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1 Model

Three-state progressive model for continuous time data with states
e 1 1: Non-diabetic and autoantibody negative ("healthy")
e 2: Autoantibody positive (interval censored)
e 3: Type 1 diabetes ("exact")

will be used to study the effect of pubertal onset on the development of autoan-
tibodies and type 1 diabetes.

Study included regular 3-12-month follow-up for diabetes associated autoan-
tibodies, including ICA, TAA, GADA, and TA-2A. Information on type 1 dia-
betes diagnosis comes from register.

"Progressive" means that recovery back to previous state is not possible.
Then, transition intensity matrix is of the form

—(hi2(t) + haz(t))  hia(t)  has(t)
Q= 0 —haz(t)  has(t) |,
0 0 1

where h,.s(t) are transition intensities between the states at time ¢, with r
being the previous state and r’ the current state.

2 Data simulation from exponential distribution

2.1 Without covariates

Let
e T, be time from state 1 to state 2
e T3 time from state 1 to state 3

e Th3 time from state 2 to state 3



and

Tio ~ Exp(hi2), Th3 ~ Exp(hi3), Toz ~ Exp(has),
Let’s set

1 1 1
12 20; 13 100’ 23 10

which implies that
E(Ty2) = 20, E(T13) = 100, E(T%3) = 2.
Transition intensity matrix is then

1 1 1 1

") m

Q= 0 10 10
0 0 1

In a time-homogeneous continuous-time Markov model, a single period of

occupancy in state r has an exponential distribution, with rate given by h,.., (or
mean by 1/h,..). The remaining elements of the rth row of @) are proportional to
the probabilities governing the next state after r to which the individual makes

a transition. (Multi-state modelling with R: the msm package)
Simulation was done by simulating "exact" transition times. Interval cen-
soring and follow-up were added afterwards.

Simulation process:

e (' is a censoring time

e N is a number of the individuals

e t1; is a kth transition time for individual 7 and s;(t;) is a state for indi-

vidual 7 at tg;; kK =1,2

e T, ; is a time from state r to state r’ for individual ¢; r,r' = 1,2, 3

1. Simulate separately N transition times Ty2 ; from Fxp(hi2) and Ty3; from

Exp(hy3) distributions

(a) t1; =min(T2.4, T13.:)
i If ty; = Tioq: si(tyy) =2
i Ity = Tusar si(tn) =3
ili. If t1; > C: ty; = C and s;(t1;) = 99(censored)

2. For children with ¢1; = Ti2;, simulate transition time Th3 ; from Exp(has)

(a) tgi = tli + T23.i and Si(t%) = 3
i. If t9; > C: ty; = C and Si(tgi) =2



The 3-month follow-up was added to the data because autoantibodies (state
2) were measured at particular time points. Now, if child’s transition age to the
state 2 is for example 2.4 years (27 months), he/she is observed at 2.3 years in
state 1 and at 2.6 years in state 2. Adding of the follow-up to the data causes
also some not allowed 3 — > 2 transitions. In these cases, transition to state
3 has observed before the follow-up visit for autoantibodies and thus transition
to state 2 was eliminated from the data.

2.2 With covariates

Let 8, be covariate effect on transition rate from state r to state r/, r,r’ =
1,2, 3, and z;(¢) the covariate value for individual ¢ at time ¢. Transition inten-
sities become as:

hrr’(t) h” ' xl( ) 0
57‘7” hrr’ if 331( )

3 Model equations

Here, a model for the hazards is not specified yet. Given time interval (¢;_1,t;],
j =1,...,J is the number of the observation, the cumulative hazard function for
leaving state 1 is

tj
Hy(tait) = [ s + bua (u) du 1)
ti—1
and for leaving state 2 is
tj
H2 (t]‘,ht]’) = / hgg(u)du. (2)
tj71

to = 0 for every child. If there is covariate, transition intensities hy,(t)
consist of baseline intensity multiplied by the covariate effect:

hrr’ (t) = hrr’.O(t) eXp(BTT’Zi(t))~ (3)

Let s; be a state of the measurement j. Transition probabilities from state
r to state r’ are of the form p,,/ (t;_1,t;) = P(sj_1 =1"|s; =r). If we as-
sume three-state progressive model (back-transitions are not allowed), transition
probabilities for panel-observed data can be given by

1. Leaving from state 1 (1st row of the transition probability matrix)
(a) p11(tj—1,t5) = exp (—Hi (tj_1,t5)) = exp ( ft hiz (u) 4 hiz (u )du)

(b) pr2(tj—1,t;) = ft] pi1 (tj—1,uw) hiza(uw)paz (u,t;) du
(€) pi3 (tj—1,t;) =1 —pi1 (tj—1,t;) — P12 (tj—1,t;) OR



(d) p1s = pis (tj-1,t;) + pis (j-1,t;), where
i. pis(tj_1,t;) stands for the straight transition from state 1 to 3
o pis(ti-1,t ft P11 (tj-1,v) hiz(v)ps3 (v, t;) dv
= t;,l exp ( ft hiz (u) + h1s3 (u )du) hig (v) dv

ii. p35(¢j_1,t;) transition from state 1 to 3 via state 2
[ ] p13 ] 1, ft exp ( ft hlg + h13 ( )du) hlg (’U)pgg (’U7 tj) dv
= ftkl (eXp ( ft hiz () + his (u )du) hia(v) fj’ exp (— [ hos (u) du) hos (w) dw) dv

2. Leaving from state 2 (2nd row of the transition probability matrix)

(a) pa1 (tj-1,t;) =0

(b) p22 (tj-1,t;) = exp (—Hz (tj-1,t;))

(c) pas (tj—1,t;) =1 —pa2 (tj-1,t;) OR

(d) pzsfft D22 (tj—1,v) haz(v)pss (v, t;) dv

= j;jfl exp ( ft h23 du) hos ( )dv * 1
3. Leaving from state 3 (3rd row of the transition intensity matrix)
(a) p31 (tj—1,t;) =0
(b) p32 (tj—1,t;) =0
(€) paz (tj-1,t5) =1

3.1 Contributions to the likelihood

Individual contribution to the likelihood can be calculated by multiplying over
all of the appropriate transition probabilities

H prr (tij—1:ti5) | C (tig—1,ti,0)

where C (t; 7-1,t;,7) is needed for the possible different definitions of the
last state:

o If state at t; ; is right censored

- C(tig-1,tig) = Zi;o Prrr (ti,7—1,%i,7)
x Individual has not reached state 3 but state at the study end (at
t;.) is uncertain:
- If r = 1 (previous observed state (at t; j_1) is 1) state at ¢; s
can be 1 or 2: p11 (¢ j—1,t:,7) + P12 (ti,7-1,t:,7)



- If r = 2 (previous observed state (at ¢; yj—_1) is 2) we know
that state at ¢; ; can only be 2: pag (¢;,5-1,%,)

o If state at t; ; is 3
— C(ti,g—1,ti,g) = Zi:o Prr (ti,7-1,ti.0) @r3 (E)
* Individual has reached state 3 but state before the diagnosis (at
t;.y—1) is uncertain:
- If r = 1 (previous observed state (at ¢; y—_1) is 1) state at
ti,y—1 canbelor2: piy (t; 5-1,t:,7) hig (ty)+pi2 (ti,g—1,ti7) has (t7)
- If r = 2 (previous observed state (at ¢; y_1) is 2) state at
ti)J_l can only be 2: P22 (ti,J—h tiJ) h23 (tj)

e Otherwise
— C (ti,g—1,ti,g) = pro (ti,g—1,ti,7)

Final likelihood can be calculated by multiplying over all of the individual con-
tributions (s: state, x: covariate):

N

[1zi6ls, )

%

3.2 Exponential model
3.2.1 Without covariates

If a model for the hazards is exponential, transition-specific hazards are specified
by constants h... (t) = h. for all states r,r’ at any time ¢. Cumulative hazard
function for leaving state 1 becomes as

o exp (—Hi (tj_1,t;) fexp( ft hia(u) + his (u )du)
= exp (— (ha2 + haiz) (t; — ;1))

and for leaving state 2

o exp (—Hs (tj_1,t;)) = exp (f fttf,l hgg(u)du)
= exp (—has (t; — tj—1)).

Transition probabilities become as

o pii(tj—1,t;) = exp (= (hi2 + hiz) (t; — tj-1))

e pia(tj—1.t;) = fttjjflpn (tj—1,u) hia(u)paz (u,t;) du
= ft exp (—Hi (tj—1,u)) hi2(u) exp (—Ha (u, t;)) du

= T (exp (<has (1 — tj—1)) — exp (= (haz + h1z) (t; — 1j-1)))



p13(tj—1,t;) = exp (= (haz + hus) (; — ;1)) has(t;)+
et h s (€xp (—has (t; — tj—1)) — exp (= (haz + hag) (t; — tj-1))) has(t;)

p2a(tj—1,t;) = exp (—has (t; — tj-1))
p23(tj—1,t;) = exp (—has (t; — tj-1)) has(t;)

po(tj—1,t;) = exp (= (hig + hi3) (t; —tj-1)) +
T2 (exp (—hos (85 — tj—1)) — exp (= (hia + hiz) (t; — tj-1)))

3.2.2 With covariates

If a model for the hazards is exponential and we have time-dependent covariate,
transition-specific hazards are specified by hpp (t) = by g €xp(Br2i(t)) for all
states r,r’ at time ¢.

Model 1 If b; is a pubertal onset age for child i:

h (t)_ hTT’AOa t<bz_1
7‘?”1 B P 0 eXP(/Bv-r')’ t>b;—1

Model 2 If b; is a pubertal onset age for child i:

h”l‘T’.O? t < b’L - 1
hpri(t) = S B0 xp(Brr), by —1 <t <b;i+1
hrr’.07 tz b1+1

Cumulative hazard function for leaving state 1 becomes as
o exp (—Hy (tj-1,5))
= exp (= [ (hal) + g () )

exp | — fttj;l (h12.0 + h13.0) du) , tj—1<b—1
=qexp|— f:f_l (h12.0 exp(B12) + hiz.0 exp(f13)) du) yo b —1<t 1 <b+1
exp | — ftt;;l (h12.0 + h13.0) du) , tji-1>b;+1

exp (— (h12.0 + hiz.o) (t; —tj-1)), tj_1 <b—1
= ¢ exp (— (h12.0exp(Br12) + hizoexp(fi3)) (t; —tj—1)), bi—1<tj1 <bi+1
exp (— (h12.0 + his.o) (t; —tj—1)), tj—12>b;+1

and for leaving state 2



o oxp (—Ha (tj-1,15))

:eXP( ft has(u >

exp —f:j h23du) tj_l <b—1
= 4 €Xp ft h23 exp 523)du) b, — 1< tj—l <b+1
exp ( — Lj71 h23du) s tj,1 2 bz +1
exp (—hgg,o (tj — tj_l)) s tj_l < bi -1
= ¢ exp (—hasgoexp(Bes) (t; —tj—1)), bi—1<t;_1 <b+1
exp (—hazo (tj —tj-1)), tji_12>b;+1

Transition probabilities become as

exp (— (h12.0 + hisg.o) (t; —tj—1)), ti—1<b—1
p11(tj—1,t5) = S exp (= (h12.0exp(Bi2) + hisoexp(Bis)) (t; — tj—1)), bi—1<t;—1 <b;+1

exp (— (h12.0 + his.o) (t; —tj—1)), tj—1>b;+1
t; v
/ exp —/ (h12.0 + hiz.0)du
¢
t.]
hia. 0 €xXp ( has. 0du> dv, tj,1 <b -1

exp( (h12(w) + his(u))du )

pr2(tj—1,t;) = t
J

hlg exp ( hgs( )du) dv, b, — 1< ti—1 < b +1

eXp < (h12.0 + hiz.0)du )
¢

tJ
hi2.0 exp / has. 0du> dv, tis1>b;+1



eXp < / (h12.0 + h1z.0)du )
t
tJ
hia. 0 €xXp ( hos. Odu> dv, tj,1 <b —1

exp (h12.0 exp(f12) + his.0 exp(f13))d )
p12(tj—1,t;) =

h12.0 exp(B12) exp ( / ha3.0 eXP(ﬂzs)du> dv, bi —1<t;_1<b+1
eXP < (h12.0 + hiz.0)du )

hi2.0 exp ( / h23,0du> dv, ti1>b+1

hi2.0
—hoan(t: —t: 1)) —
hio.0 + h13.0 — ho3o (exp(—haz.o (t; — tj-1))

exp (— (h12.0 + h1z.o) (£ — tj—1))), tji—1 <b; —1
hi2.0 eXP(ﬂm)

hi2.0 exp(B12) + h13.0 exp(B13) — haz.o exp(Fa3)

(exp(—haz o exp(Ba3) (t; — tj—1)) —

exp (— (h12.0exp(Bi2) + hizoexp(fi3)) (¢t —tj—1))), bi—1<t;1 <b;+1

hi2.0
€ —h te— 1t 1))—
hi2.0 + h13.0 — h23‘0( Xp( 23.0 ( J J 1))

pr2(tj—1,tj) =

exp (— (h12.0 + his.o) (tj — tj-1))), tji-12bi+1
exp (—has.o (t; —tj—1)), tj—1 <b;—1
p22(tj—1,t;) = < exp (—hazexp(Bas) (t; —tj-1)), bi—1<t;_1 <bi+1
exp (—h23_0 (tj — tjfl)) 5 tjfl Z bz + 1
4 Puberty

4.1 Different scenarios

Let z; (t) stands for the puberty status of the child i at time ¢, and pub; for the
pubertal onset timing of child .
Let’s set

h12 = 005, h13 = 001, h23 = 05



Bi2 = log(2), f13 = log(3), fa3 = log(4),

where h,.,.ss are baseline transition intensities and (,,/s are the parameter
estimates of puberty for different transitions.

1. Puberty affects permanently
0 t < pub;
1 t> pub;

Simulated using Exponential distribution with piecewise-constant rate based
on pubertal onset ages:

hos(t) = 0.05,0 <t < pub;
PR 0.05 % 2, > pub;

hsi(t) = 0.01,0 <t < pub;
P 0.01 % 3,t > pub;

h (t) . 0.5,t < pubz — t19;
2 B 0.5 4,t > publ — 119

2. Puberty affects temporarily for certain time a around pubertal onset
0 t<pub; —%
zi(t) =91 pub; <t <pub;+ %
0 t>pub;+a

Simulated using Exponential distribution with piecewise-constant rate based
on pubertal onset ages:

hoi () = 0.05;0 <t < pub; or t > pub; + 2
A0 0.05 % 2; pub; < t < pub; + 2

hiss(t) = 0.01;0 <t < pub; or t > pub; + 2
A 0.01 % 3; pub; <t < pub; + 2

h ( ) - 0.5;t < publ — t12_’i ort> pub1 — tlgﬂ' + 2
23 B 0.5 * 4; pub; — t1; <t < pub; — t12,: + 2

3. Puberty affects temporarily and with evenly reducing effect (based on
uniform distribution) for certain time a after pubertal onset

0 t < pub;
Zz(t): 1—% pubz§t<pubz+a
0 t > pub; + a



4. Puberty affects temporarily and with evenly increasing and reducing effect
(based on uniform distribution) for certain time a around pubertal onset

0 t < pub; — 5
b= G g ST <pub
Zzt = K t,publi )
"~ (pubi+%)—pub; pub; <t < pub; + 5

0 t > pub; + §

5 Weibull distribution

5.1 Parametrization

If a continuous variable T has a Weibull distribution with scale parameter A > 0
and shape parameter k& > 0 we can denote T ~ Weibull(\, k). The probability
density function is given by

(4)

MetF—Texp(=AtF) ¢t>0
f(t) = (=28
0 t <0,

where S(t) = exp(—At*) is a survivor function and h(t) = Mkt*~! is a hazard
function. Then, the cumulative distribution function F(t) = 1 — exp(—At*).

5.2 Transition probabilities (likelihood contributions)

In Weibull model, transition-specific hazards are time-dependent:

Py (t) = Arr’krr'tk”/il

The transition probabilities are :

p11 (tj—1,t;) = exp (—Hi(t;j-1,t;)) = exp <— / ’ (h12(u) + haz (u)) du)

t]'71

tj
= exp (—/ ()\12k’12tk1271 + /\13k13tkl371)) du)

tj—1
tj
ti—1

= exp (*)\12(15?12 — t?l_zl) - )\13(15;?13 - t?l_gl)) (5)

1 t
= exp (— (le ()\12k]12fk12>

tj71

1
+— ()\13k13tk13)
ki3

D22 (tjfl,tj) = exp (—Hz(tjfl,tj)) = exp (— /tj hgg(U)dU)

t]'71

10



= exp (—Aaa(t — £4)) (6)

P12 (tjfl,tj):/j exp (—Hy(tj-1,u)) hi2(u) exp (= Ha(u,t;))du  (7)

t171

pa3 (tj—1,t;) = paz (tj—1,t;) has(t;) (8)

The integral for plg(tj,l,tj) does not have a closed-form solution. The
integrand can be approximated using composite Simpson’s rule. If the interval
(tj—1,t;) is split up with into n sub-intervals, with n being an even number, and

h = % is the length of the intervals, the composite Simpson’s rule is given
by:

t; n/2
Fluddu =S (o) + 4f (s -2) + Foi)
tj-1 =1
n/2—1 n/2

=g S0 +2 3 Sl 43 S + o) |

where vy =t;_; +1lh for 1 =0,1,...,n —1,n. In fact, up = ¢;_; and u,, =t¢;.

5.3 Simulating data

Given survival up to time u > 0, the conditional Weibull survivor function is
S(tlu) = exp(—A(t* — w¥)). The cumulative distribution function F(t|u) =
1 — exp(—=A(t* — u¥)) can be used to simulate conditional Weibull event times
by the inversion method. Replace F(t|u) with U ~ U(0,1), put T for t and
solve for T:

U=1-exp (—)\(T]C - uk))
1—U =exp (—\T" —u"))
—log (1 —U) = AT* — \u*
MTF = —log (1 —U) + M
Tk:f%log(lfU)+u’C

1
k

T = (—ilog(l -U) +uk>

11



k

log (T') = log (—i log(1-U)+ uk)

1 1
log(T):%log <—)\log(1—U)+uk>.

Then
THT > u) = exp (;log (—ilog(l—U)—I—uk)). (9)

Implementation can be checked by setting v = 0 and comparing sample
mean and sample variance to the theretical ones:

E(T) =X 0 (1+k7Y)

Var(T) = A"t <r (1+2) —P<1+,1€)2>v

where I' (n) = (n — 1) ! is the gamma function.

5.4 Model with puberty

When adding a covariate, transition-specific hazards became as:

hrr’ (t) = h'rr’.O (t) exp(ﬂrr’ Z (t)) = /\rr’ krr’tk”/ -1 eXp(Br'r’Zi (t))

Then, T ~ Weibull(\exp(53), k) when puberty is "on", and T' ~ Weibull(\, k)
when puberty is "off". Let b; stand for the age at pubertal onset and let’s as-
sume that puberty affects to the transitions during two year period (b; —1,b;+1)
around the onset. The hazard function becomes as

Ayt Koot =1 0<t<b—1
Pyt (t) = q Ay eXp(Br’r'/)k’rr’tka_1 b —1<t<b+1 (10)
)\T"r‘/ krr/tkfrlil t 2 bz + 1,

where exp(S,,+) is the relative hazard during the pubertal period.

5.4.1 Simulating data

Given survival up to time u > 0, the conditional Weibull survivor function is
S(t|u) = exp(—A(t* — u¥)) which is the same as p(u, t).
e For 1— > 2 and 1— > 3 transitions, separately:

1. Simulate event time ¢; for individual ¢ by using Equation 9 (u=0).

(a) If t; > b; — 1, simulate ¢;x|(t;x > b; — 1) so that A = Aexp(B) and
u = b; — 1 in Equation 9, and replace t; by ;.

12



i. If t; > b; + 1, simulate t;|(t; > b; + 1) so that w = b; + 1 in
Equation 9, and replace t;;, by t;;.

(b) Put final simulated age as t;.
2. When implemented separately for both transitions, choose first transition

appearing and put t; = t;; (transition age to state 2) or t; = t;2 (transition
age to state 3).

e For 2— > 3 transition:

1. Pick children with 1— > 2 transition.
2. Simulate event time t;3 for individual i:

(a) If t;; < b; — 1, use Equation 9 by putting u = ;.
i. If t;3 > b; — 1, simulate #;3.1|(t;5.1 > b; — 1) so that A = Aexp(p)
and u = b; — 1 in Equation 9, and replace t;3 by t;3.1.
A If t1'3_1 > b1+1, simulate ti3_2|(t1‘3.2 > b1+1) so that u = bl+1
in Equation 9, and replace t;3.1 by t;3.2.
ii. Put final simulated age as t;3.
(b) I b; — 1 < t;1 < b; + 1, use Equation 9 by putting A = Aexp(3) and
Uu = til-
i. If t;3 > b; + 1, simulate t;31](¢;3.1 > b; + 1) so that u = b; + 1 in
Equation 9, and replace t;3 by t;3.1.
ii. Put final simulated age as t;3.

(¢) If t;1 > b; + 1, use Equation 9 by putting u = ;1.

5.5 Proportional hazards vs. accelerated failure time

e The Weibull distribution has a proportional hazards property:

In 2-group case, if hazard for individual at group 1 is ho(t) = A\yt7~1, then
the hazard for individual in group 2 is 9hg(t). The hazard function for
individual ¢ in group 2 is

hi(t) = pAyt? "

which is the hazard function with scale parameter ¥\ and shape parameter
~. Survival times in both groups have Weibull distribution with shape
parameter v and the hazard of death at time ¢ for an individual in second
group is proportional to that of individual in first group.

e The Weibull distribution has a accelerated failure time property:

Survival times are assumed to have a Weibull distribution W(A,~), A
is scale parameter and 7 shape parameter, so that the baseline hazard
function is ho(t) = Ayt? L

13



According to the general accelerated failure time model, the hazard func-
tion for ¢th individual is then given by

hi(t) = e*m/\,y(efmt)'yfl - (efm)'y/\,yt'vfl

so that the survival time of the individual has a W (Ae~ 7" ~) distribution.
7; stands for the linear component of the model.

If the baseline hazard function is the hazard function of a W (A, ) distribu-
tion, the survival times under

e the general proportional hazards model have a W (Ae®'®: ~) distribution

e the accelerated failure time model have a W(/\e_"ya'm",’y) distribution.

Then, it follows that the [-coefficients of the proportional hazards model
can be produced from the accelerated failure time model by multiplying the
a-coefficients of the accelerated failure time model by —~.

6 Omia juttuja

- Sopivaa Weibull-jakaumaa voi tutkia log-cumulative hazard plot -kuvion avulla.
Weibull-jakauman survivor-funktio on

S(t) = exp(—At7)

Ja log-cumulative hazard

S(t) =log(—log S(t)) =log A + vlogt

Jos sijoitetaan S(t):m paikalle Kaplan-Meier estimaatti S(t) ja tehd AAn log-
cum hazard kuvio, sen pitAisi antaa 1Ahes suora viiva. TAIIAqin viivan in-
terceptin eksponentti on scale-parametrin ja slope shape-parametrin estimaatti.
Jos slope (shape-parametri) on 1AhellA ykkA9qstA, survival timet saattavat nou-
dattaa exponentiaalista jakaumaa.

-> Voisi valita simulointia varten sopivat jakaumat oikean aineiston perus-
teella

7 Comparison between continuous and panel-observed

Let’s compare transition probabilities 1— > 2 between continuous and panel-
observed data when follow-up frequency draw near 0 years: ¢;_1— > t;. Tran-
sition time ;1 at continuously observed data and transition time ¢; at panel-
observed data denote the same age.

Transition probabilities are

1. p12(0,¢;1) = p11 (0,t;1) ha2(ti 1) (continuously observed)
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2. p11(0, ¢, 1)p12(J 1,1j) (panel-observed),
where pia(tj_1,¢ ft P11 (tj—1,u) hia(uw)p2z (u,t;) du

—ft exp(—(Hiz2(u)—Hi2(tj-1)+Hiz(u)—Hiz(tj-1)))hi2(u) exp(—(Hzs(t;)—
Hos(u )))du

- > L h12 When tj_lf > tj
ftt;;l hia(u) = Hia(t;) — Hia(tj—1)— > hia(t;)

because it’s the difference between the cumulative hazard functions be-
tween two measured time points (difference in one unit) and hazard stays
same until it changes at next measurement right after time ;.
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