
The Journal of Systems & Software 171 (2021) 110806

a

b

t
o
w

a
c
r
i
m
R
d
m
f
2

v
d

h
0
n

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Does code quality affect pull request acceptance? An empirical study
Valentina Lenarduzzi a, Vili Nikkola b, Nyyti Saarimäki b, Davide Taibi b,∗
LUT University, Lahti, Finland
Tampere University, Tampere, Finland

a r t i c l e i n f o

Article history:
Received 27 November 2019
Received in revised form 14 August 2020
Accepted 24 August 2020
Available online 28 August 2020

Keywords:
Pull requests
PMD rules
Machine learning

a b s t r a c t

Background Pull requests are a common practice for making contributions and reviewing them in
both open-source and industrial contexts.
Objective Our goal is to understand whether quality flaws such as code smells, anti-patterns, security
vulnerabilities, and coding style violations in a pull request’s code affect the chance of its acceptance
when reviewed by a maintainer of the project.
Method We conducted a case study among 28 Java open-source projects, analyzing the presence of
4.7 M code quality flaws in 36 K pull requests. We analyzed further correlations by applying logistic
regression and six machine learning techniques. Moreover, we manually validated 10% of the pull
requests to get further qualitative insights on the importance of quality issues in cases of acceptance
and rejection.
Results Unexpectedly, quality flaws measured by PMD turned out not to affect the acceptance of a
pull request at all. As suggested by other works, other factors such as the reputation of the maintainer
and the importance of the delivered feature might be more important than other qualities in terms of
pull request acceptance.
Conclusions . Researchers have already investigated the influence of the developers’ reputation and
the pull request acceptance. This is the first work investigating code style violations and specifically
PMD rules. We recommend that researchers further investigate this topic to understand if different
measures or different tools could provide some useful measures.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Pull requests provide developers a convenient way of con-
ributing to projects, and many popular projects, including both
pen-source and commercial ones, are using pull requests as a
ay of reviewing the contributions of different developers.
Researchers have focused their attention on pull request mech-

nisms, investigating different aspects, including the review pro-
ess (Gousios et al., 2014, 2015; Veen et al., 2015), how pull
equests are assigned to different reviewers (Yu et al., 2014), and
n which conditions they are accepted (Gousios et al., 2014; Rah-
an and Roy, 2014; Soares et al., 2015a; Kononenko et al., 2018).
esearchers have also highlighted that the reputation of the
eveloper submitting the pull request and especially the imple-
entation of new features seem to be more important acceptance

actors than any other aspects, including quality (Gousios et al.,
015; Calefato et al., 2017).

∗ Corresponding author.
E-mail addresses: valentina.lenarduzzi@lut.fi (V. Lenarduzzi),

ili.nikkola@tuni.fi (V. Nikkola), nyyti.saarimaki@tuni.fi (N. Saarimäki),
avide.taibi@tuni.fi (D. Taibi).
ttps://doi.org/10.1016/j.jss.2020.110806
164-1212/© 2020 The Authors. Published by Elsevier Inc. This is an open access a
c-nd/4.0/).
To the best of our knowledge, no studies have investigated
if quality flaws such as code smells, anti-patterns, or coding
style violations affecting a pull request have an impact on the
acceptance of the pull request itself.

Therefore, in order to understand whether quality flaws can be
one of the drivers for accepting pull requests, we designed and
conducted a case study involving 28 well-known Java projects
to analyze the presence of quality flaws in more than 36 K pull
requests. We considered the quality flaws highlighted by PMD
rules1 (code smells, anti-patterns, and coding style violations),
investigating if the presence of these PMD quality flaws in pull
requests affect the chance of its acceptance when it is reviewed
by a project maintainer.

We analyzed the quality flaws in pull requests using PMD, one
of the most frequently used static analysis tools (Lenarduzzi et al.,
2020b; Beller et al., 2016). PMD evaluates the code quality against
a standard rule set available for the major languages, allowing the
detection of different quality aspects generally considered harm-
ful, including code smells (Fowler and Beck, 1999) such as ‘‘long
methods’’, ‘‘large class’’, ‘‘duplicated code’’; anti-patterns (Brown

1 https://pmd.github.io.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.jss.2020.110806
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110806&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:valentina.lenarduzzi@lut.fi
mailto:vili.nikkola@tuni.fi
mailto:nyyti.saarimaki@tuni.fi
mailto:davide.taibi@tuni.fi
https://pmd.github.io
https://doi.org/10.1016/j.jss.2020.110806
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 V. Lenarduzzi, V. Nikkola, N. Saarimäki et al. / The Journal of Systems & Software 171 (2021) 110806

e
c
W
o
a

t
b
e
2
t
s

t
t
d
R
B
o
o
a
q

l
s
p

u
d
d
r
t
p
t
S
f

2

P
r
f
o

2

q
o
o
Q

a
w
e
i
c
e
a
c

T
m
R
f

i
p
a
e
t
s
S
p
r

2

t
f
m
c
d
t
c
w
b
m
b
b

i
c
b
r
f
r
t
v
r
r
c
a

t al., 1998a) such as ‘‘high coupling’’; design issues such as ‘‘god
lass’’ (Lanza et al., 2005); and various coding style violations.2
henever a rule is violated, PMD raises an issue. In the remainder
f this paper, we will refer to any quality flaw raised by PMD as
‘‘PMD issue’’.
Previous work confirmed that the presence of PMD issues in

he code, including the code smells and anti-patterns collected
y PMD, significantly increases the risk of faults and maintenance
ffort (Khomh et al., 2009a; Olbrich et al., 2009; D’Ambros et al.,
010; Fontana Arcelli and Spinelli, 2011). Therefore, we expect
hat developers take care of these issues, in order to increase
oftware maintainability and decrease fault-proneness.
Unexpectedly, the application of statistical techniques shows

hat the presence of PMD issues of any type does not influence
he acceptance or rejection of a pull request at all. Therefore, we
ecided to apply six machine learning models (Decision Trees,
andom Forest, Extremely Randomized Trees, AdaBoost, Gradient
oosting, and XGBoost) in order to confirm or reject the results
vercoming to the limitation of the statistical techniques. More-
ver, we manually inspected 10% of the rejected and 10% of the
ccepted pull requests, to get further insight on the impact of the
uality on pull request acceptance.
Results are confirmed also after the application of the machine

earning models. PMD issues in pull requests, including code
mells and anti-patterns, are not considered as a problem by
roject maintainers when accepting or rejecting pull requests.
Structure of the paper. Section 2 describes the basic concepts

nderlying this work, while Section 3 presents some related work
one by researchers in recent years. In Section 4, we describe the
esign of our case study, defining the research questions, met-
ics, and hypotheses, and describing the study context, including
he data collection and data analysis protocol. In Section 5, we
resent the achieved results and discuss them in Section 6. Sec-
ion 7 identifies the threats to the validity of our study, and in
ection 8, we draw conclusions and give an outlook on possible
uture work.

. Background

In this Section, we first introduce code quality aspects and
MD, the tool we used to analyze the code quality of the pull
equests. Then, we will describe the pull request mechanism and
inally provide a brief introduction and motivation for the usage
f the applied machine learning techniques.

.1. Code quality and PMD

Different tools on the market can be used to evaluate code
uality and Techincal Debt (Avgeriou et al., 2020). PMD is one
f the most frequently used static code analysis tools for Java
n the market, along with Checkstyle,3 Findbugs,4 and Sonar-
ube (Lenarduzzi et al., 2020b).
Among the aforementioned tools, we selected PMD since it

nalyzes uncompiled code, it in order to avoid incompatibilities
ith required libraries or missing versions of libraries (Tufano
t al., 2017). This allowed us to analyze all the commits included
n our dataset, avoiding the risk to not be able to consider ‘‘old’’
ommits that are difficult to compile as suggested by Tufano
t al. (2017). In their study, they examined 100 Java ASF projects
nd found that unfortunately on average only 38% of a project’s
hange history could be successfully compiled.

2 https://pmd.github.io/latest/pmd_rules_java.html.
3 Checkstyle: https://checkstyle.sourceforge.io.
4 Findbugs: http://findbugs.sourceforge.net.
PMD is an open-source tool that aims to identify issues that
can lead to technical debt accumulating during development
(Lenarduzzi et al., 2020). The specified source files are analyzed
and the code is checked with the help of predefined rule sets.
PMD provides a standard rule set for major languages, which the
user can customize if needed. The default Java rule set encom-
passes all available Java rules in the PMD project and is used
throughout this study.

Issues found by PMD have one of five possible priority values
(P):

P1 Change absolutely required. Behavior is critically broken/
buggy.

P2 Change highly recommended. Behavior is quite likely to be
broken/buggy.

P3 Change recommended. Behavior is confusing, perhaps
buggy, and/or against standards/best practices.

P4 Change optional. Behavior is not likely to be buggy, but
more just flies in the face of standards/style/good taste.

P5 Change highly optional. Nice to have, such as a consistent
naming policy for package/class/fields. . .

hese priorities are used in this study to help determine whether
ore severe issues affect the rate of acceptance in pull requests.
ule priority guidelines for default and custom-made rules can be
ound in the PMD project documentation4.

PMD does not require compiling the code to be analyzed. This
s why, as the aim of our work was to analyze only the code of
ull requests instead of the whole project code, we decided to
dopt it. PMD defines more than 300 rules for Java, classified in
ight categories (coding style, design, error-prone, documenta-
ion, multi-threading, performance, and security). The complete
et of rules is available on the PMD official documentation4.
everal rules have also been confirmed harmful by different em-
irical studies. In Table 1, we highlight a subset of rules and the
elated empirical studies that confirmed their harmfulness.

.2. Git and pull requests

Git5 is a distributed version control system that enables users
o collaborate on a coding project by offering a robust set of
eatures to track changes to the code. Features include ‘‘com-
itting’’ a change to a local repository, ‘‘pushing’’ that piece of
ode to a remote server for others to see and use, ‘‘pulling’’ other
evelopers’ changesets onto the user’s workstation and merging
he changes into their own version of the codebase. Changes
an be organized into branches, which are used in conjunction
ith pull requests. Git provides the user a ‘‘diff’’ between two
ranches, which compares the branches and provides an easy
ethod to analyze what kind of additions the pull request will
ring to the project if accepted and merged into the master
ranch of the project.
Pull requests are a code reviewing mechanism that is compat-

ble with Git and are provided by GitHub.6 The goal is for code
hanges to be reviewed before they are inserted into the mainline
ranch. A developer can take these changes and push them to a
emote repository on GitHub. Before merging or rebasing a new
eature in, project maintainers in GitHub can review, accept, or
eject a change based on the diff of the ‘‘master’’ code branch and
he branch of the incoming change. Reviewers can comment and
ote on the change in the GitHub web user interface. If the pull
equest is approved, it can be included in the master branch. A
ejected pull request can be abandoned by closing it or the creator
an further refine it based on the comments given and submit it
gain for review.

5 https://git-scm.com/.
6 https://github.com/.

https://pmd.github.io/latest/pmd_rules_java.html
https://checkstyle.sourceforge.io
http://findbugs.sourceforge.net
https://git-scm.com/
https://github.com/


V. Lenarduzzi, V. Nikkola, N. Saarimäki et al. / The Journal of Systems & Software 171 (2021) 110806 3

s
a
c
R
B

a
t

u
c
t
i
c

l
c
s
t
s
c
c

l
p
t
s
d
b

i
n
n
s
t
n
t

Table 1
An example of PMD rules and their related harmfulness.
PMD rule Defined by Impacted characteristic

Avoid using hard-coded IP Brown et al. (1998b) Maintainability (Brown et al., 1998b)
Loose coupling Chidamber and Kemerer (1994) Maintainability (Al Dallal and Abdin, 2018)
Base class should be abstract Brown et al. (1998b) Maintainability (Khomh et al., 2009a)
Coupling between objects Chidamber and Kemerer (1994) Maintainability (Al Dallal and Abdin, 2018)
Cyclomatic complexity McCabe (1976) Maintainability (Al Dallal and Abdin, 2018)
Data class Fowler (Fowler and Beck, 1999) Maintainability (Li and Shatnawi, 2007),

Faultiness (Sjberg et al., 2013; Yamashita, 2014)
Excessive class length Fowler (Large Class) (Fowler and Beck, 1999) Change Proneness (Palomba et al., 2018; Khomh et al., 2009b)
Excessive method length Fowler (Large Method) (Fowler and Beck, 1999) Change Proneness (Jaafar et al., 2016; Khomh et al., 2009b) fault

proneness (Palomba et al., 2018)
Excessive parameter list Fowler (Long Parameter List) (Fowler and Beck, 1999) Change Proneness (Jaafar et al., 2016)
God class Lanza et al. (2005) Change Proneness (Olbrich et al., 2010; Schumacher et al., 2010;

Zazworka et al., 2011), Comprehensibility (Du Bois et al., 2006),
Faultiness (Olbrich et al., 2010; Zazworka et al., 2011)

Law of demeter Fowler (Inappropriate Intimacy) (Fowler and Beck, 1999) Change Proneness (Palomba et al., 2018)
Loose package coupling Chidamber and Kemerer (1994) Maintainability (Al Dallal and Abdin, 2018)
Comment size Fowler (Comments) (Fowler and Beck, 1999) Faultiness (Aman et al., 2014; Aman, 2012)
n
c
o
T
w
a
i

t
t
c
w
w
m
r
o
W
m
o
t
g
a

m
c
G
b
a
A
n

t
m
a

3

r

2.3. Machine learning techniques

In this section, we will describe the machine learning clas-
ifiers adopted in this work. We used eight different classifiers:
generalized linear model (Logistic Regression), a tree-based

lassifier (Decision Tree), and six ensemble classifiers (Bagging,
andom Forest, ExtraTrees, AdaBoost, GradientBoost, and XG-
oost).
In the next sub-sections, we will briefly introduce the eight

dopted classifiers and give the rationale for choosing them for
his study.

Logistic regression (Cox, 1958) is one of the most frequently
sed algorithms in machine learning. In logistic regression, a
ollection of measurements (the counts of a particular issue) and
heir binary classification (pull request acceptance) can be turned
nto a function that outputs the probability of an input being
lassified as 1, or in our case, the probability of it being accepted.
Decision Tree Breiman et al. (1984) is a model that takes

earning data and constructs a tree-like graph of decisions that
an be used to classify a new input. The learning data is split into
ubsets based on how the split from the chosen variable improves
he accuracy of the tree at the time. The decisions connecting the
ubsets of data form a flowchart-like structure that the model
an use to tell the user how it would classify the input and how
ertain the prediction is perceived to be.
We considered two methods for determining how to split the

earning data: GINI impurity and information gain. GINI tells the
robability of incorrect classification of a random element from
he subset that has been assigned a random class within the
ubset. Information gain tells how much more accuracy a new
ecision node would add to the tree if chosen. GINI was chosen
ecause of its popularity and its resource efficiency.
Decision tree as a classifier was chosen because it is easy to

mplement and human-readable; also, decision trees can handle
oisy data well because subsets without significance can be ig-
ored by the algorithm that builds the tree. The classifier can be
usceptible to overfitting, where the model becomes too specific
o the training data and provides poor results when used with
ew input data. Overfitting can become a problem when trying
o apply the model to a mode-generalized dataset.

Random Forest Breiman (2001) is an ensemble classifier, which
tries to reduce the risk of overfitting a decision tree by construct-
ing a collection of decision trees from random subsets in the data.
The resulting collection of decision trees is smaller in depth, has
a reduced degree of correlation between the subset’s attributes,
and thus has a lower risk of overfitting.

When given input data to label, the model utilizes all the
generated trees, feeds the input data into all of them, and uses
the average of the individual labels of the trees as the final label
given to the input.

Extremely Randomized Trees Geurts et al. (2006) builds upon
the Random Forest introduced above by taking the same principle
of splitting the data into random subsets and building a collection
of decision trees from these. In order to further randomize the
decision trees, the attributes by which the splitting of the subsets
is done are also randomized, resulting in a more computationally
efficient model than Random Forest while still alleviating the
negative effects of overfitting.

Bagging Breiman (1996) is an ensemble classification tech-
ique that tries to reduce the effects of overfitting a model by
reating multiple smaller training sets from the initial set; in
ur study, it creates multiple decision trees from these sets.
he sets are created by sampling the initial set uniformly and
ith replacements, which means that individual data points can
ppear in multiple training sets. The resulting trees can be used
n labeling new input through a voting process by the trees.

AdaBoost Freund and Schapire (1997) is a classifier based on
he concept of boosting. The implementation of the algorithm in
his study uses a collection of decision trees, but new trees are
reated with the intent of correctly labeling instances of data that
ere misclassified by previous trees. For each round of training, a
eight is assigned to each sample in the data. After the round, all
isclassified samples are given higher priority in the subsequent

ounds. When the number of trees reaches a predetermined limit
r the accuracy cannot be improved further, the model is finished.
hen predicting the label of a new sample with the finished
odel, the final label is calculated from the weighted decisions
f all the constructed trees. As Adaboost is based on decision
rees, it can be resistant to overfitting and be more useful with
eneralized data. However, Adaboost is susceptible to noise data
nd outliers.
Gradient Boost Friedman (2001) is similar to the other boosting

ethods. It uses a collection of weaker classifiers, which are
reated sequentially according to an algorithm. In the case of
radient Boost, as used in this study, the determining factor in
uilding the new decision trees is the use of a loss function. The
lgorithm tries to minimize the loss function and, similarly to
daboost, stops when the model has been fully optimized or the
umber of trees reaches the predetermined limit.
XGBoost Chen and Guestrin (2016) is a scalable implementa-

ion of Gradient Boost. The use of XGBoost can provide perfor-
ance improvements in constructing a model, which might be
n important factor when analyzing a large set of data.

. Related work

In this Section, we report on the most relevant works on pull
equests.



4 V. Lenarduzzi, V. Nikkola, N. Saarimäki et al. / The Journal of Systems & Software 171 (2021) 110806

3

s
e
2
a
S

o
r
i

(
i
s

g
r
d
p
t

o
o
r
t
I
t
o
r

i
l
w
r
a
f
a
f
1
a
e

c
t
2
a
a
2

f
m
l
r
(

c
f
m
m
b
n
a
t

r

r
i
f
d
t
a
p
M

.1. Pull request process

Pull requests have been studied from different points of view,
uch as pull-based development (Gousios et al., 2014, 2015; Veen
t al., 2015), usage of real online resources (Zampetti et al.,
017), pull requests reviewer assignment (Yu et al., 2014), and
cceptance process (Gousios et al., 2014; Rahman and Roy, 2014;
oares et al., 2015a; Kononenko et al., 2018).
Sometimes pull requests are submitted to edit the same lines

f code resulting in a latent collaborative conflict. Therefore, pull
equest might compete, and overlap changes on the same line,
ncreasing the merge complexity (Zhang et al., 2018).

Another investigated issue regarding pull requests is latency
Yu et al., 2015). It is defined as a complex issue related to many
ndependent variables such as the number of comments and the
ize of a pull request (Zou et al., 2019).
Considering the code style as an influencing factor for inte-

rating pull requests, several code style criteria have generally
evealed high divergence while several other criteria always in-
icated consistency. However, code style inconsistency between
ull requests and the code would affect the process of merging
hem into the code (Yu et al., 2015).

Zampetti et al. (2017) investigated how, why, and when devel-
pers refer to online resources in their pull requests. They focused
n the context and real usage of online resources and how these
esources have evolved over time. Moreover, they investigated
he browsing purpose of online resources in pull request systems.
nstead of investigating commit messages, they evaluated only
he pull request descriptions, since generally, the documentation
f a change aims at reviewing and possibly accepting the pull
equest (Gousios et al., 2014).

Yu et al. (2014) worked on pull requests’ reviewer assignment
n order to provide an automatic organization in GitHub that
eads to an effort waste They proposed a reviewer recommender,
hich should predict highly relevant reviewers of incoming pull
equests based on the textual semantics of each pull request
nd the social relations of the developers. They found several
actors that influence pull requests latency such as size, project
ge, and team size. This approach reached a precision rate of 74%
or the best recommendation and a recall rate of 71% for top-
0 recommendations. However, the authors did not consider the
spect of code quality. The results are confirmed also by Soares
t al. (2015a).
Recent studies investigated the factors that influence the ac-

eptance and rejection of a pull request, such as the developer,
he project, and the specific pull request itself (Rastogi et al.,
018). Moreover, the size of the change, its perceived quality,
nd the context have an important role in the pull requests
cceptance (Tsay et al., 2014; Gousios et al., 2014; Soares et al.,
015b).
There is no difference in the treatment of pull-requests coming

rom the core team and from the community. Generally, the
erging decision is postponed based on technical factors (Hel-

endoorn et al., 2015; Rigby and Storey, 2011). Generally, pull
equests that passed the build phase are merged more frequently
Zampetti et al., 2019).

Also, gender plays a role in the pull requests acceptance:
omparing pull requests acceptance rates of contributions coming
rom men versus women, women’s contributions are accepted
ore often than men’s (Terrell et al., 2017). Pull requests are
ore likely to be merged if the developer has more social contri-
utions in coding (Dabbish et al., 2012). Moreover, the social con-
ection between the pull request submitter and project manager
ffects the acceptance when a core team member is evaluating
he pull request (Tsay et al., 2014).

Considering geographical location impacts as factors for pull

equest acceptance, the highest pull request acceptance rates
have been discovered in countries with no apparent similari-
ties (Rastogi et al., 2018).

Integrators decide to accept a contribution after analyzing
source code quality, code style, documentation, granularity, and
adherence to project conventions (Gousios et al., 2014). Pull re-
quest’s programming language had a significant influence on ac-
ceptance (Rahman and Roy, 2014). Higher acceptance was mostly
found for Scala, C, C#, and R programming languages. Factors
regarding developers are related to the acceptance process, such
as the number and experience level of developers’ (Rahman et al.,
2016), and the developers reputation who submitted the pull
request (Calefato et al., 2017).

Moreover, testing plays an important role in the acceptance of
a pull request (Gousios et al., 2015, 2016), positively influencing
the majority of contributions to be accepted (85%) (Gousios et al.,
2016).

Rejection of pull requests can increase when technical prob-
lems are not properly solved and if the number of forks also
increases (Rahman et al., 2016). Other most important rejec-
tion factors are inexperience with pull requests, the complexity
of contributions, the locality of the modified artifacts, and the
project’s policy contribution (Soares et al., 2015a). From the inte-
grator’s perspective, social challenges needed to be addressed, for
example, how to motivate contributors to keep working on the
project and how to explain the reasons for rejection without dis-
couraging them. From the contributor’s perspective, they found
that it is important to reduce response time, maintain awareness,
and improve communication (Gousios et al., 2014).

3.2. Software quality of pull requests

To the best of our knowledge, only a few studies have focused
on the quality aspect of pull request acceptance (Gousios et al.,
2014, 2015; Kononenko et al., 2018).

Gousios et al. (2014) investigated the pull-based development
process focusing on the factors that affect the efficiency of the
process and contribute to the acceptance of a pull request and
the related acceptance time. They analyzed the GHTorrent corpus
and other 291 projects. The results showed that the number of
pull requests increases over time. However, the proportion of
repositories using them is relatively stable. They also identified
common driving factors that affect the lifetime of pull requests
and the merging process. Based on their study, code reviews did
not seem to increase the probability of acceptance, since 84% of
the reviewed pull requests were merged. The results showed that
only 10% of the pull requests are rejected based on their project
process and quality requirements (called as process and tests). If
the pull request ‘‘does not follow the correct project conventions’’
or if the ‘‘test failed’’, the pull request is rejected.

In another work, Gousios et al. (2015) conducted a survey
aimed at characterizing the key factors considered in the decision-
making process of pull request acceptance. Quality was revealed
as one of the top priorities for developers. The most important ac-
ceptance factors they identified are targeted area importance, test
cases, and code quality. However, the respondents specified qual-
ity differently from their respective perception, as conformance,
good available documentation, and contributor reputation.

Developers consider quality aspect as a big challenge. Pull
equests are generally accepted according to the success of the
ntegration testing on all supported platforms. Regarding the
actors considered to measure their quality, they are based on the
evelopers’ perception. They evaluate the non-functional charac-
eristics of the changes to merge. Developers prefer understand-
ble and elegant code, with good documentation. The code should
rovide clear added value to the project with a minimal impact.
oreover, the vast majority of the developers manually evaluate



V. Lenarduzzi, V. Nikkola, N. Saarimäki et al. / The Journal of Systems & Software 171 (2021) 110806 5

v
a
t
w

o
q
i
k
r

i
t
a
c
l

4

p
f

n
t
e

i
t
o
s
i
p
h
p

T
v
(
p

a
f

the code quality. However, asking which tool they used, devel-
opers ranked as first choice (75%) continuous integration such
as Travis CI7 and CloudBees8 that allow running the test suites
against new pull requests. Based on their results, the authors
highlighted the need to efficiently automate the pull requests
quality evaluation.

Kononenko et al. (2018) investigated the pull request accep-
tance process in a commercial project addressing the quality
of pull request reviews from the point of view of developers’
perception. They applied data mining techniques on the project’s
GitHub repository in order to understand the nature of the merge
and then conducted a manual inspection of the pull requests.
They also investigated the factors that influence the merge time
and outcome of pull requests such as pull request size and the
number of people involved in the discussion of each pull request.
Developers’ experience and affiliation were significant factors in
both models. Moreover, they report that developers generally
associate the quality of a pull request with the quality of its
description, complexity, and revertability. However, they did not
evaluate the reasons for a pull request being rejected. These
studies investigated the software quality of pull requests focus-
ing on the trustworthiness of developers’ experience and affili-
ation (Kononenko et al., 2018). Moreover, these studies did not
measure the quality of pull requests against a set of rules but
based on their acceptance rate and developers’ perception.

Trautsch et al. (2019) investigated the usage of automated
static analysis tools in open-source projects in the context of
software evolution, also applying PMD rules. They measured the
impact of PMD rules on software quality considering defect den-
sity as a proxy metric for external software quality. Moreover,
they compared the data where PMD was and was not used
and found a statistically significant difference in defect density.
However, they did not analyze the acceptance or rejection of a
pull request but only the quality of the code. This means they
considered only accepted pull requests in their study.

Our work complements these works by analyzing the code
quality of pull requests in popular open-source projects, consid-
ering code style violations and specifically PMD rules, as quality
factors. Moreover, we investigated how the quality, specifically
issues in the source code, affect the chance of a pull request
being accepted when it is reviewed by a project maintainer. We
measured code quality against a set of rules provided by PMD,
one of the most frequently used open-source software tools for
analyzing source code.

4. Case study design

We designed our empirical study as a case study based on the
guidelines defined by Runeson and Höst (2009). In this Section,
we describe the case study design, including the goal and the
research questions, the study context, the data collection, and the
data analysis procedure.

4.1. Goal and research questions

The goal of this work is to investigate the role of PMD issues
in pull request acceptance. Accordingly, to meet our expectations,
we formulated the goal as follows, using the Goal/Question/Metric
(GQM) template (Basili et al., 1994):

Purpose Analyze
Object the acceptance of pull requests
Quality with respect to the presence of PMD issues
Viewpoint from the point of view of developers
Context in the context of Java projects

7 https://travis-ci.org.
8 https://www.cloudbees.com.
Based on the defined goal, we derived the following Research
Questions (RQs):

RQ1 What is the distribution of PMD issues violated by
the pull requests in the analyzed software
systems?

RQ2 Does the presence of PMD issues affect pull
request acceptance?

RQ3 Do specific PMD issues affect pull request
acceptance?

RQ1 aims at assessing the distribution of the PMD issues
iolated by pull requests in the analyzed software systems. We
lso took into account the distribution of PMD issues with respect
o their priority level as assigned by PMD (P1–P5). These results
ill also help us to better understand the context of our study.
RQ2 aims at finding out whether the project maintainers in

pen-source Java projects consider quality issues in the pull re-
uest source code when they are reviewing it. If code quality
ssues affect the acceptance of pull requests, the question is what
ind of PMD issues generally lead to the rejection of a pull
equest.

RQ3 aims at understanding if the presence of any specific PMD
ssue is more likely to result in the project maintainer rejecting
he pull request. As an example, we expect that the pull request
ffected by well-known code smells or anti-patterns (e.g. god
lass and inappropriate intimacy) would be rejected because of
ow maintainability in the code.

.2. Context

The projects for this study were selected using ‘‘criterion sam-
ling’’ (Patton, 2002). The criteria for selecting projects were as
ollows:

• Uses Java as its primary programming language
• Older than two years
• Had active development in last year
• Code is hosted on GitHub
• Uses pull requests as a mean for contributing to the code

base
• Has more than 100 closed pull requests

Moreover, we tried to maximize diversity and representative-
ess considering a comparable number of projects with respect
o project age, size, and domain, as recommended by Nagappan
t al. (2013).
We selected 28 projects according to these criteria. The major-

ty, 22 projects, were selected from the Apache Software Founda-
ion repository.9 The repository proved to be an excellent source
f projects that meet the criteria described above. It includes
ome of the most widely used software solutions, considered
ndustrial and mature, due to the strict review and inclusion
rocess required by the ASF. Moreover, the included projects
ave to keep on reviewing their code and follow a strict quality
rocess.10
The remaining six projects were selected based on the top

rending Java repositories list in GitHub.11 GitHub provides a
aluable source of data for the study of code reviews
Kalliamvakou et al., 2016). In the selection, we manually selected
opular Java projects using the criteria mentioned before.
In Table 2, we report the list of the 28 projects that were

nalyzed along with the number of pull requests (‘‘#PR’’), the time
rame of the analysis, and the size of each project (‘‘#LOC’’).

9 http://apache.org.
10 https://incubator.apache.org/policy/process.html.
11 https://github.com/trending/java.

https://travis-ci.org
https://www.cloudbees.com
http://apache.org
https://incubator.apache.org/policy/process.html
https://github.com/trending/java


6 V. Lenarduzzi, V. Nikkola, N. Saarimäki et al. / The Journal of Systems & Software 171 (2021) 110806

T
S

p

r
J
p
p
w
t
t
W
i
d
c

c
i
c
b
w

4

i
i
p
w

a
w
F

d
f
c
a
n
e

t

t
b
m
a
–
m
i
w
t
a
S

t
f
t

i
w
m
b
a
e
l
o
w
a
p

d
m
m
a
o
t
m
r
c

t
m

able 2
elected projects.
Project Owner/Name #PR Time frame #LOC

apache/any23 129 2013/12 - 2018/11 78,350
apache/dubbo 1270 2012/02 - 2019/01 133,630
apache/calcite 873 2014/07 - 2018/12 337,430
apache/cassandra 182 2018/10 - 2011/09 411,240
apache/cxf 455 2014/03 - 2018/12 807,510
apache/flume 180 2012/10 - 2018/12 103,700
apache/groovy 833 2015/10 - 2019/01 396,430
apache/guacamole-client 331 2016/03 - 2018/12 65,920
apache/helix 284 2014/08 - 2018/11 191,830
apache/incubator-heron 2190 2015/12 - 2019/01 207,360
hibernate/hibernate-orm 2570 2010/10 - 2019/01 797,300
apache/kafka 5520 2013/01 - 2018/12 376,680
apache/lucene-solr 264 2016/01 - 2018/12 1,416,200
apache/maven 166 2013/03 - 2018/12 10,780
apache/metamodel 198 2014/09 - 2018/12 64,800
mockito/mockito 726 2012/11 - 2019/01 57,400
apache/netbeans 1020 2017/09 - 2019/01 6,115,770
netty/netty 4120 2010/12 - 2019/01 275,970
apache/opennlp 330 2016/04 - 2018/12 136,540
apache/phoenix 203 2014/07 - 2018/12 366,580
apache/samza 1470 2014/10 - 2018/10 129,280
spring-projects/spring-framework 1850 2011/09 - 2019/01 717,960
spring-projects/spring-boot 3070 2013/06 - 2019/01 348,090
apache/storm 2860 2013/12 - 2018/12 359,900
apache/tajo 1020 2014/03 - 2018/07 264,790
apache/vxquery 169 2015/04 - 2017/08 264,790
apache/zeppelin 3190 2015/03 - 2018/12 218,950
openzipkin/zipkin 1470 2012/06 - 2019/01 121,500

Total 36,340 14,776,680

4.3. Data collection

We first extracted all pull requests from each of the selected
rojects using the GitHub REST API v3.12
For each pull request, we fetched the code from the pull

equest’s branch and analyzed the code using PMD. The default
ava rule set for PMD was used for the static analysis. All the
ull requests contained code written in Java and we did not find
ull requests written in any other language. Please note, that
e considered only pull requests containing source code and
herefore excluded pull requests containing changes not related
o the source code like changes to documentation and images).
e filtered the PMD issues added in the main branch to only

nclude items introduced in the pull request. The filtering was
one with the aid of a diff-file provided by GitHub API and
ompared the pull request branch against the master branch.
We identified whether a pull request was accepted or not by

hecking whether the pull request had been marked as merged
nto the master branch or whether the pull request had been
losed by an event that committed the changes to the master
ranch. Other ways of handling pull requests within a project
ere not considered.

.4. Data analysis

The result of the data collection process was a CSV file report-
ng the dependent variable (pull request accepted or not) and the
ndependent variables (number of PMD issues introduced in each
ull request). Table 3 provides an example of the data structure
e adopted in the remainder of this work.
For RQ1, we first calculated the total number of pull requests

nd the number of PMD issues present in each project. Moreover,
e calculated the number of accepted and rejected pull requests.
or each PMD issue, we calculated the number of occurrences,

12 https://developer.github.com/v3/.
Table 3
Example of data structure used for the analysis.
Project ID PR ID Dependent Variable Independent Variables

Accepted PR Rule1 ... Rule n

Cassandra ahkji 1 0 3
Cassandra avfjo 0 0 2

the number of pull requests, and the number of projects where it
was found. Moreover, we calculated descriptive statistics (aver-
age, maximum, minimum, and standard deviation) for each PMD
issue.

In order to understand if PMD issues affect pull request accep-
tance (RQ2), we first determined whether there is a significant
ifference between the expected frequencies and the observed
requencies in one or more categories. First, we computed the
ontingency matrix and we performed the χ2 test. Then, we
pplied logistic regression and the six machine learning tech-
iques, reported in Section 2.3, and compared the accuracy of
ach regressor.
We used the PMD issues as independent variables (predictors)

o determine if a PR is accepted or rejected (dependent variable).
The reason for using multiple machine learning models lies in

he fact that each model performs differently on the same data,
ased on its bias and variance. The bias tells us how much the
odel is paying attention to the training data – higher bias, less
ttention to the training data. The variance does the opposite
higher variance, higher attention is given to the training set,
odel over-fit the data and cannot generalize. As customary done

n machine learning studies, in order to find a suitable model,
e need to try multiple of them to find the right bias–variance
rade-off (Mitchell, 1997). The description of the used techniques
nd the rationale adopted to select each of them is reported in
ection 2.3.

χ2 test could be enough to answer our RQs. However, in order
o support possible follow-up of the work, considering other
actors such as LOC as an independent variable, machine learning
echniques can provide much more accurate results.

In order to evaluate the importance of the different PMD
ssues in the acceptance of pull requests (RQ3), we first examined
hether issues with a specific priority value affect the accuracy
etrics of the prediction models. We used the same techniques as
efore but grouped all the PMD issues in each project into groups
ccording to their priorities. The analysis was run separately for
ach project and each priority level (28 projects * 5 priority
evel groups) and the results were compared to the ones we
btained for RQ2. To further analyze the effect of issue priority,
e also combined the PMD issues all the project into one data set
nd created models based on all available items with the same
riority.
Then, we analyzed each PMD issue individually, applying the

rop-column importance mechanism.13 After training our baseline
odel with P number of features, we trained P number of new
odels and compared each of the new model’s tested accuracy
gainst the baseline model. Should a feature affect the accuracy
f the model, the model trained with that feature dropped from
he dataset would have a lower accuracy score than the baseline
odel. The more the accuracy of the model drops with a feature

emoved, the more important that feature is to the model when
lassifying pull requests as accepted or rejected.
For RQ2 and RQ3, once each model was trained, we confirmed

hat the predictions about pull request acceptance made by the
odel were accurate (Accuracy Comparison). To determine the

13 https://explained.ai/rf-importance/.

https://developer.github.com/v3/
https://explained.ai/rf-importance/


V. Lenarduzzi, V. Nikkola, N. Saarimäki et al. / The Journal of Systems & Software 171 (2021) 110806 7

c
o
t
a
t
h
t
l
s
b
a

t
c
(
i

c
n
h

t
b

m
p
t
l

a
a
o
7
v
l
‘
t
r
m
(

t

Table 4
Accuracy measures.
Accuracy measure Formula

Precision TP
FP+TP

Recall TP
FN+TP

MCC TP∗TN−FP∗FN
√
(FP+TP)(FN−TP)(FP+TN)(FN+TN)

F-measure 2 ∗
precision∗recall
precision+recall

TP: True Positive; TN: True Negative; FP: False Positive; FN: False Negative.

Table 5
Distribution of pull requests (PR) and PMD issues in the selected projects -
(RQ1)
Project name #PR #PMD issues % Acc. % Rej.

occurrences

apache/any23 129 11,573 90.70 9.30
apache/calcite 873 104,533 79.50 20.50
apache/cassandra 182 153,621 19.78 80.22
apache/cxf 455 62,564 75.82 24.18
apache/dubbo 1270 169,751 52.28 47.72
apache/flume 180 67,880 60.00 40.00
apache/groovy 833 25,801 81.39 18.61
apache/guacamole-client 331 6226 92.15 7.85
apache/helix 284 58,586 90.85 9.15
apache/incubator-heron 2191 138,706 90.32 9.68
apache/kafka 5522 507,423 73.51 26.49
apache/lucene-solr 264 72,782 28.41 71.59
apache/maven 166 4445 32.53 67.47
apache/metamodel 198 25,549 78.28 21.72
apache/netbeans 1026 52,817 83.14 16.86
apache/opennlp 330 21,921 82.73 17.27
apache/phoenix 203 214,997 9.85 90.15
apache/samza 830 96,915 69.52 30.48
apache/storm 2863 379,583 77.96 22.04
apache/tajo 1020 232,374 67.94 32.06
apache/vxquery 169 19,033 30.77 69.23
apache/zeppelin 3194 408,444 56.92 43.08
hibernate/hibernate-orm 2573 490,905 16.27 83.73
mockito/mockito 726 57,345 77.41 22.59
netty/netty 4129 597,183 15.84 84.16
openzipkin/zipkin 1474 78,537 73.00 27.00
spring-projects/spring-boot 3076 156,455 8.03 91.97
spring-projects/spring-framework 1850 487,197 15.68 84.32

Total 36,344 4,703,146 19,293 17,051

accuracy of a model, 5-fold cross-validation was used. The data
set was randomly split into five parts. A model was trained five
times, each time using four parts for training and the remaining
part for testing the model. We calculated accuracy measures (pre-
cision, recall, Matthews correlation coefficient, and F-measure)
for each model (see Table 4) and then combined the accuracy
metrics from each fold to produce an estimate of how well the
model would perform.

We started by calculating the commonly used metrics, in-
luding F-measure, precision, recall, and the harmonic average
f the latter two. Precision and recall are metrics that focus on
he true positives produced by the model. Powers (Powers, 2008)
rgues that these metrics can be biased and suggests that a con-
ingency matrix should be used to calculate additional metrics to
elp understand how negative predictions affect the accuracy of
he constructed model. Using the contingency matrix, we calcu-
ated the model’s Matthew Correlation Coefficient (MCC), which
uggests as the best way to reduce the information provided
y the matrix into a single probability describing the model’s
ccuracy (Powers, 2008).
For each classifier to easily gauge the overall accuracy of

he machine learning algorithm in a model (Bradley, 1997), we
alculated the Area Under The Receiver Operating Characteristic
AUC). For the AUC measurement, we calculated Receiver Operat-
ng Characteristics (ROC) and used these to find out the AUC ratio
of the classifier, which is the probability of the classifier rank-
ing a randomly chosen positive higher than a randomly chosen
negative one.

To confirm the results of the automated application of the
machine learning models, and gain more qualitative insights on
the results, we manually inspected 10% of the accepted PR and
10% of the non accepted PRs of each project, to identify if PRs
were rejected or accepted due to quality issues. The validation
was performed by two of the authors who individually analyzed
all candidate PRs, marking as ‘‘True’’ PRs mentioning quality is-
sues in the rejection message and ‘‘False’’ otherwise. Moreover,
the two authors also reported if the PRs were aimed at fixing a
quality issue (e.g. removing issues highlighted by static analysis
tools), so as to understand the importance of quality issues from
the maintainers’ point of view. A total of 37 PRs were classified
differently by the two authors (1% of the manually inspected PRs).
An open discussion, involving the third author, helped to resolve
conflicts and reach a consensus on the classification.

4.5. Replicability

In order to allow our study to be replicated, we have published
the complete raw data in the replication package.14

Please note that the CSV file includes only pull requests con-
taining Java code, while we excluded pull requests including
other types of changes (edits to the documentation, HTML, CSS,
and others).

5. Results

RQ1. what is the distribution of PMD issues violated by the pull
requests in the analyzed software systems?

For this study, we analyzed 36,344 pull requests violating 253
PMD rules contained more than 4.7 million times (Table 5) in
the 28 analyzed projects. We found that 19,293 pull requests
(53.08%) were accepted and 17,051 pull requests (46.92%) were
rejected. The distribution of the PMD issues differs greatly among
the pull requests. For example, the projects Cassandra and Phoenix
ontain a relatively large number of PMD issues compared to the
umber of pull requests, while Groovy, Guacamole, and Maven
ave a relatively small number of PMD issues.
Table 7 reports the number of PMD issues (‘‘#PMD issues’’) and

heir number of occurrences (‘‘#PMD issues occurrences’’) grouped
y priority level (‘‘Priority’’).
Taking into account the priority level of the issues, the vast

ajority of the violated rules (197 out 253) are classified with
riority level 3, while the remaining ones (56) are equally dis-
ributed among levels 1, 2, and 4. None of the projects we ana-
yzed had any issues rated as priority level 5.

Looking at the PMD rules that could play a role in pull request
cceptance or rejection, 241 of the 253 PMD rule types (95%)
re present in both cases, while 11 are found only in cases
f rejection and 1 only in cases of acceptance (Tables 6 and
). However, these 11 rules present only in rejected PRs are
iolated only a few times. As an example, the rules often vio-
ated in the whole dataset (‘‘LocalHomeNaming-Convention’’ and
‘LocalInterfaceSession-NamingConvention’’) are violated only 12
imes in the rejected PRs. It is also interesting that all these 11
ules that were violated only in rejected PRs, 7 of them have a
edium priority (Change recommended), and 4 a low priority

Change optional).
We discovered that 88 PMD rules have a diffusion rate higher

han 60% in the case of acceptance and 127 have a diffusion rate

14 https://figshare.com/s/d47b6f238b5c92430dd7.

https://figshare.com/s/d47b6f238b5c92430dd7


8 V. Lenarduzzi, V. Nikkola, N. Saarimäki et al. / The Journal of Systems & Software 171 (2021) 110806

(

v

M

t

m

i

Table 6
PMD rules that were violated only in accepted or rejected pull requests - (RQ1).
Rules violated only in rejected PRs

Rule Priority #occur. Rule description

AvoidCallingFinalize 3 9 Avoid calling finalize() explicitly
DontCallThreadRun 4 4 Dont call Thread.run() explicitly, use Thread.start()
DontUseFloatTypeForLoopIndices 3 1 Dont use floating point for loop indices. If you must use

floating point, use double.
FinalizeOverloaded 3 2 Finalize methods should not be overloaded
FinalizeShouldBeProtected 3 3 If you override finalize(), make it protected
LocalHomeNamingConvention 4 12 The Local Home interface of a Session EJB should be suffixed

by LocalHome
LocalInterfaceSessionNaming-
Convention

4 12 The Local Interface of a Session EJB should be suffixed by Local

NonCaseLabelInSwitchStatement 3 5 A non-case label was present in a switch statement
ReplaceEnumerationWithIterator 3 10 Consider replacing this Enumeration with the newer

java.util.Iterator
StringBufferInstantiationWithChar 4 1 Do not instantiate a StringBuffer or StringBuilder with a char
UselessOperationOnImmutable 3 1 An operation on an Immutable object (String, BigDecimal or

BigInteger) wont change the object itself

Rules violated only in accepted PRs

Rule Priority #occur. Rule description

MethodWithSameNameAsEnclosing-
Class

3 8 Classes should not have non-constructor methods with the
same name as the class
Table 7
Distribution of PMD issues in pull requests - (RQ1).
Priority #PMD # PMD issues # PMD issue types #PMD issue types

issue types occurrences (in Accepted PR) (in Rejected PR)

4 18 85,688 14 18
3 197 4,488,326 191 197
2 22 37,492 21 21
1 16 91,640 21 16

All 253 4,703,146 243 253
Table 8
Descriptive statistics (the 15 most recurrent PMD issues) - Priority, number of
occurrences (#occur.), number of Pull Requests (#PR) and number of projects
(#prj.) - (RQ1).
PMD issue Priority #occur. #PR #prj.

LawOfDemeter 4 1,089,110 15,809 28
MethodArgumentCouldBeFinal 4 627,688 12,822 28
CommentRequired 4 584,889 15,345 28
LocalVariableCouldBeFinal 4 578,760 14,920 28
CommentSize 4 253,447 11,026 28
JUnitAssertionsShouldIncludeMessage 4 196,619 6738 26
BeanMembersShouldSerialize 4 139,793 8865 28
LongVariable 4 122,881 8805 28
ShortVariable 4 112,333 7421 28
OnlyOneReturn 4 92,166 7111 28
CommentDefaultAccessModifier 4 58,684 5252 28
DefaultPackage 4 42,396 4201 28
ControlStatementBraces 4 39,910 2689 27
JUnitTestContainsTooManyAsserts 4 36,022 4954 26
AtLeastOneConstructor 4 29,516 5561 28

higher than 60% in the case of rejection. The remaining 38 are

equally distributed.

Tables 8 and 9 present descriptive statistic including average

‘‘Avg.’’), maximum (‘‘Max’’), minimum (‘‘Min’’), and standard de-

iation (‘‘Std. dev.’’) of the twenty most recurrent PMD issues.

oreover, we include the priority of each PMD rule (‘‘Priority’’),

he sum of issue rows of that rule type was found in the issues

aster table (‘‘# Total occurrences’’), and the number of projects

n which the specific rule has been violated (‘‘#Project’’). The

complete list is available in the replication package (Section 4.5).
Summary of RQ1
Among the 36,344 analyzed pull requests, we discovered
253 different PMD rules violated more than 4.7 million
times. Nearly half of the pull requests had been accepted and
the other half had been rejected. 242 of the 253 PMD rules
were violated in both cases. The vast majority of these PMD
rules (197) have priority level 3.

RQ2. does the presence of PMD issues affect pull request acceptance?

To answer this question, we first calculated the contingency
matrix (Table 10), and χ2 test. Then, we trained the logistic
regressor and the six machine learning models for each project.
Once we had all the models trained, we tested them and calcu-
lated the accuracy measures described in Table 4 for each model.
We then averaged each of the metrics from the classifiers for the
different techniques.

As we can see from the contingency matrix (Table 10), there
is no significant difference between accepted and rejected pull
requests in terms of the presence of PMD issues. Moreover, this
is confirmed by the low result of the χ2 test (0.12).

The overall results for the application of the logistic regression
and the machine learning models on all the data are presented
in Table 11. The results for each model trained on each of the
28 projects are available in the replication package (Section 4.5).
The averaging provided us with an estimate of how accurately
we could predict whether maintainers accepted the pull request
based on the number of different PMD issues it has.

Results are also confirmed in the analysis of each project
independently. None of the 28 projects show different behavior in



V. Lenarduzzi, V. Nikkola, N. Saarimäki et al. / The Journal of Systems & Software 171 (2021) 110806 9

t
o

r
P
r
b

f
T
d

c

t
g
p
(
m

Table 9
Descriptive statistics (the 15 most recurrent PMD issues) - Average (Avg.), Maximum (Max),
Minimum (Min) and Standard Deviation (std. dev.) - (RQ1).
PMD issue Avg Max Min Std. dev.

LawOfDemeter 38,896.785 140,870 767 40,680
MethodArgumentCouldBeFinal 22,417.428 105,544 224 25,936
CommentRequired 20,888.892 66,798 39 21,979
LocalVariableCouldBeFinal 20,670 67394 547 20,461
CommentSize 9051.678 57,074 313 13,818
JUnitAssertionsShouldIncludeMessage 7562.269 38,557 58 10822
BeanMembersShouldSerialize 4992.607 22,738 71 5597
LongVariable 4388.607 19,958 204 5096
ShortVariable 4011.892 21,900 26 5240
OnlyOneReturn 3291.642 14,163 42 3950
CommentDefaultAccessModifier 2095.857 12,535 6 2605
DefaultPackage 1514.142 9212 2 1890
ControlStatementBraces 1478.148 11,130 1 2534
JUnitTestContainsTooManyAsserts 1385.461 7888 7 1986
AtLeastOneConstructor 1054.142 6514 21 1423
Table 10
Contingency matrix - (RQ2).

PMD issues No PMD issues

PR accepted 10,563 8558
PR rejected 11,228 5528

Fig. 1. ROC Curves (average between 5-fold validation models) - (RQ2).

erms of the presence of PMD issues in the acceptance or rejection
f pull requests.
The results of this analysis are presented in Table 12. For

easons of space, we report only the 30 most frequently violated
MD rules. The table also contains the number of distinct PMD
ules that the items of the project contained. The rule count can
e interpreted as the number of different types of items found.
As depicted in Fig. 1, for every prediction method, the AUC

or almost all of the trained models are hovering around 50%.
herefore, overall code quality does not appear to be a factor in
etermining whether a pull request is accepted or rejected.
There were some projects that showed some moderate suc-

ess, but these can be dismissed as outliers.
The results might suggest that machine learning could not be

he most suitable technique. However, also χ2 test on the contin-
ency matrix (0.12) (Table 10) confirms the above result that the
resence of PMD issues does not affect pull request acceptance
which means that PMD issues and pull request acceptance are
utually independent).
RQ3. Do specific PMD issues affect pull request acceptance?

Grouping PMD issues by priority level did not provide any
improvements over the results of RQ1. The contingency matrix for
each priority shows no significant differences between accepted
and rejected pull requests in terms of the presence of PMD issues.
Also, in this case, the result of χ2 test is very low, ranging from
0.08 to 0.14. The same results are confirmed by the application
of logistic regression and the selected machine learning models.
This trend is confirmed for each project analyzed independently
and analyzing the projects together.

Also considering the PMD issues individually, results show a
very low importance for all the PMD rules (Table 12). No rule has
an importance higher than 1%.

In Table 12 we show the importance of the 20 most common
quality rules when comparing the baseline model accuracy with a
model that has the specific quality rule dropped from the feature
set.

The manual inspection of the commits provided very inter-
esting results. Out of 1705 rejected PRs and 1929 accepted PRs
we inspected, none was rejected for quality reasons. However,
it is interesting to note that 36 PRs were submitted with the
purpose of fixing quality issues detected by static analysis tools
and 16 of them were accepted, while the remaining 20 were
not. For these 20 rejected PRs the maintainers of the projects
often replied that the fixes were not needed, not useful, or only
cosmetic changes. In five of the rejected PRs containing quality
issue fixes, the maintainers made a cumulative PR fixing all the
issues reported by the rejected PRs.15

Summary of RQ2 and RQ3
Looking at the results we obtained from the analysis using
statistical and machine learning techniques (χ2 0.12 and
AUC 50% on average), PMD issues do not appear to influence
pull request acceptance. The manual inspection also con-
firms that quality issues are never considered as a criteria
for the acceptance of PRs.

6. Discussion

In this Section, we will discuss the results obtained according
to the RQs and present possible practical implications from our
research.

15 (PRs id 716dfd1c54d1112fd5f6b4339bdd59784e867351,
1c94e5cd9d81ae18861b375056db74f5dfe36597 for Zeppelin
and PRs id b9cbe603539e01111855b03018e79b320ada4228,
856af40924b920f68861090d20049eda72703697, 5353660de45eac91dc1dcee7a
24d8dc3d2b4555b for Netty).



10 V. Lenarduzzi, V. Nikkola, N. Saarimäki et al. / The Journal of Systems & Software 171 (2021) 110806
Table 11
Model reliability - (RQ2).
Accuracy measure Average between 5-fold validation models

L. R. D. T. Bagg. R. F. E. T. A. B. G. B. XG.B.

AUC 50.91 50.12 49.83 50.75 50.54 51.30 50.64 50.92
Precision 49.53 48.40 48.56 49.33 49.20 48.74 49.30 49.20
Recall 62.46 47.45 47.74 48.07 47.74 51.82 41.80 41.91
MCC 0.02 −0.00 0.00 0.01 0.01 0.00 0.00 −0.00
F-Measure 0.55 0.47 0.47 0.48 0.48 0.49 0.44 0.44
Table 12
Summary of the quality rules related to pull request acceptance - (RQ2 and RQ3).a

Rule ID Prior. #Prj. #Occur. Importance (%)

A.B. Bagg. D.T. E.T. G.B. L.R. R.F. XG.B.

LawOfDemeter 4 28 1,089,110 0.12 −0.51 0.77 −0.74 −0.29 −0.09 −0.66 0.02
MethodArgumentCouldBeFinal 4 28 627,688 −0.31 0.38 0.14 0.03 −0.71 −0.25 0.24 0.07
CommentRequired 4 28 584,889 −0.25 −0.11 0.07 −0.30 −0.47 −0.17 0.58 −0.31
LocalVariableCouldBeFinal 4 28 578,760 −0.13 −0.20 0.55 0.28 0.08 −0.05 0.61 −0.05
CommentSize 4 28 253,447 −0.24 −0.15 0.49 −0.08 −0.17 −0.05 −0.10 0.05
JUnitAssertionsShouldIncludeMessage 4 26 196,619 −0.41 −0.84 0.22 −0.28 −0.19 −0.10 −0.75 0.14
BeanMembersShouldSerialize 4 28 139,793 −0.33 −0.09 −0.03 −0.38 −0.37 0.17 0.26 0.07
LongVariable 4 28 122,881 0.08 −0.19 −0.02 −0.25 −0.28 0.08 0.24 0.02
ShortVariable 4 28 112,333 −0.51 −0.24 0.09 −0.04 −0.04 0.07 −0.25 −0.54
OnlyOneReturn 4 28 92,166 −0.69 −0.03 0.02 −0.25 −0.08 −0.06 0.06 −0.13
CommentDefaultAccessModifier 4 28 58,684 −0.17 −0.07 0.30 −0.41 −0.25 0.23 0.18 −0.10
DefaultPackage 4 28 42,396 −0.37 −0.05 0.20 −0.23 −0.93 0.10 −0.01 −0.54
ControlStatementBraces 4 27 39,910 −0.89 0.09 0.58 0.29 −0.37 −0.03 0.08 0.25
JUnitTestContainsTooManyAsserts 4 26 36,022 0.40 0.22 −0.25 −0.33 0.01 0.16 0.10 −0.17
AtLeastOneConstructor 4 28 29,516 0.00 −0.29 −0.06 −0.18 −0.19 −0.07 0.15 −0.22
UnnecessaryFullyQualifiedName 4 27 27,402 0.00 0.08 0.25 −0.05 0.00 0.00 0.26 −0.11
AvoidDuplicateLiterals 4 28 27,224 −0.20 0.05 0.33 −0.28 0.12 0.20 0.09 0.07
SignatureDeclareThrowsException 4 27 26,188 −0.18 −0.10 0.04 −0.13 −0.05 0.11 0.33 −0.17
AvoidInstantiatingObjectsInLoops 3 28 25,344 −0.05 0.07 0.43 −0.14 −0.27 −0.13 0.52 −0.07
FieldNamingConventions 3 28 25,062 0.09 0.00 0.16 −0.21 −0.10 −0.01 0.07 0.19

aNote for reviewers: The current template has smaller margins. This table reflects the actual margins of the standard 2-columns JSS template.
The analysis of the pull requests in 28 well-known Java
projects shows that quality flaws detected by PMD, including
code smells and anti-patterns, are frequently present in pull
requests. Several pull requests contain or create god classes,
speculative generality (named ‘‘Law of Demeter’’), duplicated
code, long methods, and many other issues generally considered
harmful by several empirical studies (Sjberg et al., 2013; Taibi
et al., 2017; Palomba et al., 2018). A possible reason for this could
be that developers prefer to accept a pull request implementing a
new feature or fixing a bug over rejecting it to maintain a certain
quality level. Another reason might be the project maintainers’
lack of knowledge of code smells, anti-patterns, and other coding
rules proposed by PMD.

As a result of this work, PMD issues are not a driver for
the acceptance or the rejection of pull requests. All the projects
reported the same behavior, and all the rules had very low im-
portance in the acceptance or rejection of pull requests.

PMD recommends manual customization of the set of rules
instead of using the out-of-the-box rule set and selecting the rules
that developers should consider, in order to maintain a certain
level of quality. However, since we analyzed all the rules detected
by PMD, no rule would be helpful and any customization would
be useless in terms of being able to predict the software quality
in code submitted to a pull request.

The result cannot be generalized to all the open-source and
commercial projects, as we expect some projects could enforce
quality checks to accept pull requests. Some tools, such as Sonar-
Qube (one of the main competitors of PMD), recently launched a
new feature allowing developers to check the code quality before
submitting a pull request. Even if maintainers are not sensitive
to the quality of the code to be integrated into their projects, at
least based on the rules detected by PMD, the adoption of pull
request quality analysis tools such as SonarQube or the usage of
PMD before submitting a pull request will increase the quality
of their code; increasing the overall software maintainability and
decreasing the fault proneness that could be increased from the
injection of some PMD issues (see Table 1).

During the manual inspection of the PRs, we noticed that 11
projects (Any23, Groovy, Hibernate-orm, Incubator-heron, Kafka,
Netty, Opennlp, Samza, Spring-boot, Storm, and Zeppelin)
adopted Checkstyle to check conformity to coding standards.
However, it is interesting to see that only a very limited amount
of PRs contains fixes to the issues raised by Checkstyle, also
confirming the results obtained in this work.

The results complement those obtained by
Soares et al. (2015a) and Calefato et al. (2017), namely, that
the reputation of the developer might be more important than
the quality of the developed code. The main implication for
practitioners, and especially for those maintaining open-source
projects, is the realization that they should pay more attention
to software quality. Pull requests are a very powerful instrument,
which could provide great benefits if they were used for code re-
views as well. Researchers should also investigate whether other
quality aspects might influence the acceptance of pull requests.

Our findings can have implications for project contributors,
core teams and researchers:

Contributors. Code Quality does not seem to be a key driver
for the acceptance of PRs. We still recommend contributors to
write clean code and to pay attention to coding standards and
quality rules, however, prospective contributors should also pay
attention to other criteria, such as having a complete test-suite
(Gousios et al., 2014) and clear documentation when applicable.
Moreover, contributors should also try to submit PRs that can be
merged without changes, especially when they are impacting on
several files (Gousios et al., 2014; Dabbish et al., 2012).

Core Teams are interested to integrate PRs that provide value
to their tool. However, core team members should consider the



V. Lenarduzzi, V. Nikkola, N. Saarimäki et al. / The Journal of Systems & Software 171 (2021) 110806 11
adoption of an automated static analysis tool, integrated into their
CD/CI pipeline and require contributors to validate their code
against the rules they select.

Researchers should disseminate more the culture of quality
in open-source projects, especially related to the development of
clean and high-quality code, removing quality issues such as code
smells and anti-patterns.

7. Threats to validity

In this Section, we introduce the threats to validity and the
different tactics we adopted to mitigate them.

Construct Validity. This threat concerns the relationship be-
tween theory and observation due to possible measurement er-
rors. Above all, we relied on PMD, one of the most used software
quality analysis tool for Java. However, even PMD is widely used
in industry, we did not find any evidence or an empirical study
assessing its detection accuracy. Therefore, we cannot exclude the
presence of false positives or false negatives in the detected PMD
issues.

We extracted the code submitted in pull requests using the
GitHub API10. However, we identified whether a pull request was
accepted or not by checking whether the pull request had been
marked as merged into the master branch or whether the pull
request had been closed by an event that committed the changes
to the master branch. Other ways of handling pull requests within
a project were not considered and, therefore, we are aware that
there is a limited possibility that some maintainers could have
integrated the pull request code into their projects manually,
without marking the pull request as accepted.

Internal Validity. This threat concerns internal factors related
to the study that might have affected the results. In order to
evaluate the code quality of pull requests, we applied the rules
provided by PMD, which is one of the most widely used static
code analysis tools for Java on the market. We are aware that
the presence or the absence of a PMD issue cannot be the perfect
predictor for software quality, and other rules or metrics detected
by other tools could have brought to different results. However,
the selection of PMD was performed as it allows to detect code
smells, anti-patterns, security flaws, and coding style violations
without the need of compiling the code. Other tools could be
more specific for other purposes. As an example, the usage of
DECOR (Moha et al., 2010) would have allowed capturing more
code smells, but not enabled to capture security flaws. We are
also aware that code quality is a general term. In this paper, we
refer to the quality hindered by the PMD rules. However, code
quality goes beyond these observed metrics. One of the major
metrics for code quality is the number of defects (this could be
observed tracking future commits over the lines changed by the
pull request), but other metrics such as having or not test cases in
the pull request or the test coverage of the pull request are also
indicators of quality and might have yielded to different results.

External Validity. This threat concerns the generalizability of
the results. We selected 28 projects; 22 of them were from the
Apache Software Foundation, which incubates only certain sys-
tems that follow specific and strict quality rules and the remain-
ing six projects were selected from the trending Java repositories
list provided by GitHub. In the selection, we preferred projects
that are considered ready for production environments and are
using pull requests as a way of taking in contributions. Our case
study was not based only on one application domain. This was
avoided since we aimed to find general mathematical models for
the prediction of the number of bugs in a system. Choosing only
one domain or a very small number of application domains could
have been an indication of the non-generality of our study, as only
prediction models from the selected application domain would
have been chosen. The selected projects stem from a very large
set of application domains, ranging from external libraries, frame-
works, and web utilities to large computational infrastructures.
The application domain was not an important criterion for the
selection of the projects to be analyzed, but at any rate, we tried
to balance the selection and pick systems from as many contexts
as possible. However, we are aware that other projects could
have enforced different quality standards, and could use different
quality checks before accepting pull requests. Furthermore, we
are considering only open-source projects, and we cannot spec-
ulate on industrial projects, as different companies could have
different internal practices. Moreover, we also considered only
Java projects. The replication of this work on different languages
and different projects may bring to different results. Based on our
dataset, only eleven projects contained the vast majority of the
pull requests (80%)’’. Moreover, none of the projects we analyzed
had any issues rated as priority level 5.

Conclusion Validity. This threat concerns the relationship be-
tween the treatment and the outcome. In our case, this threat
could be represented by the analysis method applied in our
study. We reported the results considering descriptive statistics.
Moreover, instead of using only logistic regression, we compared
the prediction power of different classifiers to reduce the bias of
the low prediction power that one single classifier could have. We
do not exclude the possibility that other statistical or machine
learning approaches such as deep learning might have yielded
similar or even better accuracy than our modeling approach.
However, considering the extremely low importance of each PMD
issue and its statistical significance, we do not expect to find big
differences applying other types of classifiers.

8. Conclusion

Pull requests are one of the most common code review mech-
anisms. Previous works reported 84% of pull requests to be ac-
cepted based on the trustworthiness of the developers (Gousios
et al., 2015; Calefato et al., 2017). However, we believe that open-
source maintainers are also considering the code quality when
accepting or rejecting pull requests.

To verify this statement, we analyzed the code quality of pull
requests using PMD. It is one of the most widely used static
code analysis tools, which can detect different types of quality
flaws in the code, including design flaws, code smells, security
vulnerability, and potential bugs. We used PMD because it can
detect a good number of quality flaws that have been empirically
considered harmful by several works. Examples of these quality
flaws are God Class, High Cyclomatic Complexity, Large Class, and
Inappropriate Intimacy.

We applied basic statistical techniques, but also eight machine
learning classifiers to understand if it is possible to predict if
a pull request could be accepted or not based on the presence
of a set of quality flaws detected by PMD in the pull request
code. Moreover, we manually validated the results, analyzing
1705 rejected and 1905 accepted PRs. Of the 36,344 pull requests
we analyzed in 28 well-known Java projects, nearly half had been
accepted and the other half rejected. 243 of the 253 PMD quality
flaws were present in each case.

Unexpectedly, the presence of PMD quality flaws of any type
in the pull request code does not influence the acceptance or re-
jection of pull requests at all. Therefore, the quality flaws in the
code submitted in a pull request, including code smells and
anti-patterns, do not influence at all the acceptance or PRs.
The same results are verified in all the 28 projects independently.
Moreover, also merging all the data as a single large data-set
confirmed the result.

Our results complement the conclusions derived by Gousios
et al. (2015) and Calefato et al. (2017), who report that the



12 V. Lenarduzzi, V. Nikkola, N. Saarimäki et al. / The Journal of Systems & Software 171 (2021) 110806

r
t

a
t
b
f
m
p
g
e
s
F
t
(
t
a
e
s

s
w

p
a
A
p
r

C

i

eputation of the developer submitting the pull request is one of
he most important acceptance factors.

We are aware that code quality is a broad and general term
nd that other aspects such as the test coverage of pull requests or
he number of bugs generated by the code in pull requests could
ring different results. However, these studies might deserve a
uture work. We are planning to investigate whether qualities and
etrics detected by other tools might affect the acceptance of
ull requests, analyzing different projects written in different lan-
uages so as to define more accurate quality models (Lenarduzzi
t al., 2019a). Other tools such as SonarQube might be consider
o as to understand if their rules might complement PMD ones.
or this purpose, we are planning to follows approaches similar
o Lenarduzzi et al. (2020), Saarimäki et al. (2019), Saarimäki et al.
2019), Lenarduzzi et al. (2020a) and Baldassarre et al. (2020) in
he context of pull request, also considering other publicly avail-
ble datasets such as Gousios and Zaidman (2014) and Lenarduzzi
t al. (2019b) and different methodologies such as observational
tudies (Saarimäki, 2019).
We will also investigate how to raise awareness in the open-

ource community that code quality should also be considered
hen accepting pull requests.
Moreover, we will try to understand how harmful developers

erceive the different PMD quality flaws, including code smells
nd anti-patterns, to qualitatively assess over these violations.
nother important factor to be considered is the developers’
ersonality as a possible influence on the acceptance of the pull
equest (Calefato et al., 2019).

RediT authorship contribution statement

Valentina Lenarduzzi: Conceptualization, Methodology, Writ-
ng - original draft, Data Analysis, Verification. Vili Nikkola: Data
extraction, Data analysis. Nyyti Saarimäki: Data Analysis, Data
curation. Davide Taibi: Supervision, Reviewing and editing, Fund-
ing acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

Al Dallal, J., Abdin, A., 2018. Empirical evaluation of the impact of object-oriented
code refactoring on quality attributes: A systematic literature review. IEEE
Trans. Softw. Eng. 44 (1), 44–69.

Aman, H., 2012. An empirical analysis on fault-proneness of well-commented
modules. In: 2012 Fourth International Workshop on Empirical Software
Engineering in Practice. pp. 3–9.

Aman, H., Amasaki, S., Sasaki, T., Kawahara, M., 2014. Empirical analysis of fault-
proneness in methods by focusing on their comment lines. In: 2014 21st
Asia-Pacific Software Engineering Conference, Vol. 2. pp. 51–56.

Avgeriou, P., Taibi, D., Ampatzoglou, A., Arcelli Fontana, F., Besker, T., Chatzigeor-
giou, A., Lenarduzzi, V., Martini, A., Moschou, N., Pigazzini, I., Saarimäki, N.,
Sas, D., Soares de Toledo, S., Tsintzira, A., 2020. An overview and comparison
of technical debt measurement tools. IEEE Software.

Baldassarre, M.T., Lenarduzzi, V., Romano, S., Saarimäki, N., 2020. On the
diffuseness of technical debt items and accuracy of remediation time when
using sonarqube. Inf. Softw. Technol. 128, 106377.

Basili, V.R., Caldiera, G., Rombach, H.D., 1994. The goal question metric approach.
Encyclopedia Softw. Eng..

Beller, M., Bholanath, R., McIntosh, S., Zaidman, A., 2016. Analyzing the state of
static analysis: A large-scale evaluation in open source software. In: 23rd
International Conference on Software Analysis, Evolution, and Reengineering
(SANER), Vol. 1. pp. 470–481.

Bradley, A.P., 1997. The use of the area under the roc curve in the evaluation
of machine learning algorithms. Pattern Recognit. 30 (7), 1145–1159.

Breiman, L., 1996. Bagging predictors. Mach. Learn. 24 (2), 123–140.
Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32.
Breiman, L., Friedman, J., Stone, C., Olshen, R., 1984. Classification and Regression
Trees. In: The Wadsworth and Brooks-Cole Statistics-Probability Series,
Taylor and Francis.

Brown, W.J., Malveau, R.C., McCormick, H.W.S., Mowbray, T.J., 1998a. AntiPat-
terns: Refactoring Software, Architectures, and Projects in Crisis: Refactoring
Software, Architecture and Projects in Crisis. John Wiley and Sons.

Brown, W.H., Malveau, R.C., McCormick, H.W.S., Mowbray, T.J., 1998b. AntiPat-
terns: Refactoring Software, Architectures, and Projects in Crisis, first ed.,
New York, NY, USA.

Calefato, F., Lanubile, F., Novielli, N., 2017. A preliminary analysis on the effects
of propensity to trust in distributed software development. In: 2017 IEEE
12th International Conference on Global Software Engineering (ICGSE). pp.
56–60.

Calefato, F., Lanubile, F., Vasilescu, B., 2019. A large-scale, in-depth analysis of
developers’ personalities in the apache ecosystem. Inf. Softw. Technol. 114,
1–20.

Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In: Pro-
ceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 785–794.

Chidamber, S.R., Kemerer, C.F., 1994. A metrics suite for object oriented design.
IEEE Trans. Softw. Eng. 20 (6), 476–493.

Cox, D.R., 1958. The regression analysis of binary sequences. J. R. Stat. Soc. Ser.
B Stat. Methodol. 20 (2), 215–242.

Dabbish, L., Stuart, C., Tsay, J., Herbsleb, J., 2012. Social coding in github: Trans-
parency and collaboration in an open software repository. In: Conference on
Computer Supported Cooperative Work. In: CSCW ’12, pp. 1277–1286.

D’Ambros, M., Bacchelli, A., Lanza, M., 2010. On the impact of design flaws on
software defects. In: 2010 10th International Conference on Quality Software.
pp. 23–31.

Du Bois, B., Demeyer, S., Verelst, J., Mens, T., Temmerman, M., 2006. Does god
class decomposition affect comprehensibility?. In: IASTED Conf. on Software
Engineering. pp. 346–355.

Fontana Arcelli, F., Spinelli, S., 2011. Impact of refactoring on quality code
evaluation. In: Proceedings of the 4th Workshop on Refactoring Tools, WRT
’11, 2011, pp. 37–40.

Fowler, M., Beck, K., 1999. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman Publishing Co., Inc..

Freund, Y., Schapire, R.E., 1997. A decision-theoretic generalization of on-line
learning and an application to boosting. J. Comput. System Sci. 55 (1),
119–139.

Friedman, J.H., 2001. Greedy function approximation: A gradient boosting
machine.. Ann. Statist. 29 (5), 1189–1232.

Geurts, P., Ernst, D., Wehenkel, L., 2006. Extremely randomized trees. Mach.
Learn. 63 (1), 3–42.

Gousios, G., Pinzger, M., van Deursen, A., 2014. An exploratory study of the
pull-based software development model. In: 36th International Conference
on Software Engineering. In: ICSE 2014, pp. 345–355.

Gousios, G., Storey, M.-A., Bacchelli, A., 2016. Work practices and challenges in
pull-based development: The contributor’s perspective. In: 38th International
Conference on Software Engineering. In: ICSE ’16, pp. 285–296.

Gousios, G., Zaidman, A., 2014. A dataset for pull-based development research.
In: Working Conference on Mining Software Repositories. In: MSR 2014, pp.
368–371.

Gousios, G., Zaidman, A., Storey, M., van Deursen, A., 2015. Work practices and
challenges in pull-based development: The integrator’s perspective. In: 37th
IEEE International Conference on Software Engineering, Vol. 1. pp. 358–368.

Hellendoorn, V.J., Devanbu, P.T., Bacchelli, A., 2015. Will they like this? Evaluating
code contributions with language models. In: 12th Working Conference on
Mining Software Repositories. pp. 157–167.

Jaafar, F., Guéhéneuc, Y.-G., Hamel, S., Khomh, F., Zulkernine, M., 2016. Evaluating
the impact of design pattern and anti-pattern dependencies on changes and
faults. Empir. Softw. Eng. 21 (3), 896–931.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian, D.,
2016. An in-depth study of the promises and perils of mining github. Empir.
Softw. Eng. 21 (5), 2035–2071.

Khomh, F., Di Penta, M., Gueheneuc, Y., 2009a. An exploratory study of the
impact of code smells on software change-proneness. In: 2009 16th Working
Conference on Reverse Engineering. pp. 75–84.

Khomh, F., Di Penta, M., Gueheneuc, Y., 2009b. An exploratory study of the
impact of code smells on software change-proneness. In: 2009 16th Working
Conference on Reverse Engineering. pp. 75–84.

Kononenko, O., Rose, T., Baysal, O., Godfrey, M., Theisen, D., de Water, B.,
2018. Studying pull request merges: A case study of shopify’s active mer-
chant. In: 40th International Conference on Software Engineering: Software
Engineering in Practice. In: ICSE-SEIP ’18, pp. 124–133.

Lanza, M., Marinescu, R., Ducasse, S., 2005. Object-Oriented Metrics in Practice.
Springer-Verlag, Berlin, Heidelberg.

Lenarduzzi, V., Besker, T., Taibi, D., Martini, A., Fontana, F.A., 2020. A system-
atic literature review on technical debt prioritization: strategies, processes,
factors, and tools. 1904.12538, arXiv.

http://refhub.elsevier.com/S0164-1212(20)30209-0/sb1
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb1
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb1
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb1
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb1
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb2
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb2
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb2
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb2
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb2
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb3
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb3
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb3
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb3
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb3
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb4
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb4
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb4
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb4
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb4
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb4
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb4
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb5
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb5
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb5
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb5
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb5
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb6
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb6
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb6
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb7
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb7
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb7
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb7
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb7
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb7
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb7
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb8
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb8
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb8
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb9
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb10
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb11
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb11
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb11
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb11
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb11
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb12
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb12
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb12
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb12
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb12
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb14
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb14
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb14
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb14
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb14
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb14
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb14
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb15
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb15
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb15
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb15
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb15
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb17
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb17
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb17
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb18
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb18
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb18
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb19
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb19
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb19
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb19
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb19
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb20
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb20
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb20
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb20
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb20
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb21
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb21
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb21
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb21
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb21
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb23
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb23
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb23
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb24
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb24
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb24
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb24
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb24
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb25
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb25
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb25
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb26
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb26
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb26
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb27
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb27
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb27
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb27
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb27
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb28
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb28
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb28
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb28
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb28
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb29
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb29
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb29
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb29
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb29
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb30
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb30
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb30
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb30
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb30
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb31
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb31
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb31
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb31
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb31
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb32
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb32
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb32
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb32
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb32
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb33
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb33
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb33
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb33
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb33
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb34
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb34
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb34
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb34
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb34
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb35
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb35
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb35
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb35
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb35
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb36
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb36
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb36
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb36
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb36
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb36
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb36
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb37
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb37
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb37
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb38
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb38
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb38
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb38
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb38


V. Lenarduzzi, V. Nikkola, N. Saarimäki et al. / The Journal of Systems & Software 171 (2021) 110806 13
Lenarduzzi, V., Lomio, F., Huttunen, H., Taibi, D., 2020. Are sonarqube rules
inducing bugs?. In: International Conference on Software Analysis, Evolution
and Reengineering (SANER 2020). pp. 501–511.

Lenarduzzi, V., Martini, A., Taibi, D., Tamburri, D.A., 2019a. Towards surgically-
precise technical debt estimation: Early results and research roadmap.
In: International Workshop on Machine Learning Techniques for Software
Quality Evaluation. In: MaLTeSQuE 2019, pp. 37–42.

Lenarduzzi, V., Saarimäki, N., Taibi, D., 2019b. The technical debt dataset. In:
Fifteenth International Conference on Predictive Models and Data Analytics
in Software Engineering. In: PROMISE’19, pp. 2–11.

Lenarduzzi, V., Saarimäki, N., Taibi, D., 2020a. Some sonarqube issues have a
significant but small effect on faults and changes. a large-scale empirical
study. J. Syst. Softw. 170, 110750.

Lenarduzzi, V., Sillitti, A., Taibi, D., 2020b. A survey on code analysis tools for
software maintenance prediction. In: 6th International Conference in Soft-
ware Engineering for Defence Applications. Springer International Publishing,
pp. 165–175.

Li, W., Shatnawi, R., 2007. An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution. J. Syst.
Softw. 80 (7), 1120–1128.

McCabe, T.J., 1976. A complexity measure. IEEE Trans. Softw. Eng. 2 (4), 308–320.
Mitchell, T.M., 1997. Machine Learning, first ed. McGraw-Hill, Inc., New York,

NY, USA.
Moha, N., Gueheneuc, Y., Duchien, L., Le Meur, A., 2010. Decor: A method for

the specification and detection of code and design smells. IEEE Trans. Softw.
Eng. 36 (1), 20–36.

Nagappan, M., Zimmermann, T., Bird, C., 2013. Diversity in software engineering
research. In: Foundations of Software Engineering. In: ESEC/FSE 2013, pp.
466–476.

Olbrich, S., Cruzes, D.S., Basili, V., Zazworka, N., 2009. The evolution and
impact of code smells: A case study of two open source systems. In:
2009 3rd International Symposium on Empirical Software Engineering and
Measurement. pp. 390–400.

Olbrich, S.M., Cruzes, D.S., Sjberg, D.I.K., 2010. Are all code smells harmful? A
study of god classes and brain classes in the evolution of three open source
systems. In: 2010 IEEE International Conference on Software Maintenance.
pp. 1–10.

Palomba, F., Bavota, G., Penta, M.D., Fasano, F., Oliveto, R., Lucia, A.D., 2018. On
the diffuseness and the impact on maintainability of code smells: A large
scale empirical investigation. Empir. Softw. Eng. 23 (3), 1188–1221.

Patton, M., 2002. Qualitative Evaluation and Research Methods. Sage, Newbury
Park.

Powers, D., 2008. Evaluation: From precision, recall and f-factor to roc,
informedness, markedness & correlation. Mach. Learn. Technol. 2.

Rahman, M.M., Roy, C.K., 2014. An insight into the pull requests of github. In:
11th Working Conference on Mining Software Repositories. In: MSR 2014,
pp. 364–367.

Rahman, M.M., Roy, C.K., Collins, J.A., 2016. Correct: Code reviewer recommen-
dation in github based on cross-project and technology experience. In: 38th
International Conference on Software Engineering Companion (ICSE-C). pp.
222–231.

Rastogi, A., Nagappan, N., Gousios, G., van der Hoek, A., 2018. Relationship
between geographical location and evaluation of developer contributions in
github. In: 12th International Symposium on Empirical Software Engineering
and Measurement. In: ESEM ’18, pp. 22:1–22:8.

Rigby, P.C., Storey, M., 2011. Understanding broadcast based peer review on
open source software projects. In: 33rd International Conference on Software
Engineering (ICSE). pp. 541–550.

Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case study
research in software engineering. Empir. Softw. Engg. 14 (2), 131–164.

Saarimäki, N., 2019. Methodological issues in observational studies. SIGSOFT
Softw. Eng. Notes 44 (3), 24.

Saarimäki, N., Baldassarre, M.T., Lenarduzzi, V., Romano, S., 2019. On the
accuracy of sonarqube technical debt remediation time. In: 45th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA 2019).
pp. 317–324.

Saarimäki, N., Lenarduzzi, V., Taibi, D., 2019. On the diffuseness of code technical
debt in java projects of the apache ecosystem. In: Second International
Conference on Technical Debt. In: TechDebt ’19, IEEE Press, pp. 98–107.

Schumacher, J., Zazworka, N., Shull, F., Seaman, C., Shaw, M., 2010. Building
empirical support for automated code smell detection. In: Proceedings of the
2010 ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement, ESEM ’10, pp. 8:1–8:10.

Sjberg, D.I.K., Yamashita, A., Anda, B.C.D., Mockus, A., Dybå, T., 2013. Quantifying
the effect of code smells on maintenance effort. IEEE Trans. Softw. Eng. 39
(8), 1144–1156.

Soares, D.M., de Lima Júnior, M.L., Murta, L., Plastino, A., 2015b. Acceptance
factors of pull requests in open-source projects. In: Proceedings of the 30th
Annual ACM Symposium on Applied Computing. In: SAC ’15, ACM, New York,
NY, USA, pp. 1541–1546.
Soares, D.M., Júnior, M.L.d.L., Murta, L., Plastino, A., 2015a. Rejection factors of
pull requests filed by core team developers in software projects with high
acceptance rates. In: 14th International Conference on Machine Learning and
Applications (ICMLA). pp. 960–965.

Taibi, D., Janes, A., Lenarduzzi, V., 2017. How developers perceive smells in
source code: A replicated study. Inf. Softw. Technol. 92, 223–235.

Terrell, J., Kofink, A., Middleton, J., Rainear, C., Murphy-Hill, E.R., Parnin, C.,
Stallings, J., 2017. Gender differences and bias in open source: pull request
acceptance of women versus men. PeerJ Computer Science 3, e111.

Trautsch, A., Herbold, S., Grabowski, J., 2019. A longitudinal study of static
analysis warning evolution and the effects of pmd on software quality in
apache open source projects. ArXiv:1912.02179.

Tsay, J., Dabbish, L., Herbsleb, J., 2014. Influence of social and technical factors
for evaluating contribution in github. In: 36th International Conference on
Software Engineering. In: ICSE 2014, pp. 356–366.

Tufano, M., Palomba, F., Bavota, G., DiPenta, M., Oliveto, R., DeLucia, A., Poshy-
vanyk, D., 2017. There and back again: Can you compile that snapshot?. J.
Softw.: Evol. Process 29 (4), e1838.

Veen, E.v.d., Gousios, G., Zaidman, A., 2015. Automatically prioritizing pull
requests. In: 12th Working Conference on Mining Software Repositories. pp.
357–361.

Yamashita, A., 2014. Assessing the capability of code smells to explain mainte-
nance problems: An empirical study combining quantitative and qualitative
data. Empir. Softw. Eng. 19 (4), 1111–1143.

Yu, Y., Wang, H., Filkov, V., Devanbu, P., Vasilescu, B., 2015. Wait for it:
Determinants of pull request evaluation latency on github. In: 12th Working
Conference on Mining Software Repositories. pp. 367–371.

Yu, Y., Wang, H., Yin, G., Ling, C.X., 2014. Reviewer recommender of pull-requests
in github. In: IEEE International Conference on Software Maintenance and
Evolution. pp. 609–612.

Zampetti, F., Bavota, G., Canfora, G., Penta, M.D., 2019. A study on the interplay
between pull request review and continuous integration builds. In: 2019
IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). pp. 38–48.

Zampetti, F., Ponzanelli, L., Bavota, G., Mocci, A., Penta, M.D., Lanza, M., 2017.
How developers document pull requests with external references. In: 25th
International Conference on Program Comprehension (ICPC), Vol. 00. pp.
23–33.

Zazworka, N., Shaw, M.A., Shull, F., Seaman, C., 2011. Investigating the impact
of design debt on software quality. In: Proceedings of the 2Nd Workshop on
Managing Technical Debt, MTD ’11, pp. 17–23.

Zhang, X., Chen, Y., Gu, Y., Zou, W., Xie, X., Jia, X., Xuan, J., 2018. How do multiple
pull requests change the same code: A study of competing pull requests
in github. In: IEEE International Conference on Software Maintenance and
Evolution (ICSME). pp. 228–239.

Zou, W., Xuan, J., Xie, X., Chen, Z., Xu, B., 2019. How does code style inconsistency
affect pull request integration? An exploratory study on 117 github projects.
Empir. Softw. Eng..

Valentina Lenarduzzi is a postdoctoral researcher at the LUT University in
Finland. Her primary research interest is related to data analysis in software
engineering, software quality, software maintenance and evolution, with a
special focus on Technical Debt. She obtained her Ph.D. in Computer Science at
the Università degli Studi dell’Insubria, Italy, in 2015, working on data analysis
in Software Engineering. She also spent 8 months as Visiting Researcher at the
Technical University of Kaiserslautern and Fraunhofer Institute for Experimental
Software Engineering (IESE) working on Empirical Software Engineering in
Embedded Software and Agile projects. In 2011 she was one of the co-founders
of Opensoftengineering s.r.l., a spinoff company of the Università degli Studi
dell’Insubria. Contact her valentina.lenarduzzi@lut.fi

Vili Nikkola is a software developer. He got the master in and M.Sc. in
theoretical computer science in 2019 from Tampere University of Technology.

Nyyti Saarimäki is a software engineering Ph.D. student at Tampere University,
Finland. She received her B.Sc. in mathematics in 2016 and M.Sc. in theoret-
ical computer science in 2018 from Tampere University of Technology. Her
main research interests include data analysis and adapting observational study
methodologies from epidemiology to empirical software engineering. Contact
her at nyyti.saarimaki@tuni.fi

Davide Taibi is an associate professor (tenure track) at the Tampere University,
Finland. He obtained his Ph.D. in Computer Science at the Università degli
Studi dell’Insubria, Italy in 2011. His research activities are focused on software
quality in cloud-based systems, supporting companies in keeping Technical
Debt under control while migrating to cloud-native architectures. Moreover,
he is interested in patterns, anti-patterns and ‘‘bad smells’’ that can help

http://refhub.elsevier.com/S0164-1212(20)30209-0/sb39
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb39
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb39
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb39
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb39
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb40
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb40
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb40
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb40
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb40
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb40
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb40
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb41
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb41
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb41
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb41
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb41
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb42
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb42
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb42
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb42
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb42
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb43
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb43
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb43
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb43
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb43
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb43
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb43
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb44
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb44
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb44
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb44
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb44
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb45
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb46
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb46
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb46
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb47
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb47
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb47
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb47
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb47
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb48
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb48
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb48
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb48
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb48
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb49
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb49
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb49
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb49
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb49
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb49
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb49
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb50
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb50
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb50
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb50
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb50
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb50
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb50
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb51
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb51
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb51
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb51
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb51
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb52
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb52
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb52
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb53
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb53
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb53
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb54
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb54
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb54
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb54
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb54
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb55
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb55
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb55
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb55
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb55
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb55
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb55
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb56
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb56
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb56
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb56
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb56
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb56
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb56
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb57
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb57
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb57
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb57
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb57
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb58
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb58
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb58
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb59
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb59
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb59
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb60
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb60
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb60
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb60
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb60
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb60
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb60
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb61
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb61
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb61
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb61
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb61
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb63
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb63
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb63
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb63
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb63
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb64
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb64
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb64
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb64
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb64
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb64
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb64
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb65
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb65
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb65
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb65
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb65
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb65
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb65
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb66
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb66
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb66
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb67
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb67
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb67
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb67
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb67
http://arxiv.org/abs/1912.02179
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb69
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb69
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb69
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb69
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb69
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb70
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb70
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb70
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb70
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb70
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb71
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb71
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb71
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb71
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb71
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb72
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb72
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb72
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb72
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb72
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb73
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb73
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb73
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb73
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb73
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb74
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb74
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb74
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb74
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb74
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb75
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb75
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb75
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb75
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb75
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb75
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb75
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb76
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb76
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb76
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb76
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb76
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb76
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb76
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb78
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb78
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb78
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb78
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb78
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb78
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb78
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb79
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb79
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb79
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb79
http://refhub.elsevier.com/S0164-1212(20)30209-0/sb79
mailto:valentina.lenarduzzi@lut.fi
mailto:nyyti.saarimaki@tuni.fi


14 V. Lenarduzzi, V. Nikkola, N. Saarimäki et al. / The Journal of Systems & Software 171 (2021) 110806

c
s
o

ompanies to avoid issue during the development process both in monolithic
ystems and in cloud-native ones. Formerly, he worked at the Free University
f Bolzano, Technical University of Kaiserslautern, Germany, Fraunhofer IESE -
Kaiserslautern, Germany, and Università degli Studi dell’Insubria, Italy. In 2011
she was one of the co-founders of Opensoftengineering s.r.l., a spin-off company
of the Università degli Studi dell’Insubria. Contact him at davide.taibi@tuni.fi

mailto:davide.taibi@tuni.fi

	Does code quality affect pull request acceptance? An empirical study
	Introduction
	Background
	Code quality and PMD
	Git and pull requests
	Machine learning techniques

	Related work
	Pull request process
	Software quality of pull requests

	Case study design
	Goal and research questions
	Context
	Data collection
	Data analysis
	Replicability

	Results
	RQ1. What is the distribution of PMD issues violated by the pull requests in the analyzed software systems?
	RQ2. Does the presence of PMD issues affect pull request acceptance?
	RQ3. Do specific PMD issues affect pull request acceptance?

	Discussion
	Threats to validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References


