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Abstract: Using multimodal signals to solve the problem of emotion recognition is one of the emerging
trends in affective computing. Several studies have utilized state of the art deep learning methods and
combined physiological signals, such as the electrocardiogram (EEG), electroencephalogram (ECG),
skin temperature, along with facial expressions, voice, posture to name a few, in order to classify
emotions. Spiking neural networks (SNNs) represent the third generation of neural networks and
employ biologically plausible models of neurons. SNNs have been shown to handle Spatio-temporal
data, which is essentially the nature of the data encountered in emotion recognition problem, in an
efficient manner. In this work, for the first time, we propose the application of SNNs in order to solve
the emotion recognition problem with the multimodal dataset. Specifically, we use the NeuCube
framework, which employs an evolving SNN architecture to classify emotional valence and evaluate
the performance of our approach on the MAHNOB-HCI dataset. The multimodal data used in our
work consists of facial expressions along with physiological signals such as ECG, skin temperature,
skin conductance, respiration signal, mouth length, and pupil size. We perform classification under
the Leave-One-Subject-Out (LOSO) cross-validation mode. Our results show that the proposed
approach achieves an accuracy of 73.15% for classifying binary valence when applying feature-level
fusion, which is comparable to other deep learning methods. We achieve this accuracy even without
using EEG, which other deep learning methods have relied on to achieve this level of accuracy.
In conclusion, we have demonstrated that the SNN can be successfully used for solving the emotion
recognition problem with multimodal data and also provide directions for future research utilizing
SNN for Affective computing. In addition to the good accuracy, the SNN recognition system is
requires incrementally trainable on new data in an adaptive way. It only one pass training, which
makes it suitable for practical and on-line applications. These features are not manifested in other
methods for this problem.

Keywords: facial emotion recognition; Evolving Spiking Neural Networks (eSNNs); Spatio-temporal
data; NeuCube; multimodal data
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1. Introduction

The central aim of affective computing is to enable seamless communication between humans
and computers by developing systems that can detect and respond to the various affect states of
the humans [1]. Affective computing is an interdisciplinary field of research that involves experts
from computer science, psychology, social, and cognitive sciences. Affect recognition has important
applications in several fields, such as medicine [2], driver fatigue monitoring, human-computer
interaction, sociable robotics [3], and security systems, to name a few.

Modelling affect can be classified into three categories: categorical, dimensional, and components.
Categorical models classify emotions into a set of discrete classes, which are easy to describe and
these include six basic emotions, such as happiness, sadness, fear, anger, disgust, and surprise.
Owing to its simplicity, categorical models have been extensively utilized in affect research. In contrast,
dimensional models represent emotion as a point in multidimensional space, where the dimensions
include valence, activation, and control, allowing for the description of more complex and subtle
emotions. However, such multidimensional space can pose a significant challenge to automatic
emotion recognition system and, thus, researchers have mostly used the simplified two-dimensional
model of arousal and valence proposed in [4], where arousal ranges the intensity of emotion from
calm to excited, and valence ranges from unpleasant to pleasant [5]. Finally, the component model of
emotions arrange emotions in a hierarchical fashion, where complex emotions can be derived from the
combination of a pair of basic emotions. The most popular component model proposed by Plutchik [6]
is based on evolutionary principles and it has eight basic bipolar emotions.

Affect can be expressed via facial expression, body movements, voice behavior, gestures, and an
array of physiological signals, such as heart rate, sweat, pupil diameter, brain signals, to mention a few.
The problem of recognizing emotions by utilizing facial expressions from videos and static images
have been addressed by several studies [7–9]. Advances in deep learning methodologies have created
huge interest in application of such methods in facial emotion recognition (FER) [10–14], most of which
are based on supervised learning. The methods do not allow for incremental, adaptive learning on new
data, and they are not suitable for on-line applications. For an excellent overview of the application of
deep learning and as well as shallow learning approaches to FER, the reader is directed to [15] and the
references there in. Additionally, the reader can refer to this Chapter on Multimodal Affect Recognition
in the Context of Human-Computer Interaction [16].

Spiking neural networks (SNNs) represent the third-generation of neural networks, modelling
neurons and interactions between them in a biologically more realistic manner as compared to
second-generation neural networks based on ANNs. SNNs are an ideal choice to handle the emotion
recognition task from video data, given their ability to effectively handle spatio-temporal data [17]
(see Section 4 for details).

In this work, we propose building an emotion recognition system for multimodal data. system
using SNNs. To this end, we use the NeuCube framework [18], which is a type of evolving SNN
(eSNN). In this paper, we develop an encoding method to map the continuous facial feature values to
spikes based on population coding. We use the data from Mahnob-HCI dataset to test the NeuCube
framework for the classification of binary valence in response to video stimuli.

The structure of the paper is organized, as follows. In Section 2, we provide some background
literature on various data modalities used in affect detection, where, as in Section 3, we describe
strategies for multimodal data fusion. In Section 4 we provide some background on SNN and the
NeuCube framework. Section 5 details the methodology used in our work and Section 6 presents the
results. In Section 7, we discuss our results and, in Section 8, the direction for future work is presented
and it concludes the paper.
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2. Signals for Affect Detection

2.1. Facial Expression

One of the immediate and natural ways for humans to communicate their emotions is through
facial expressions, which constitute about 55% of the information communicated during face to face
human interaction [19]. Thus, affect research has primarily focused on detecting emotions from the
face. Research on facial emotions have shown that the six basic emotions, such as fear, anger, sadness,
enjoyment and disgust can be detected with facial expressions [20,21] and dectecting an emotion
is equivalent to detetecting the associated prototypic facial expression. Based on the Facial Action
Coding System (FACS), which originally described 44 single action units (AU) including head and eye
movements, with each action unit linked with an independent motion on the face and the correponding
muscles, for example lip suck motion with the muscle orbicularis oris [22]. Several deep learning
techniques have been used to build automatic facial emotion recognition (FER) system, including
deep boltzmann machine (DBM), deep belief networks (DBNs) [23–25], convolutional neural networks
(CNNs) [11,26–29], auto-encoders [30–32], and recurrent neural networks (RNNs), to mention a few.

2.2. Speech

Affective information from speech can contain lingusistic and paralinguistic features, which refer
to what is said and how it is said, respectively. Although speech is a fast and efficient method of
communication that can be exploited in affect research, detecting the emotional state of the speaker
using speech signal is still a significant challenge. There is no clarity on which features of the speech
signal are most powerful is distinguishing different emotions. It has also been shown that, as compared
to facial expressions, the accuracy of affect detection from speech is lower [33]. For instance, the basic
emotions, such as sadness, anger, and fear, can be recognized using speech, where as disgust is hard to
detect [1]. Moreover, cultural differences among speakers has not been addressed thoroughly with most
of the affect research involving speech focusing on monolingual emotion classification [33]. The features
that are typically extracted from speech signal include both global and local features, Local features
refer to pitch and energy extracted from small segments, into which a speech signal is typically divided
to make it stationary, whereas global features refer to statistics of all the local features extracted
from a long signal. Studies have shown that global features have better classification accuracy than
local features [34–36]. However, studies have shown that global features cannot distinguish between
emotions that have similar arousal [37] and may prove to be sub-optimal when using classifiers,
such as Hidden Markov Model (HMM) and Support Vector Machines (SVM), due to insufficient
number of training vectors [33]. Because the properties of the different speech sounds can be altered
by different emotions, some studies have also explored the benefits of phoneme-level modeling for
the classification of emotional states from speech rather than using the prosodic features, such as
pitch and energy [38]. Their results showed that the using phoneme-class classifiers outperformed
HMM classifiers just based on global features. Apart from using HMM or SVM classifiers, several
deep learning techniques have been explored for emotion recognition from speech signals including
DBM [39,40], auto-encoders [41,42], DBNs [43,44], and CNNs [45–47], to cite a few. Despite the
aforementioned challenges, speech is still an important signal that can be used for affect detection, as it
is non-intruive and has high temporal resolution.

2.3. Posture and Body Movements

In comparison to speech and facial expression, perceiving emotions through body movements
and postures is a relatively less explored topic in affect research. In fact, 95% of the literature in research
on human emotions focuses on facial expressions and less than 5% on speech and other physiological
signals with the remaining little of body movements. Several studies in the past have shown that body
movements and postures can contribute to the recognition of emotional states [48,49], with perhaps the
most influential work in this topic dating back to the second half of 19th century by Charles Darwin [50].
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Body postures may offer certain advantages in affect detection given the multiple degrees of freedom
human body possesses, which can aid in communication of emotions and subsequently affect detection,
even at long distances, at which facial emotions are unreliable [51], indicating that postures contain
information not present in facial expressions. Another advantage of posture-based affect system could
be that, in comparison to facial expression, which may be intentionally controlled, postures and body
movements are unintentional and, thus, less susceptible to social editing [1]. In a study on deception
by Eckman and Friesen [52], it was shown that liars were less successful at deception through body
movements as compared to more controlled channels of communication, such as facial emotions,
which they referred to as nonverbal leakage. Gestures, which can be defined as collection of body
movements or actions involving head, hands, and other parts of the body allow the communication of
a range of thoughts and emotions. Some of the basic gestures have been shown to be similar across the
cultures. Given the advantages of this non-verbal communication channel, relatively few studies have
utilized deep or machine learning framework to recognize emotions using body movements, postures,
and gestures [53,54].

2.4. Physiological Signals

Physiological signals such as electroencephalography (EEG), electrocardiogram (ECG),
electromyogram (EMG), skin conductance, also known as Galvanic skin response (GSR),
skin temperature, as well as pupilary diameter can be used for affect detection, apart from the above
mentioned non-physiological signals. Physiological signals for affect detection are typically acquired
in a non-invasive manner using wearable sensors. Heart rate (HR) and hear rate variability (HRV)
can be derived from ECG signals. Skin temperatue has been shown to be a effective indicator of the
emotional state as shown in [55] and it primarily reflects the activity of the autonomic nervous system
(ANS). Another modality that captures the activity of ANS is the GSR or skin conductance, which
can be obtained by measuring the electrical potential on the skin after passing a negligible amont of
current. GSR is considered to be a reliable indicator of arousal [56], as it captures the activity of the
sweat glands on the skin.

In affect research, ECG signals are typically recorded by a pair of electrodes, which are a subset of
lead I configuration comprising of 12 electrodes. Features such as HR and HRV can be further derived
from ECG that can reflect the activity of the sympathetic and parasympathetic branch of ANS system.
HR and HRV have both been used in several studies to asses the mental states of the subject [57,58].
An EMG signal is reflective of the strength of muscle movements and is typically recorded by a pair of
electrodes placed on the body. Studies have shown that when the subject is under some emotional
stress, the changes in the facial expression can be measured using EMG activity [59,60]. Apart from
using electrodes on the face, other studies have also looked into measuring the activity of jaws or
shoulders in order to identify emotional states [61].

Breathing is another physiological process that is shown to be altered by basic emotions, such
as happiness, sadness, and anxiety [62]. Researchers have observed rapid breathing during arousal
state [63] and as well as changes in respiratory pattern of subjects looking at photographs that induce
emotions [62]. The respiratory rate is shown to be modulated by emotions, particularly anxiety
affecting the expiration rate [62], where timing and volumetric aspects of breathing are altered by
various physical and mental stress [64].

Finally, EEG is probably the most widely used physiological signal to study emotion. EEG is a low
cost technology a compared to other neuroimaging modalities and has very good temporal resolution.
EEG electrodes record the activity of a large number of synchronous neurons as potential difference
on the scalp. Several studies have utilized EEG for emotion recognition [65–67] and classification of
emotional states of arousal, valence and dominance. In addition to EEG, pupilary diameter size is also
an indication of emotional state, with several studies reporting that the size of the pupil discriminates
during and after different kinds of emotional stimuli [68,69].
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Several deep learning methodologies have been utilized for emotion recognition using
physiological signals [70–73]. The reader is directed to [1] for an exhaustive list of literature.

3. Multimodal Affect Recognition

Although a majority of the machine learning and deep learning framework for affect recognition
uses data from one modality, i.e., video or audio or EEG, recently there has been considerable interest in
fusing data from the above mentioned modalities. Multi-sensor data fusion can be highly advantageous
in terms of improving the reliability and accuracy of affect detection and, furthermore, multimodal
systems have shown to outperform unimodal system as discussed in [74]. Multimodal fusion involves
combining data from many different types of sensors and such fusion can be primarily performed at
two distinct levels, known as feature-level fusion and decision-level fusion.

3.1. Feature-Level Fusion

In the feature-level fusion approach (also known as early fusion), features that are derived
from different modalities are combined into a single feature vector, on which a classifier can then be
trained. It is well known that humans use and integrate multiple sensory cues during face-to-face
interaction to detect affective states and is the fundamental idea behind feature-level fusion [75].
The main advantage of feature-level fusion is that correlation between multimodal features at an
early stage can lead to better performance, requiring only one learning phase on the feature vector.
Several studies have utilized this approach for affect research [8,76,77]. However, feature-level fusion
also has several challenges. Because features obtained from different modalities can have different
time-scales, achieving time synchronization to bring the features in same format can be difficult and
computationally expensive. Additionally, given the large feature set that one obtains with feature-level
fusion, the classification accuracy can be severly affected if the training dataset is limited. Furthermore,
learning cross-correlation between the heterogenous features can prove to be difficult [78].

3.2. Decision-Level Fusion

In the decision-level fusion approach (also known as late fusion), first the decisions based
on features derived from each modality is obtained separately. A fused decision vector is then
obtained using the local decisions, which can be used to obtain the final decision or classification [78].
The fundamental advantage of decision-level fusion over feature-level fusion is that the decisions
all have the same format and, hence, can be fused easily, thus avoiding synchronization issues.
Furthermore, using decision-level fusion allows for the application of optimal classifier or method
suited for each modality, thus providing more flexibility when compared to feature-level fusion [79].
Several studies have utilized decision-level fusion for affect research [80–82] and it has been noted that
researchers prefer decision-level fusion over feature-level fusion [79].

4. Spiking Neural Networks

Human brains encode information via discrete events that are known as action potentials or spikes,
following an all-or-none principle, where a neuron fires an action potential if the stimulus crosses
a certain threshold, else it remains silent. Due to this binary nature of information representation,
the human brain still outperforms the existing artificial neural networks (ANNs) in terms of both
energy and efficiency [83,84]. When compared to the traditional ANNs, spiking neural networks
(SNNs) utilize a more biologically realistic model of neurons [85], thus further bridging the gap
between neuroscience and learning algorithms. SNNs have shown the ability to integrate information
from different dimensions, such as time, phase, frequency, as well as handle large volumes of data
in an adaptive and self-organized manner [17,86], making them particularly suitable to solve online
spatio-temporal pattern recognition. SNNs have been shown to be computationally more efficient than
ANNs both theoretically [87,88] and in several real-world applications [89]. SNNs have been used
in several real-world learning tasks such as unsupervised classification of non-globular clusters [90],
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image segmentation and edge detection [91], epileptic seizure detection with EEG [92]. Furthermore,
Bohte and colleagues devised a supervised learning rule for the SNNs and demonstrated its application
in the XOR classification problem and several other benchmark datasets [89]. The evolving SNN (eSNN)
is a class of SNN that utilizes rank order learning [93] and was first proposed in [94]. The eSNN handles
spatio-temporal data by increasing the number of spiking neurons in time to learn temporal patterns
from data [95]. In addition to the open evolving structure of eSNNs that facilitates the addition of new
variables and neuronal connections, eSNN have the advantage of fast learning from large amounts of
data and they can interact with other systems actively. eSNNs also allows for the integration of various
learning rules, such as supervised learning, unsupervised learning, fuzzy rule insertion, and extraction,
to mention a few and they are self-evaluating in terms of system performance. These aforementioned
properties constitute the evolving connectionist systems (ECOS) principles on which the eSNN is
based [96].

Because, in the rank-order learning scheme, the synaptic weights are adjusted only once making
it not very efficient for spatio-temporal data, where there may be a need to adjust synaptic weights
that are based on the spikes arriving on the same synapse over time. To overcome this disadvantage,
an extension of eSNN, known as dynamic eSNN (deSNN), was introduced in [97], which combines
rank-order learning with temporal learning rules, such as spike-timing dependent plasticity (STDP),
which allows for dynamic adjustment the synaptic weights . However, both eSNN and deSNN do not
encapsulate the structural information of the brain in terms of neuronal locations and their connectivity,
which may be crucial for modeling spatio-temporal data. The NeuCube architecture, first proposed
in [98], aims at building a eSNN that incorporates structural as well as functional aspects of the brain
along with utilizing STDP learning rules. The following section gives a brief introduction to the
NeuCube architecture. The reader is directed to [18,98,99] for a more detailed introduction.

4.1. NeuCube

It is well known that the information in human brain is processed at different spatiotemporal
levels, ranging from molecular information processing to higher order cogitive processes. The data
can be acquired at different levels of these spatiotemporal processes and an efficient learning method
should be able to handle complex spatio-temporal relationship from brain data at different levels.
Some examples of spatio-temporal brain data (STBD) include EEG, functional magnetric resonance
imaging (fMRI), diffusion tensor imaging (DTI), and positron emission tomography (PET) to mention
a few. Traditional methods such as support vector machines (SVM) or multilayer perceptron neural
networks (MLP) typically deal with the spatial or temporal aspects of brain data and cannot handle
the dynamic interaction between these processes [99]. Furthermore, they cannot incorporate any
structural prior knowledge of the brain or handle multimodal brain data. NeuCube [18,98,100] and
aslo [18,96,100,101] is a variant of eSNN, initially proposed to handle problems of spatio-temporal
pattern recognition in brain data such as EEG, functional magnetic resonance imaging (fMRI) to cite
a few, has been further developed to handle various other types of spatio-temporal data, such as
audio-visual data, climate data, seismic data, and ecological data [101]. The typical framework of the
NeuCube system comprises of

1. An input encoding module, which converts the STBD into trains of spikes that captures temporal
patterns present in the data. Various methods have been proposed to achieve this, including
population coding [102], address event representation [103], and Bens Spike algorithm [97].

2. A three-dimensional SNN reservoir (3D-SNNr), which takes the spike trains as input.
The 3D-SNNr contains neurons that have pre-defined spatial co-ordinates and are modelled as
leaky integrate and fire neurons. The initial structural connections between the neurons can be
established in several ways, including small-world organization [104] or based on the DTI data.
Several studies utilizing EEG, fMRI, and MEG have demonstrated the presence of small-world
connectivity in the brain [105,106] and, thus, this is the preferred initial setup for the spatial
structure of 3D-SNNr. Based on the temporal association between the input spikes, connections
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between the neurons is modified while using the spike timing dependent plasticity (STDP) rule.
This is a deep unsupervised learning, as deep connectionist structures of many neurons are
created as a results of the learning in space and time [96].

3. A classification module, which takes the spiking patterns from 3D-SNNr as its input to perform
classification.

4. An optional, Gene Regulatory Network (GRN) for controlling the learning parameter and
optimization of 3D-SNNr, exploiting the fact that spiking activity is influenced by the gene
and protein dynamics.

The details on the implementation of NeuCube for this study is further described in Section 5.6.

5. Methods

5.1. Mahnob Database

The MAHNOB-HCI dataset is a multi-modal database for affect recognition and implicit
tagging [107]. In this database, 27 subjects (16 females and 11 males) aged between 19 and 40 years
old were monitored while watching 20 stimulus clips (34.9 to 117 s long) that were extracted from
Hollywood movies and video websites, such as www.youtube.com and blip.tv. The face video, audio
and elicited physiological signals (EEG, ECG, respiration amplitude, skin temperature, GSR, and
gaze data) were acquired while watching the clips. The ECG signal was obtained by subtracting a
measurement from the upper left corner of chest, under the clavicle bone, from that one on left side
of abdomen, below the last rib. The respiration signal was obtained by a belt placed in the subject’s
abdomen, skin temperature was acquired by a temperature sensor placed at the subject’s little finger
and GSR was obtained by passing a negligible current between the electrodes on the distal phalanges
of the middle and index fingers of the subject. Gaze data were acquired with Tobii X1205 eye gaze
tracker providing position of the projected eye gaze on the screen (at 60 Hz), the pupil diameter,
the moments when the eyes were closed, and the instantaneous distance of the subject’s eyes to the
gaze tracker device.

Physiological signals, except the gaze data, were acquired at a sampling rate of 1024 Hz (down
sampled to 256 Hz for further analysis), while six different views of subject’s facial expressions were
simultaneously recorded by six video cameras at 60 fps. In this work, the video taken only by the
color camera above the screen were used. After watching each stimulus, the participants used a
keyboard interface for answering five questions that were related to emotional label, arousal, valence,
dominance, and predictability. The participants answered each question using nine numerical keys,
selecting nine emotional labels for the first question and nine possible levels for the last question.
In this work, only the binary valence scale was used, where levels one to five were considered as low
valence (unpleasant) and levels six to nine as high valence (pleasant). The database is available online
http://www.ibug.doc.ic.ac.uk/resources/mahnob-hci-tagging-database/.

The multimodal emotion recognition (valence) pipeline starts with face detection in video,
followed by face landmark detection, features extraction from face and peripheral signals, and ends
with training and signals classification while using NeuCube.

5.2. Face Detection and Tracking

The first step for analyzing face emotion recognition in video is face detection and tracking in
frames. Computer Vision (CV) Matlab Toolbox was used for this task. The output of this step is the
corner coordinates for the polygon enclosing the face for each frame in the video.

The face detection that was carried out in this work included the following steps,

1. The face in the first frame was detected using the vision.CascadeObjectDetector object in the CV
toolbox. This function uses the Viola-Jones algorithm [108] to detect people’s faces, noses, eyes,
mouth, or upper body. It outputs the region of interest (ROI) for the face as a polygon, enclosing

www.youtube.com
blip.tv
http://www.ibug.doc.ic.ac.uk/resources/mahnob-hci-tagging-database/
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the face. Specifically, the algorithm uses the histogram-of-oriented gradients (HOG), Local Binary
Patterns (LBP), Haar-like features, and a cascade of classifiers trained using boosting.

2. The corner features in the first frame ROI were detected using the detectMinEigenFeatures function
in CV toolbox, which uses the minimum eigenvalue algorithm [109].

3. For the tracking of feature points in the remaining frames, we used the Kanade–Lucas Tomasi
(KLT) algorithm [109,110].

4. Finally, in order to estimate the motion of the face, we used estimateGeometricTransform function
in the CV toolbox to apply the same transformation to the ROI that was detected in the previous
frame to obtain the ROI in the next frame.

Figure 1 shows the output of the face detection step. We found that point tracking in frames to
detect face is computationally more efficient than face detection in each frame. Furthermore, point
tracking can manage problems that can emerge in face detection, such as making gestures with hand
that may occlude parts of the face.

Figure 1. Example of face detection in Mahnob-HCI showing the feature points tracked along the video.

5.3. Face Landmarks Detection

Using the detected ROIs (See Section 5.2), a trained model (DLIB) for 68 facial landmarks detection
was used for each frame in the video [111]. DLIB library can be obtained from http://dlib.net/files/
shape_predictor_68_face_landmarks.dat.bz2. The processing time for this task was around 100 s per
video (i.e., approximately 30 min per subject). Figure 2 shows the model template (a) and one example
video frame with detected facial landmarks (b) adjusted to relevant facial structures (mouth, eyebrows,
eyes, nose, and face borders).

(a) Model template (b) Detected facial landmarks in one example video
frame

Figure 2. Facial landmarks detection.

http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
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5.4. Face Features Extraction

We extracted the following featured from facial landmarks (see Figure 3),

1. Vertical distance between the horizontal line connecting the inner corners of the eyes and outer
eyebrow (f1, f2).

2. Vertical distances between the upper eyelids and the lower eyelids (f3, f4).
3. Distances between the upper lip and mouth corners (f5, f6).
4. Distances between the lower lip and mouth corners (f7, f8).
5. Vertical distance between the upper and the lower lip (f9) and distance between the mouth

corners (f10)

We assume that the participants hold a neutral face for the first two seconds after starting the
stimulus. Because we want to detect changes in facial features, therefore the mean features in first 2 s
are subtracted from facial features for each response video.

(a) Vertical distance between f1, f2

(b) Vertical distance between f3, f4

(c) Distance between f5, f6 and between f7, f8 and
vertical distance between f9, f10

Figure 3. Facial features.

5.5. Physiological Features

Heart rate variability (HRV), respiration variability, respiration depth, skin temperature, GSR,
and pupil diameter are used as physiological features in this study. The ECG signal is pre-processed by
mean subtraction and band pass filtered with a low pass and high pass filter in cascade (Least Square
FIR, 70 dB, 0.05–40 Hz, 1 dB ripple) for reducing high frequency noise as muscular activation and
reducing shifting due to respiration. R waves are detected using Pan and Tompkins algorithm [112] for
calculating the RR interval (for HRV) as a feature. The findpeaks.m function in Matlab (Signal Processing
Toolbox) was applied to the respiration signal to detect valleys and peaks in signal and further obtain
the respiration variability (time between cycles) and respiration depth (cycle amplitude). The raw
Temperature (Celsius) and GSR measurements were also considered as feature signals. Additionally,
from the gaze data, the mean pupil diameter (from both eyes) was computed as an additional feature
signal. Figure 4 shows examples of physiological features.
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Figure 4. Elicited signal features in the last 30 seconds of video.

All of the facial and peripheral physiological features obtained in the analyzed window (last 30 s
of video) were resampled to 64 samples. All of the features are calculated in whole video response
too, and resampled to 64 points, in order to capture changes in physiological feature. The first
sample is subtracted from features in windows for further analysis. We suppose that this first
measurement in whole video means for resting or neutral state for physiological signals. Figure 5
shows the distribution of normalized features. It can be noted that mouth-related features and pupil
size have better discriminative power between low and high valence. The outliers are omitted for
visualization purposes.

Figure 5. Boxplot for features in Mahnob-HCI dataset for valence emotional dimension.
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5.6. NeuCube SNN for Facial Emotion Recognition

We used NeuCube proposed in [18] to build a system for emotion valence classification. A general
scheme of our approach based on NeuCube is presented in Figure 6. As described in Section 4.1,
the NeuCube structure includes Encoding, 3D-SNNr, output neuron layer, and KNN classifier.
Training and classifying spatio-temporal data using NeuCube have the following stages:

• Encoding: encode the spatio-temporal data (features) into trains of spikes.
• SNNr: construct a recurrent 3D SNNr and initialize the connection weights among neurons.
• Input neurons location: locate the input neurons in the SNNr keeping related inputs near in space.
• Unsupervised learning: feed the SNNr with training data to learn in an unsupervised mode the

spatio-temporal patterns in the data.
• Supervised learning: construct an eSNN classifier to learn to classify different dynamic pattern

in SNNr activities.
• Classification: feed the SNNr with testing data for classification purposes.

Figure 6. Proposed method for emotion valence classification using NeuCube.

We briefly explain each stage in the following sections.

5.6.1. Encoding

The coding method that we used was inspired by Gaussian Receptive Field population-based
sparse coding proposed in [89,90]. This method codes each continuous value from a time-based feature
to spikes emitted at different times by a neuron population. The whole feature range is covered for the
neurons and the time for generating the spikes depends on the distance from the current value to the
center of a Gaussian receptive field covering each value interval. We used a population of five neurons
per feature, in which only a neuron from the group spikes at the current time step. Figure 7 shows an
example of coding the mouth length feature. Note that the dimension of feature is 64 and the temporal
dimension of each spikes train is 129, because zeros are inserted between the spikes.
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(a) blue: low valence, red:
high valence, black: low

and high valence

(b) time course of mouth length
feature – low valence (blue) and one

high valence (red)

(c) low valence in blue, high valence in red

Figure 7. Encoding Continuous feature values to five neurons spiking.

It can be noted from the distribution of mouth length feature (Figure 7a, left plot; blue: low
valence, red: high valence, black: low and high valence), that there are two peaks in the distribution
indicating the separation between the two class. In the middle plot (Figure 7b), the time course of
mouth length feature in a low valence event (blue) and one high valence event (red) for the subject 1
are shown. In the right plot (Figure 7c), spikes generated for these two events are shown (low valence
in blue, high valence in red). The levels that define the receptive fields or range for exciting each
neuron are defined using the feature distribution in the data from all detected events for all analyzed
subjects. Levels for each five neuron population are automatically obtained by analyzing the histogram
in such a way that the five ranges have the same count of value occurrences. The levels are shown as
gray lines (left and middle plots in Figure 7b). Note that each feature value in time produces a spike in
only one neuron from the population. Eighty input neuron are allocated in NeuCube network, as we
have ten facial features and six peripheral signals.

5.6.2. Construction of SNNr

When brain imaging data, such as EEG, Are used, the SNNr can be built with a shape resembling
the human brain [18] and the input neurons can be located based on the anatomical location of the EEG
electrodes. However, in this study, as we are building a general classifier of facial features, we chose to
build an 11× 11× 7 array of neurons (equally spaced in x and y axes), as shown in Figure 8. Each five
neuron population are spatially arranged in NeuCube structure in lines, as illustrated in Figure 8;
this way neighbor neurons code similar feature values favoring spatial neuron specialization.
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(a) 3 layers of input neuron in the Neucube (b) For facial features classification z = −30

(c) For peripheral features classification
z = 0

(d) For facial features classification z = 30

Figure 8. Input neurons location for facial and peripheral features classification. n1 means for the
neuron coding the lowest values and n5 the highest ones for each feature. Note there are 3 layers of
input neuron in the cube, located at z = −30 (facial), z = 0 (peripheral), and z = 30 (facial).

The SNNr was made with leaky integrate and fire model (LIFM) spiking neurons with recurrent
connections. In this neuron model, the post-synaptic potential (PSP) increases or decreases with every
input spike from pre-synaptic neurons. The effect of each spike is modulated by the corresponding
synaptic connection weight. If PSP reaches a specific threshold (0.5 in this work), then the neuron emits
an output spike toward its connected neighbours and the PSP resets to a reference value. The PSP
can leak between spikes with a predefined time constant τ, if we are using an exponential model or a
constant leak time. The latter is used in this work and is set to 0.002. After a neuron spikes, the absolute
refractory time (equal to 1 in this work) is simulated by disabling it to increase the PSP until a certain
unit time has passed. Figure 9 shows an example of LIFM neuron simulation with a refractory time
that is equal to three seconds, potential leak rate equal to 0.02, a threshold of firing that is equal to 0.5
and synapses weights of 0.1, 0.1, and 0.35. It can be noted in Figure 9 that the accumulation of spikes
in time leads to an increase of PSP until a spike is generated and the effect of disregarding input spikes
immediately after a spike is generated.
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(a) Input neurons for synapses
weights of 0.1, 0.1 and 0.35

(b) Each Input is converted into spikes

(c) Post-synaptic potential increases or
decreases with the threshold of firing = 0.5

(d) Neuron emits an output spike
toward its connected Neuron

Figure 9. Leaky integrate-and-fire model (LIFM) neuron model. Small circles at neuron inputs represent
connection weights. Note that input 1 has a bigger weight and it produces a larger effect in PSP.

We set the initial connections (synapses strength) between neurons in SNNr using small-world
connectivity [104,113]. The connection probability was set, such that neurons were more likely to be
connected to neighboring neurons than to the distant ones. It has been shown that such an approach
brings some advantages with regard to learning speed, parallel processing, and also favors the linking
of specialized processing cluster units [114]. Additionally, we defined a radius r to be the maximum
distance of connections of one neuron to another in the reservoir (r = 25 in this study). The initial
weights were assigned as the product of random values [−1,+1] divided by Euclidean distance
between pre-synaptic and post-synaptic neuron, so that 80% of them were positive values (excitatory
connection), while 20% of them were negative values (inhibitory connections). Neuron connections
are unidirectional, and the direction of communication was selected randomly. Connections between
input neurons and other neuron are always positive and with doubled weight in comparison with
other random connections. These connections were modified in the unsupervised learning stage in
order to adapt to spatio-temporal patterns in input data.

5.6.3. Deep, Unsupervised SNN Training

We adjusted the connections between the neurons using the training data and a learning rule-based
on Hebbian plasticity, called spike-time-dependent plasticity (STDP) [115]. STDP learning modifies
the neuronal connection weights while taking into account the time difference between post- and
pre-synaptic firing. A connection is strengthened, if postsynaptic firing occurs after presynaptic firing;
otherwise, it is decreased. After STDP learning, the spatio-temporal pattern was saved in the value of
connection weights in the SNNr. STDP learning rule is given as,

∆w = sgn(∆t)
LR

|∆t|+ 1
(1)

where LR is the STDP Learning Rate (0.001 in this work), sgn(·) is the function sign (−1 for negative
values and 1 for positive), ∆t is the difference between post- and pre-synaptic times (∆t = tpost − tpre)
and ∆w is the change in the connection weight. The Hebbian relation ∆w vs ∆t is depicted in Figure 10.
The learning results in the creation of deep structures of connections between neurons in the SNNr.
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Figure 10. Hebbian Learning rule, connection (synaptic modification) vs difference between post- and
pre-synaptic times.

5.6.4. Supervised Output Neurons Training

The deSNN is applied for supervised learning [86]. For every single training sample, an output
neuron was created and connected to all of the neurons in the trained SNNr (see Figure 6). Each output
neuron was trained using the corresponding training sample by propagating the signal through the
network once more. The neuron’s connections weights wi,j between neurons i (in the reservoir) and j
(output neuron) were initially established using rank order (RO) rule [86]. The RO method ranks the
order in which the first spike arrives in the j neuron and the weights are given as,

wi,j(0) = α mod order(i,j) (2)

where α is a learning parameter (in a partial case, equal to 1), mod is a modulation factor that defines
how important the order of the spike is (0.8 in this study), order(i, j) represents the order (the rank) of
the first spike at synapse (i, j) ranked among all of the spikes arriving from all synapses to the neuron
j. Furthermore, order(i, j) = 0 for the first spike to neuron j and increases according to the input spike
order at other synapses.

Once a synaptic weight wi,j is initialized, based on the order of the first spike from i to j,
the synapse becomes dynamic. It increases its value with a small positive value (drift = 0.005)
at any time t a new spike arrives at this synapse and decreases its value if there is no spike at this time,
as described in the following formula,

wi,j(t) =

{
wi,j(t− 1) + dri f t, if Si,j(t) = 1

wi,j(t− 1)− dri f t, if Si,j(t) = 0

where Si,j(t) describes the existence of spike from neuron i entering to neuron j at time t.
Every generated output neuron was trained to recognize and classify spatio-temporal patterns of
weights adjusted by a corresponding labeled input training sample.

5.6.5. Classification

At classification stage, the NeuCube is fed with validation data. For each sample, data synaptic
weights for output neurons are calculated while using the same supervised rules used in supervised
training procedure. The connection weights that are learned in this process are then classified using a
K-nearest neighbor (KNN, with K = 3 neighbors) algorithm and the labels that are known for all of
the samples.
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We ran the whole NeuCube framework in a leave one subject out mode (LOSO) in order to test its
capacity for learn spatio–temporal features from subjects and classify an unseen new subject.

5.6.6. Fusion of Multimodal Signals

Two schemas for the fusion of multimodal signals were explored—(1) features-level and (2)
decision-level fusion. For features-level fusion, we coded all of the features (facial and peripheral) and
included as input in NeuCube. Regarding decision-level fusion, for each subject, we calculated the
accuracy of NeuCube classification in training data (rest of subjects) for separated modalities (facial
and peripheral), and we chose the method with higher accuracy as the method for doing validation
classification for the specific subject.

5.6.7. NeuCube Parameters

NeuCube performance in analyzing spatio-temporal data depends on several parameters.
We chose a set of default parameter values that are equal to that used in the NeuCube development
system publicly available online http://www.kedri.aut.ac.nz/neucube, with the exception in refractory
time. We used one time unit for this parameter in order to increase neuron activity. The NeuCube
parameters used in this work are given in Table 1.

Table 1. NeuCube parameters.

Small world radius (r) 25
STDP learning rate (LR) 0.001
Threshold of firing 0.5
Potential leak rate 0.002
Refractory time 1 s
mod 0.84
drift 0.005
K 3

6. Results

NeuCube framework was fed with coded data under a LOSO cross validation scheme, i.e., all of
the data from a specific subject were excluded from the training set. All the parameters were fixed with
values mentioned in Method section. Table 2 shows classification accuracy results in Mahnob-HCI
dataset. We also included F1-score since some subject has imbalanced data, i.e., more than twice the
number of sample for one class than the other. Total accuracies at the end of the table can be used for
comparison with other works, because they are calculated using all the data which can be assumed as
balanced, 390 videos were analyzed (207 : 53.07% low valence, 183 : 46.92% high valence).

http://www.kedri.aut.ac.nz/neucube
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Table 2. Video valence classification accuracy in Mahnob-HCI dataset using NeuCube.

Subject ID Facial Features
Accuracy (%)

Physiological
Features

Accuracy (%)

Fusion Detection
Accuracy (%)

Fusion
Features (%)

1 73.33 66.67 66.67 73.33
2 62.5 50 62.5 56.25
3 75 72.73 75 81.82
4 78.57 66.67 66.67 83.33
5 75 50 75 68.75
6 58.82 70.59 58.82 70.59
7 75 60 75 93.33
8 64.29 50 64.29 64.29
9 60 100 60 90
10 61.54 69.23 61.54 69.23
11 78.57 61.54 61.54 76.92
13 64.29 71.43 64.29 85.71
14 50 57.14 50 71.43
16 72.73 63.64 63.64 63.64
17 62.5 80 62.5 40
18 41.67 50 41.67 62.5
19 61.54 75 61.54 58.33
20 53.33 73.33 53.33 80
21 66.67 71.43 66.67 71.43
22 66.67 66.67 66.67 80
23 75 50 75 75
24 69.23 53.85 69.23 76.92
25 66.67 77.78 66.67 55.56
27 68.75 60 68.75 80
28 66.67 66.67 66.67 86.67
29 68.75 50 68.75 64.29
30 78.57 57.14 78.57 78.57

Total 66.67 63.84 65.11 73.15

Paired sample t-test when comparing the F1-score from Peripheral and Facial features result in no
difference between them (p < 0.05). F1-score using decision-level features does not show a difference
with facial nor peripheral (p < 0.05). Additionally, feature-level fusion F1-score (0.74) results in being
better than decision-level fusion F1-score, 0.67 (p < 0.01).

For decision-level fusion, we obtained a mean accuracy of 83.7% for classifying the training data
using facial features and 80.94% using peripheral training data.

Clustering Spike Communication

NeuCube framework has an option to analyze clusters of neuron-surrounding input neurons
using the spike amount communicated between a pair of neurons. Figure 11 shows an example using
this tool when the neuron reservoir is trained separately with one class (low valence) and the other one
(high valence). For visualization purposes and taking into account that mouth length and pupil size
have more discriminative power regarding the rest of features, only input neurons coding higher and
lower values in mouth length and pupil size are shown. Figure 11 shows that neurons coding high
values of mouth length and pupil size are more active for high valence and for this reason the cluster
of spiking communication surrounding these neurons are bigger. Note that neuron coding low values
of pupil size is more active for low valence. These results agree with features distribution in Figure 4.
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(a) Show lower spike values in mouth
length

(b) Show higher spike values in mouth
length

(c) Show lower spike values in pupil size (d) Show higher spike values in pupil size

Figure 11. Neuron activity pattern example when NeuCube is trained using each Separate data
(low and high valence).

7. Discussion

In this work, we developed an approach based on NeuCube [18], which is an eSNN framework,
in order to classify emotional valence using multimodal dataset that included video and physiological
signals. We used a population coding scheme, based on ROC to encode input data into spikes,
which SNNs can handle. When tested on the benchmark dataset, the MAHNOB-HCI, our approach
resulted in a accuracy about 73.15% for emotion classification. To the best of our knowledge, there has
not been any other study to utilize SNN for affect recognition with multimodal data. In addition to the
good accuracy of classification, the SNN system can be incrementally trained on new data and new
features in an adaptive way, allowing for the system to be used in an on-line applications [96].

7.1. Related Work

The MAHNOB-HCI dataset has been used in several studies owing to its difficulty for the
classification of spontaneous emotional responses from subjects. Several studies have resorted to a
multimodal approach because the MAHNOB-HCI dataset also contains multimodal data in the form
of physiological and audio signals.

In a study by Koelstra and Patras [116], EEG and facial expressions were fused to perform affect
recognition and implicit tagging. In case of EEG, power spectral density (PSD) features were used
and for facial expression, an AU detection method was used, which was originally proposed in [117].
Basically, the AU detection was performed using Free-form Deformations (FFDs) and Motion History
Images too. For facial recognition, they trained the system using the MMI dataset [118] and obtained
64.5% of binary valence classification using only facial features and 74% by combining facial and
EEG features. They performed a per-subject leave-one-trial-out cross-validation, where the classifier
is trained on 19 trials from the same subject and tested on the 20th. As can be seen from their
study, only using facial features result in low accuracies and fusion with EEG signal improved the
classification accuracy.
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Boxuan and colleagues developed a temporal information preserving framework by splitting
signals into multiple stages in each video. They achieved a valence (unpleasant, neutral, pleasant)
classification accuracy of 54% using only facial expression and 69% when fusing with physiological
signals [119]. They used Affdex SDK software [120], trained in 10,000 manually labeled facial
images, which classify emotion-based on HOG features and support vector machine (SVM) classifier.
Huang and colleagues obtained 50.57% for valence classification using appearance descriptors based
facial features (local binary pattern from three orthogonal planes, LBP-TOP) and 66.28% using fusion
it with global EEG features [121]. They used the LOSO cross-validation scheme in nine emotion
categories. A convolution deep belief network (CDBN) was proposed in [122] in order to learn
emotional features from multimodal datasets and the authors reported a classification accuracy
of 58.5% with the MAHNOB-HCI dataset. Torres et al. [123] performed feature selection using
discriminant-based algorithms, while using EEG and peripheral signals. Their results showed that
EEG-related features show the highest discrimination ability. Furthermore, it was shown that EEG
features, along with GSR, achieved the highest discrimination for arousal index, whereas for the valence
index, EEG features are accompanied by the heart rate features in achieving the highest discrimination
power. For the MAHNOB-HCI dataset, they obtain a classification accuracy of 66.09% and 69.59%
in the valence and arousal dimension, respectively. Liu et al. [124] tested a deep learning approach
based on multi-layer Long short-term memory recurrent neural network (LSTM-RNN) for emotion
recognition, which combined temporal attention and band attention. They achieved an accuracy of
74.5% in valence classification (9 class) fusing video and EEG analysis. They used 20 participants for
training, four participants for validation, and three participants for testing. Huang et al. [125] used
transfer learning technique (pre-trained convolutional neural network, CNN) to obtain an 73.33%
in binary valence accuracy in MAHNOB-HCI dataset using facial features and 75.21 fusing with
EEG features.

Overall, as shown in Table 3, the results that we have obtained from the MAHNOB-HCI dataset
are comparable with the state of the art work learning methods applied on this database. We observe
that, in some cases, the classification accuracy obtained using our SNN approach is better than the
ANN approach, that have also used EEG signals, which we have excluded. It is also to be noted that
it is difficult to establish a fair comparison with most of the previous works, as we did not include
EEG features and use pretrained models, as in [125]. We also disregarded all of the data related with
the subject in a Leave-subject out validation scheme. Furthermore, in contrast with Deep Learning
approaches, our SNN based method provides more interpretability of the model due to specialization
of neurons clusters, needs for fewer data to train, and this can be done online with one pass of a new
training sample.

Table 3. Comparison with related works on valence classification using Mahnob-HCI dataset.

Works Features Method Classes Cross-Validation Accuracy
%

[116]
Koelstra Facial + EEG

Free-form Deformation
and Motion History

Images
Binary valence

Trained with MMI
dataset, and data

from the same subject
74

[119]
Zhong

Facial +
Physiological

Temporal Information
Preserving Framework,

SVM

Valence (3
classes) LOSO 69

[121]
Huang Facial + EEG LBP-TOP, Transfer

learning CNN, SVM
9 emotion
categories LOSO 62.28
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Table 3. Cont.

Works Features Method Classes Cross-Validation Accuracy
%

[122]
Ranga-
nathan

Facial + Body +
Physiologic

Convolutional deep
belief network (CDBN)

and SVM
Not mentioned LOSO 58.5

[123]
Torres-
Valencia

EEG + Peripheral Discriminant-based
algorithm, SVM Binary valence 80% train data-20%

test data 66.09

[124] Liu Facial + EEG LSTM-RNN Valence, 9 classes 24 subject training
and 3 for testing 74.5

[125]
Huang Facial + EEG Pretrained CNN Binary valence LOSO 75.21

ours Facial + Peripheral SNN, feature-level fusion Binary valence LOSO 73.15

7.2. Limitations

Our work has several limitations. First, we did not include any EEG features, because changes in
EEG features that are associated with emotion are lumped features and we wanted to test NeuCube
with temporal spatial patterns. The addition of raw EEG temporal signals into NeuCube would need
for addition of much more input neurons into the model. We found this unfeasible to compute in
a reasonable time for our experiments. Actually, temporal variations on EEG features for emotion
detection are in a different scale than variation in other peripheral signals, we are using a 30 s window
to analyze changes in physiological and facial features, this is a very short time to expect changes
in lumped EEG features due to emotions. As discussed previously, several studies have shown that
including EEG features considerably improves the classification accuracy. However, there are several
challenges in using EEG for emotion recognition [126], including the selection of robust features,
continous decoding of affective states, reliable decoding of long-term reliability of EEG recordings
for such studies, long preparation time, and, most importantly, adopting a proper model of emotion
with regard to EEG and understanding the EEG representation of affective states. For an excellent
overview of these challenges the reader is directed to [126]. Nonetheless, the possibility of using EEG
with the NeuCube framework will be explored in our future studies. Second, other important features
that could be utilized from the multimodal data could be speech and postures. Several studies have
considered the implications of including speech in affect recognition, with pitch being considered
to be an index into arousal [1], although the classification accuracy is shown to be lower than facial
expression. Nonetheless, this feature should definitely be considered in the future studies with SNN
given the noninvasive and easy procedure to acquire voice. With regard to posture tracking, again
it is a non-intrusive acquisition to the user’s experience, but the equipment requires more expensive
equipment as compared to speech. Additionally, there are some constraints with regard to the user’s
position, for example the user should be sitting [1].

We have also assumed that the face that is captured during the first two seconds after the stimulus
is presented is neutral and consider it as the baseline. This could be problematic, especially if the
participant is tired. Because we chose the last 30 s window for event selection in each video, we
do not take into account the long-lasting facial expression. It could be interesting if long term
facial variation inside the video could be considered as detected events. Additionally, it could
be interesting to incorporate detecting facial micro-expressions in our framework but this is in
general challenging due to limited availability of such data and as well as difficulties in analyzing
minute changes in expression [127]. Few methods have been proposed to address the problem of
detecting micro-expressions using spatio-temporal local texture descriptor [128], Gabor filter with
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SVM classifier [129], and LBP-TOP with nearest neighbor classifier [130], which can be incorporated
to add more information for the SNN framework. Another improvement could be to normalize
expressions between subjects by using pose estimation [131], or correction of a 3D model [132,133].
Further improvements could be made along the lines of detecting non-frontal head poses, identity bias,
as well as illumination variation.

Although we studied the effect of varying certain NeuCube parameters, the performance of the
proposed system may be affected by the choice of several other parameters. For instance, the effect
of varying other NeuCube parameters such as radio, firing threshold, refractory time, and NeuCube
resolution should be carefully investigated. The NeuCube framework also provides parameter
optimization tool, which could be utilized instead of setting the parameters in an ad hoc manner.

8. Conclusions

Utilizing multimodal data to solve the problem of affect recognition with state of the art deep
learning methods has gained a lot of popularity. SNNs offer an alternative to ANNs, where, in the
former, is biologically more realistic model of neurons. In this work, we proposed a novel solution of
using a variant of SNN, known as NeuCube, which is an eSNN, to solve affect recognition problem
using multimodal data obtained from MAHANOB-HCI dataset. The eSNN is based on the ECOS
principles which includes, efficient processing of spatio-temporal data and open evolving structure.
Despite not including EEG, our approach provided results comparable to deep learning methods that
utilize multimodal data, including EEG. In addition to the good accuracy of classification, the SNN
system can be incrementally trained on new data and new features in an adaptive way, allowing for
the system to be used in on-line applications.
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