased cardiomyocytes from those 
of healthy controls [5] and those of three different diseases from 
each other and controls [6]. All recognition tasks were based on 
calcium transient signals measured from beating iPSC-CMs. 
Roughly a half of transient signals originating from diseased 
cardiomyocytes are abnormally beating, but only 10-20% in 
the case of controls’ cardiomyocytes [4,5,6]. We then observed 
that, after all, signals of abnormally and normally beating 
cardiomyocytes were not necessary to be divided into different 
groups or the abnormal to be left out, because differentiation 
between three diseases and controls was possible and made equally 
well including signals of both normally and abnormally beating 
cells than performing differentiation separately for the normal 
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and abnormal. Three diseases were long QT syndrome 1 (LQT1), 
an electric disorder of the heart that may cause arrhythmias, 
hypertrophic cardiomyopathy (HCM),a disorder that affects 
the heart muscle tissue structure leading to arrhythmias and a 
heart failure, and catecholaminergic polymorphic tachycardia 
(CPVT), a condition characterized by abnormal heart rhythm 
caused by increase in heart rate.

In the current study, we extend our research as follows. We 
increased the numbers of calcium transient signals of CPVT 
and controls (WT, wildtype). In addition, we increased number 
of HCM signals by including signals from two different HCM 
disease mutations, which were HCMT, an α-tropomyosin 
(TPM1) of the β-myosin heavy chain (MYH7) mutation and 
HCMM, a myosin-binding protein C (MYBPC3) gene mutation 
[9]. When differentiation is on the basis of different peak forms 
(beats of iPSC-CMs) in transient signals of the different diseases 
and controls, we added two new peak attributes compared to 
those in our earlier research [5]. 

2. Method
The study was approved by the Ethics Committee of Pirkanmaa 
Hospital District subject to culturing and differentiating of
human iPSC lines (R08070). Patient-specific iPSC lines were 
established and characterized as described earlier [6]. Studied 
cell lines included HCM cell lines generated from two HCMT 
patients carrying α-tropomyosin (TPM1) and two HCMM
patients carrying myosin-binding protein C (MYBPC3)
mutations, two LQT1 cell lines generated from patients carrying 
potassium voltage-gated channel subfamily Q member 1 
(KCNQ1) mutations; six CPVT cell lines from patients carrying 
cardiac ryanodine receptor (RyR2) mutation, and one cell
line generated from a healthy control individual. IPSCs were 
differentiated into spontaneously beating CMs with END2-
differentiation method [10] and dissociated into single cell level 
for Ca2+ imaging studies, which was conducted in spontaneously 
beating Fura-2 AM (Invitrogen, Molecular Probes) or Fluo-4 
AM (Life Technologies Ltd) - loaded CMs as described earlier 
[11]. Ca2+ measurements were conducted on an inverted IX70 
microscope with a UApo/340 20x air objective (both Olympus 
Corporation, Hamburg, Germany) or with Axio Observer. A1 
microscope with a Objective Fluar 20x/0.75 M27 (both Carl Zeiss 
Microscopy GmbH, Göttingen, Germany). Images were taken 
with an ANDOR iXon 885 CCD camera (Andor Technology, 
Belfast, Northern Ireland) and synchronized with a Polychrome 
V light source by a real time DSP control unit or with Lambda 
DG-4 Plus (Sutter Instrument, California, USA) wavelength
switcher and TILLvisION, Live Acquisition (TILL Photonics, 
Munich, Germany) or ZEN 2 blue edition software (Carl Zeiss 
Microscopy GmbH, Göttingen, Germany) software. For further 
Ca2+ signal analysis, regions of interest (ROIs) were selected for 
spontaneously beating cardiomyocytes and background noise 
was subtracted before further processing. Each Ca2+ signal
corresponded to a recording from one cardiomyocyte. Totally, 
there were 90 LQT1 calcium transient signals, 149 HCMT signals, 
270 HCMM signals, 233 CPVT signals and 199 WT signals. 

2.1 Peak Data Derived On The Basis Of Calcium Transient Signals

We have developed an algorithm [4,5] to identify peaks 
equal to beats from a calcium transient signal. Originally, a 
biotechnological expert divided signal types to either normally 
or abnormally beating cardiomyocytes. In possible future 
applications, this could be automatized for which we have also 
developed an algorithm [4]. This would be needed for larger 
quantities of transient signals than now in research. Agreement 
of the expert and algorithm was approximately 90% subject these 
two signal types [4].

In the present data there were 62 abnormal and 28 normal 
calcium transient signals in LQT1, 100 abnormal and 170 normal 
signals in HCMM, 119 abnormal and 114 normal signals in 
CPVT, 31 abnormal and 168 normal signals in controls WT, 65 
abnormal and 84 normal signals in HCMT. Note that the normal 
values were relatively much more frequent in WT than in four 
diseases. However, as mentioned above when both types could be 
classified virtually equally well into different diseases or controls 
[6], we did not any longer specify them, but used them as such.

Figure 1 shows 10 s segments from WT signals and 
Figure 2 from HCMT signals as examples. In general, peak 
shapes may  vary greatly. Nevertheless, for a considerably 
smaller set of 527 transient signals of three diseases only and 
controls [6] we observed that they have consistently quite 
similar properties, subject to peaks, within transient signal sets 
of individual diseases  and that of controls. Therefore, we saw 
reasonable to extend the  number of available diseases and also 
number of data for most of them, now altogether 941 signals.

In order to identify calcium transient peaks as exactly as possible, 
 the locations of their beginning, maximum and end had to be 

found. Approximation of the first derivative along a signal was 
used for this task. When its value was close to zero and rapidly 
increased to positive values, a peak beginning was identified. 
Then it decreased back close to zero for a peak maximum and 
then decreased to negative values, but then again close to zero 
where a peak end was met. To search for these extreme values, 
appropriate, small threshold values were found experimentally 
[4]. Very small peaks with average amplitudes of the left and right 
peak sides less than approximately 8% of an estimate of large 
peaks in a signal were not accepted as actual peaks, but rather 
noise and left out. A large peak estimate was computed a s the 
difference of means of 15% of the greatest values and 15% of least 
values in the amplitude (sample) distribution of a signal.

After the identification of all acceptable peaks in a si gnal, 
 attributes of every peak were computed. In our recent research, 

we used 12 attributes [5]: amplitudes of peak left and right sides, 
durations [s] of the peak left and right side, the maximum of 
the left s ide a nd absolute m inimum o f t he r ight s ide f rom t he 
approximated first derivative, maximum and absolute minimum 
of the second derivative of the right side, peak surface area 

 between the peak curve and the line from the peak beginning to 
the end, duration [s] from the peak maximum to the preceding 
peak maximum or the beginning of the signal (if the first peak), 
duration [s] from the peak beginning to the location of the 
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maximum of the first derivative of the left side, and duration 
[s] from the peak maximum to the location of the absolute first 
derivative minimum of the right side. At the present research 
we still added a new attribute as follows. First, the averages of 
peak left and right side amplitudes were computed and then the 
average of these average side amplitudes. Nonetheless, if one of 
the sides was so small (low) that it was less than a half of the other, 
the average of the less one was not used, but instead its entire 
amplitude value from the beginning or end (depending on the 
side) of the peak to the peak maximum. Finally, the duration [s] 
called peak average width between the location of the (estimated) 
average of the left side and that of the right side was computed to 
be the 13th attribute.

The minimum, mean and maximum lengths of all 941 signals 
were 7.7, 17.7 and 46.5 s. The minimum, mean and maximum 
of peak numbers per signal were 1, 13.6 and 61. Figure 3 
illustrates a two-dimensional scatter visualization of all 12786 
peaks identified from 941 signals, in which five classes are shown 

with different characters. The visualization is obtained by using 
t-Distributed Stochastic Neighbor embedding (t-SNE) [12,13]. 
This looks promising with regard to classification of four diseases 
and controls (WT). In Figure 4 we studied potential importance 
of 13 attributes applied to the entire peak data for the purpose 
of classification into five classes of the diseases and controls. In 
Table 1 means and standard deviations are given for 13 peak 
attributes class by class. The means gained mostly indicate clear 
differences between four diseases and controls which promises 
a good opportunity for their differentiation. Nevertheless, a few 
means of HCMM and HCMT are similar to each other.

2.2 Classification methods applied

Several classification methods were applied to identify test cases 
into five classes on the basis of peak data (the 13 aforementioned 
attributes): random forests [14-16], linear [17-19], quadratic 
[6,18,19] and Mahalanobis discriminant analysis [20], Naïve 
Bayes without kernel density estimation [21], with kernel 
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Figure 1: Control WT: (a) A segment of 10 s from a calcium transient signal of a normally beating cardiomyocyte, since all peaks 
with the green bar of the maximum were recognized to be normal. (b) Correspondingly from an abnormally beating cardiomyocyte, 
since four peaks with the magenta asterisk were recognized to be abnormal because of different amplitude sizes of left and right peak 
sides or an entire peak of a considerably less amplitude than the peaks.
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Figure 2: Disease HCMT: (a) A segment of 10 s from a calcium transient signal of a normally beating cardiomyocyte, where all peaks 
with the green bar of the maximum were recognized to be normal. (b) Correspondingly from an abnormally beating cardiomyocyte, 
where most peaks with the magenta asterisk were recognized to be abnormal because of different amplitude sizes of left and right 
peak sides or an entire peak of a considerably less amplitude than the peaks on average.
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Figure 3: Two-dimensional visualization of calcium transient peak data of four diseases and controls (WT) computed with 
t-Distributed Stochastic Neighbour Embedding.
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Figure 4: Importance analysis of 13 attributes. Each histogram value is the median of results generated by Matlab ReliefF algorithm 
applying nearest neighbor searching, when 12 runs were made with k (number of nearest neighbors) from {1, 3, 5, 7, 9, 11, 15, 21, 
25, 31, 45, 61}. The higher value, the more important attribute.

Attributes Diseases and controls (WT)
 LQT1 HCMM CPVT WT HCMT
Al 170 ± 79 198 ± 92 229 ± 176 272 ± 170 199 ± 135
Ar 172 ± 80 200 ± 94 232 ± 176 275 ± 172 203 ± 138

Dl [s] 0.325 ± 0.178 0.272 ± 0.151 0.343 ± 0.199 0.492 ± 0.263 0.384 ± 0.187
Dr [s] 0.684 ± 0.404 0.476 ± 0.263 0.630 ± 0.433 1.039 ± 0.601 0.507 ± 0.332

max (s’) 818 ± 472 1952 ± 888 1349 ± 1064 2131 ± 1276 1468 ± 1041
|min (s’)| 509 ± 259 1030 ± 444 812 ± 541 927 ± 635 903 ± 479
max (s’’) 1615 ± 1324 6002 ± 3189 2894 ± 2535 4465 ± 3386 4363 ± 3050
|min (s’’)| 1208 ± 1432 3433 ± 3099 2106 ± 2709 3938 ± 4359 3405 ± 3645

R 57.7 ± 42.1 50.9 ± 43.5 84.7 ± 102.6 132.5 ± 114.8 61.8 ± 69.2
Δ [s] 1.17 ± 0.92 0.80 ± 0.50 1.13 ± 0.94 1.94 ± 1.58 1.02 ± 0.71
dl [s] 0.216 ± 0.146 0.191 ± 0.122 0.212 ± 0.152 0.312 ± 0.198 0.290 ± 0.176
dr [s] 0.154 ± 0.077 0.115 ± 0.072 0.144 ± 0.073 0.156 ± 0.145 0.107 ± 0.052
w [s] 0.400 ± 0.152 0.257 ± 0.114 0.382 ± 0.153 0.471 ± 0.259 0.280 ± 0.094

Table 1: Means and standard deviations of peak attributes for diseases classes and controls (WT): left side amplitude Al, right side 
amplitude Ar, left side duration Dl, right side duration Dr, maximum of the approximated first derivative s’, absolute minimum of 
s’, maximum of the second derivative s’’ from the right peak side and its absolute minimum, peak area R, time difference Δ from 
peak maximum to maximum, duration dl from the peak beginning to the location of the maximum of the first derivative of the left 
side, duration dr from the peak maximum to the location of the absolute first derivative minimum of the right side and peak average 
width w.
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density estimation (normal kernel, Epanechnikov kernel, box 
kernel, and triangle kernel) [22], multinomial logistic regression 
[23,24], decision trees [25,26], K-nearest neighbor nearest 
searching (KNN) [25,27] with Chebychev metric, with cityblock 
(Manhattan) metric, with correlation measure, with cosine 
measure, with Euclidean metric, with Mahalanobis measure, 
with standardized Euclidean metric, with Spearman measure, 
and binary tree least square support vector machine (LS-SVM) 
[28-30] with the linear, quadratic, cubic and radial basis function 
(RBF) kernel. Note that all KNNs above were run with equal, 
inverse or squared inverse weighting. Moreover, the binary 
tree structure used with LS-SVM is described in Figure 5 where 
one class at a time is separated from the rest of the classes. The 
reason why WT is first separated in the tree structure is that we 
want to know whether or not the person has a cardiac disease 
overall before identifying the disease more detailed way. This 
chain of decisions simulates the actual situation what a physician 
encounters in reality. In the last node HCMM and HCMT are 
separated because they produce the same clinical phenotype.

When machine learning methods are used in practice, one cannot 
dismiss the parameter values since they have a huge impact on 
the final results. For the aforementioned classification methods, 
there are altogether four parameters to be examined more closely. 
Firstly, for KNN the k value is most important parameter. In this 
study, we tested the odd k values from 1 to 37. Only odd k values 
were tested to decrease the possibility of ties. Secondly, the LS-
SVM classification method includes several tunable parameters. 
The number of parameters depends on the kernel selected. For 
all kernels the regularization parameter, C, is a common one. 
For the RBF kernel, the width of Gaussian (also known as σ) is a 
kernel specific parameter to be tuned. For both variables (C and 
σ) we used the same parameter value space {2-12, 2-11,…, 217} 
that led to a situation where we examined 30 values for the linear, 
quadratic and cubic kernels whereas with the RBF kernel we 

tested 900 (C, σ) combinations. Different parameter values were 
tested using grid-search and other, more advanced, methods for 
parameter value tuning such as the utilization of evolutionary 
computing are out of the scope of this paper. Thirdly, for random 
forests classifier the most crucial component is to select how 
many trees are included to a forest. In this study we examined 
the number of trees ranging from 1 to 100 with step size of 1. A 
forest can also consist of only one tree and due to the random 
aspect in random forests classifier, this tree differs from normal 
decision tree where all variables are used when constructing the 
tree. In random forests classifier only a subset of variables is used 
for constructing the tree in a forest.

Besides parameter values, an important issue to consider is 
the evaluation measures. There are no strict guidelines which 
evaluation measures should be used and they are always 
application and case specific choices. For this study we followed 
our earlier studies [4,5,6] and used sensitivity and accuracy as 
evaluation measures. Sensitivity can be computed for each class 
separately and it describes how well a specific class is recognized 
with respect to its class size in a test set. Accuracy instead explains 
the overall performance, i.e., what proportion of all signals is 
recognized correctly. Accuracy at a signal level is also used when 
finding the best parameter value for a classification method. The 
classification procedure described below is repeated with all 
parameter values tested and the highest accuracy determined the 
optimal parameter values.

Classification was performed by utilizing a variant of leave-one-
out (LOO) method that is developed for the signal classification. 
The method is called leave-one-signal-out (LOSO). If we have N 
signals in a dataset, we have N rounds in classification just like 
in LOO. At each round in LOSO, the data from one signal in 
total is left for a test set and the rest of the data (data from N-1 
signals) forms a training set. Here, we need to remember that 

Figure 5: The binary tree structure used with multi-class least-squares support vector machines.



EJBI – Volume 15 (2019), Issue 3

48 Juhola M, et al.- Differentiation of Genetic Cardiac Diseases on the Basis......

a data from one signal consists of several rows in observation 
matrix and each row represents the feature vector from one peak. 
Moreover, a classification method learns a model based on peak-
level information and gives a prediction (class label) for each 
peak in a test set. In order to obtain a signal level classification 
result, we need to find the most frequent predicted class label 
within the peaks of a signal. For example, if we have a signal that 
has six peaks and belongs to class 1, the ground truth information 
for the peaks is (1,1,1,1,1,1) and the class label for signal is 1. 
Predicted class labels for the peaks within the signal can be, for 
instance, (1,1,2,1,2,1). Since there are four peaks with class label 1 
and two peaks with class label 2, the predicted class label for the 
signal would be 1. This small example illustrates the signal level 
classification when the classification method gives predictions at 
peak-level.

When the most frequent predicted class label within a signal is 
determined, ties may occur. A tie can be, for instance, between 
classes 1, 2 and 3. Furthermore, a tie can be seen at peak-level 
as follows (1,3,2,3,1,2) when considering the earlier example. 
In order to solve a tie situation, we perform the following 
procedure. Find the classes included in a tie and find the 
corresponding number of peaks from a training set from these 
classes. Divide interval [0,1] with the same proportion to 
subintervals as there are peaks occurred in a training set with 
respect to the tied classes. Generate a random number from 
uniform distribution U(0,1) and find the subinterval where 
the random number belongs to. If we have a tie within three 

classes 1,2 and 3 like in earlier case and the corresponding 
number of peaks in a training set for classes 1,2 and 3 would 
be 20, 50 and 30, then the subintervals would be [0,0.2) for 
class 1, [0.2,0.7) for class 2 and [0.7,1] for class 3 respectively. 
If the random number generated would be 0.75, it belongs to 
sub-interval [0.7,1] and the predicted class label for the signal 
would be 3.

Seen from Table 2, true positive rates or sensitivities of the 
random forests that gave the best results from among all 
classifiers were 93% for LQT1, 87% for HCMM, 74% for CPVT, 
74% for WT and 62% for HCMT. In Table 3 there are the 
detailed results of the random forests. From the row of HCMT 
in Table 3 we can see that HCMT is somewhat exposed to be 
predicted incorrectly to HCMM when 32 HCMT signals were 
incorrectly predicted to HCMM. On the other hand, 9 actually 
HCMM signals only were predicted incorrectly to HCMT 
disease. A probable cause is that HCMM is the majority class, 
much larger with 270 signals compared to that of HCMT with 
149 signals. Another probable cause is that these two mutations 
of the same disease are not so dissimilar to each other than to 
other two diseases or controls. Both HCMM and HCMT are 
also mixed with controls (WT), when 18 actually HCMM and 
20 actually HCMT signals were incorrectly classified into WT. 
Similarity and its opposite dissimilarity are on the basis of 
peak attributes computed. Cohen’s kappa for random forests 
was 0.73 (from interval [-1,1]) which is good being quite close 
to maximum 1.

Classification method Sensitivity % Accuracy %
 LQT1 HCMM CPVT WT HCMT  

Random forests, 21 trees 93.3 87.4 74.2 73.9 61.7 77.8
Decision trees 94.4 85.2 69.1 68.8 59.7 74.6

KNN, cityblock, equal, K=1 88.9 87 65.2 60.8 63.8 72.6
KNN, cityblock, inverse, K=3 88.9 85.6 64.4 65.8 64.4 73.1

KNN, cityblock, squared inverse, K=3 88.9 85.9 65.2 64.3 65.8 73.3
KNN, cosine, equal, K=1 78.9 83.3 66.1 64.8 59.7 71

KNN, cosine, inverse, K=1 78.9 83.3 66.1 64.8 59.7 71
KNN, cosine, squared inverse, K=3 81.1 83.3 66.5 65.3 58.4 71.2

KNN, Euclidean, equal, K=1 80 85.6 64.8 63.8 61.1 71.4
KNN, Euclidean, inverse, K=1 80 85.6 64.8 63.8 61.1 71.4

KNN, Euclidean, squared inverse, K=1 80 85.6 64.8 63.8 61.1 71.4
KNN, Mahalanobis, equal, K=1 83.3 84.1 63.1 62.8 60.4 70.6

KNN, Mahalanobis, inverse, K=3 82.2 87.8 62.2 62.8 61.7 71.5
KNN, Mahalanobis, squared inverse, K=7 83.3 88.9 64.4 59.3 66.4 72.5
KNN, standardized Euclidean, equal, K=1 80.3 85.6 64.8 63.8 61.1 71.4

KNN, standardized Euclidean, inverse, K=1 80.3 85.6 64.8 63.8 61.1 71.4
KNN, standardized Euclidean, squared inverse, 

K=1 80.3 85.6 64.8 63.8 61.1 71.4

Binary tree LS-SVM RBF kernel, C=32, σ=1 75.6 86.3 63.9 57.3 69.8 71

Table 2: Sensitivities of four diseases and controls (WT) and classification accuracies in percent where K is the number of nearest 
neighbors that gave the best result reported, and C and σ are the control parameters for RBF kernel in binary tree LS-SVM. The best 
accuracy is given in Bold.
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 Predicted class by random forests for calcium transient signals
True class LQT1 (%) HCMM (%) CPVT (%) WT (%) HCMT (%)

LQT1 84 (93) 0 (0) 5 (6) 1 (1) 0 (0)
HCMM 0 (0) 236 (87) 7 (3) 18 (7) 9 (3)
CPVT 20 (9) 12 (5) 173 (74) 26 (11) 2 (1)
WT 1 (1) 18 (9) 23 (11) 147 (74) 10 (5)

HCMT 0 (0) 32 (22) 5 (3) 20 (13) 92 (62)

Table 3: Results of random forests in the form of a confusion matrix where the numbers in Bold of correctly classified signals 
(true positive) are located along the diagonal, the rows contain actual classes (four diseases and controls) and the columns those of 
classified (predicted). Numbers of incorrectly classified transient signals are those outside the diagonal. Percent values within the 
parentheses are counted along the rows.
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Figure 6: The five circles represent the four diseases and controls (WT, wild type). The circles show how many calcium transient 
signals were correctly classified (true positive) as the major sector in each of five classes and how many incorrectly classified (false 
negative) as smaller sectors to other classes. The best was LQT1 with 84 true positive and 6 false negative. The second best was 
HCMM with 236 true positive and 34 false negative. The next were CPVT with 173 true positive and 60 false negative and WT with 
147 true positive and 52 false negative. The poorest was HCMT with 92 true positive and 57 false negative.

In order to clarify the contents of the confusion matrix in 
Table 3, Figure 6 shows pairwise class by class (diseases or 
controls) how classification failed on the basis of the numbers of 
the false negative. Figure 6 also shows true positive. i.e., it shows 

from which disease or controls those false negative signals were 
actually. Figure 7 shows the results from the other direction by 
presenting true positive and false positive. It shows to which 
classes (diseases or controls) some signals were incorrectly 
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Figure 7: In each circle there is the major sector of true positive indicating the correctly classified class (disease or controls) being 
naturally the same as in the Fig. 6, whereas smaller sectors indicate incorrectly classified false positive with the class labels from 
which they actually originated.

classified. Thus, Figure 6 visualizes the results of Table 3 row by 
row, while Figure 7 does this column by column.

3.  Results and Discussion
The sampling frequency of calcium transient signals were 
roughly 8 Hz for LQT1, 23 Hz for HCMM, 8 Hz for 55, 12 Hz 
for 93 and 23 Hz for 85 CPVT signals, 12 Hz for 40, 23 Hz for 
93 and 33 Hz for 66 WT signals, and 14 Hz for 54 and 23 Hz 
for 95 HCMT signals. The increased sampling frequencies have 
been utilized along with the updated measuring system. Different 
sampling frequencies are, of course, not ideal. By considering 
the issue theoretically, the time difference ΔT of approximate 
sampling intervals 0.125 s and 0.030 s for the lowest and highest 
sampling frequencies f when f=1/T is approximately 0.095 s. 
While its variation is of type such as quantization noise, its 
average is ΔT/2 since its distribution is uniform, i.e., any value 
from the minimum to the maximum is equally probable. Now 
in theory this might be an average inaccuracy when the locations 
of a peak beginning, maximum or end were detected. Assuming 
that such inaccuracy might occur, for example, in the locations 

both beginnings and maxima of peaks for these two frequencies, 
total inaccuracy for the corresponding durations of peak left sides 
would be from minimum 0 s to maximum 2 (Δ T/2)=ΔT ≈ 0.095 s 
and approximately 0.048 on average. Looking at all six attributes 
directly dependent on time [s] in Table 1, we notice that time 
differences of the means of the five classes (four diseases and 
controls) are greater than 0.048 s for almost all pairs of classes 
except for attributes dl and dr. Nevertheless, subject to these 
extreme sampling frequencies there were 145 signals with 8 Hz 
and only 66 signals with 33 Hz, whereas there were 543 signals 
with 23 Hz being also the median sampling frequency used when 
representing 57.7% of all signals. In addition, 23 Hz was used for 
all other classes (270 HCMM, 85 CPVT, 93 WT and 95 HCMT 
signals) than LQT1. These two observations mean that any 
actual inaccuracy would be considerably less than the theoretical 
inaccuracy of 0.048 s computed above. Other seven attributes are 
only partially dependent on time.

Our results showed that with computational machine learning 
method HCM, LQT1 and CPVT diseases could be separated 
from each other by calcium transient signals with high accuracy. 
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In addition, HCM mutations HCMM and HCMT could also be 
separated from each other. This reinforces our previous findings and 
shows the possibility to discriminate genetic cardiac diseases and 
even different mutations by calcium transient profiles recorded from 
iPSC-CMs with machine learning classification methods.

Differentiation of five classes, i.e. four diseases and controls (WT), 
from each other was successful as the best classification accuracy 
of 77.8% generated by random forests for 941 signals in Tables 
2 and 3 indicated. Previously, we obtained the best accuracy 
of 78.6% similarly by random forests for 527 calcium transient 
signals of LQT1, HCMM, CPVT and WT [6]. Now the numbers 
of HCMM and WT signals were greater and HCMT signals were 
also included. Although HCMT was somewhat slightly more 
difficult to differ from HCMM than it was with regard in all 
other pairs of classes, the entire results are still very high. The 
complexity of HCMT (149 signals) is natural, since HCMM (270 
signals) was the majority class in the data. Possibly, it is even 
more influential that they are the mutations of the same disease.

We have previously shown that HCMT iPSC-CMs have more 
abnormal calcium transients than HCMM iPSC-CMs, however, 
abnormality types vary in both mutation types. These previous 
results together with other characterization methods suggested 
that abnormal calcium transients in HCM-CMs carrying different 
mutations may be caused by distinct mechanisms [31]. This study 
supports that observation by showing that machine learning 
method could be utilized to separate these two HCM mutations. 
This finding provides additional utilization of machine learning 
method for calcium transient signals to separate different disease 
mutations, which is important, since specific disease mechanisms 
of certain mutations may need mutation specific treatment.

4.  Conclusion
The classification tests performed produced the interesting 
observation that it was still possible to get a very good 
classification accuracy, although the number of test signals was 
greatly increased and a set of new signals of HCMT were added, 
when compared to the results of our first article [6] related to the 
present research. These results reinforce our previous findings 
and encourage to continue and extend this research by increasing 
the number of HCM, LQT1 and CPVT patients as well as other 
inherited cardiac diseases, which lead to larger number of calcium 
signals to be analyzed. This machine learning classification 
method could be exploited to diagnose genetic cardiac disease 
and could even predict the type of mutation based on only Ca2+ 
transient signals measured from iPSC-CMs.
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