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a b s t r a c t

This paper presents a novel challenging dataset that offers a new landscape of testing material
for mobile robotics, autonomous driving research, and forestry operation. In contrast to common
urban structures, we explore an unregulated natural environment to exemplify sub-urban and forest
environment. The sequences provide two-natured data where each place is visited in summer and
winter conditions. The vehicle used for recording is equipped with a sensor rig that constitutes
four RGB cameras, an Inertial Measurement Unit, and a Global Navigation Satellite System receiver.
The sensors are synchronized based on non-drifting timestamps. The dataset provides trajectories of
varying complexity both for the state of the art visual odometry approaches and visual simultaneous
localization and mapping algorithms. The full dataset and toolkits are available for download at: http:
//urn.fi/urn:nbn:fi:att:9b8157a7-1e0f-47c2-bd4e-a19a7e952c0d. As an alternative, you can browse for
the dataset using the article title at: http://etsin.fairdata.fi.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The intense competition to develop a safe marketable self-
riving car has motivated a huge amount of research in the field
f autonomous vehicles. Coupled with the growing interest of
ompanies to put self-driving cars on the road, various companies
re also interested in introducing other forms of autonomous
ehicles to automate various industrial processes such as mining,
hipping, agriculture, and forestry. Irrespective of the industry
nd targeted operations, the autonomy of any machine is highly
ependent on advancements in a number of vision technologies,
uch as object detection [1], reconstruction quality [2], scene
erception [3]. However, the base capabilities of an autonomous
ehicle that need most attention remain visual odometry, relo-
alization and mapping [4]. This requires testing and validation
n all scenarios that a vehicle/machine can face in a simulated
nvironment. A variety of public datasets are available that pro-
ide a good amount of data for testing in various conditions and
ocations. We will mention some of the well-known datasets in
n attempt to measure the expanse of the collections and find
horizon. Most of these datasets focus on urban environments
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ttps://doi.org/10.1016/j.robot.2020.103610
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(for example, [5–9]) in order to facilitate testing on public roads
in urban areas. The earliest among these datasets that recorded
urban environment are Ford Campus [10] and KITTI [11]. Be-
ing among the first public datasets in the field, these datasets
contributed significantly towards testing and validation. The re-
cent additions to the publicly available datasets are The Oxford
RobotCar [12], KAIST Multi-Spectral Day/Night [13], and Complex
Urban LiDAR Data Set [14]. All these datasets, when combined,
provide a significant amount of testing data for urban environ-
ment with short and long trajectories at various speeds [10].
Moreover, they incorporate weather and seasonal changes [12],
long term changes in urban structure [12] and gradual/sudden
illumination variations [13]. However, all these datasets target
indoor or outdoor urban environment.

In contrast, some unique datasets target entirely different en-
vironments to assist automation of other form of vehicles. Among
these are Aqualoc Underwater [15], Canoe [16] and Underwater
Caves SONAR and Vision Dataset [17]. These datasets comprise of
data acquired for under water exploration and surface sailing con-
ditions. On the other hand, a few public datasets target more do-
main specific terrains for their experimentation. In [18], authors
recorded data in the Chile’s largest underground production-
active copper mine. The data was recorded for a length of ap-
proximately 2 km using Lidar, radar and stereo cameras fixed on
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Recording platform. Our vehicle is equipped with four Basler HD cameras,
a NovAtel GNSS antenna, and a KVH 1750 IMU with fiber optic gyro.

a robotic platform. The Devon Island rover navigation dataset [19]
provides a dataset for testing rovers for planetary explorations.
The dataset was recorded on Devon Island in the Canadian High
Arctic, which is assumed to be analogous to Moon/Mars terrains
due to the wide variety of geological features and microbiological
attributes of the site.

The dataset that has high relevance to our work is the SFU
Mountain dataset [20]. The study used a mobile ground based
robot to traverse walking trails in the Burnaby Mountain, British
Columbia, Canada. The dataset provides a semi-structured wood-
land terrain with different illumination and weather conditions
and with changing vegetation, infrastructure, and pedestrian traf-
fic. The dataset provides a good amount of data for visual odom-
etry, however, lacks to present opportunities to test loop closure
and re-localization.

In [21], the authors carried out brief experiments on the SFU
Mountain dataset and their own dataset, Hillwood. The Hill-
wood dataset consists of photorealistic rendered and real forest
video scenes. However, the Hillwood dataset only provide video
recordings for testing without any ground truth information. In
their conclusive remarks, the authors stressed upon the need and
advantage of actual forest dataset with complete synchronized
groundtruth poses [21].

In this paper, we present a new dataset that will target a real
forest landscape recorded in the outskirts of Tampere, Finland.
The goal is to provide testing data in order to facilitate the
research towards increasing the autonomy of vehicles traversing
rural areas and heavy machines working in the forest. Unlike
urban settings, a terrain environment provides fewer discrimi-
nate landmarks and more repetitive textures in the scene. Pre-
sumably, such a situation strengthens visual odometry to some
extent, however, affects adversely relocalization algorithms. This
dataset provides semi-structured forest routes under different
conditions (i.e. lighting, weather, vegetation, and infrastructure)
in a highly self-similar natural environment. Furthermore, the
sequences include scenes that best replicate the motions (i.e. sta-
tionary, sharp motion, bumps and potholes, slopes, and back-
and-forth motion) and environments (i.e. log piles, close-up of
trees, off-road routes) involved in actual forestry operations. The
dataset includes unique trajectories to test both visual simultane-
ous localization and mapping (visual-SLAM) and visual odometry
algorithms thoroughly. Moreover, each path is traversed in two
different condition, namely sunny summer and snowy winter.
The dataset provides images from 4 cameras and ground truth
poses for each sequence in each condition using Global Naviga-
tion Satellite System (GNSS) and Inertial Measurement Unit (IMU)

data fusion. We provide processed rectified images, calibration
Fig. 2. Rendered 3D model of the sensor rig.

data and ground truth at three sampling rates i.e. 40, 13.33 and
8 Hz except for two sequences which are sampled at 20, 10
and 7 Hz. For simpler representation, here onwards, we will
approximate 13.33 to 13 Hz in the manuscript. Additionally, we
provide raw images (40 Hz) for most of the sequences and the
calibration images to the public. For this purpose, we also provide
development tools to process raw data and evaluation tools in
order to facilitate benchmarking against the state-of-the-art.

We hope this dataset provides a good reference for rural, forest
and general terrain environment in order to facilitate the re-
searchers to mitigate the challenges faced in this field of research.

2. Recording platform and sensor configuration

The recording platform and the arrangement are illustrated in
Fig. 1. The data was recorded using a sensor rig mounted on a vi-
bration dampening platform affixed to the vehicle. The vibration
dampening platform was affixed to the Jeep using strong suction
cups. The rig houses all the sensors as shown in Fig. 2.

The sensor and hardware specifications are as follows:

(i) 4 × Basler acA1920-50gc GigE camera with the Sony
IMX174 CMOS Color sensor, Resolution (HxV) 1920 × 1200
(2.3 MPx), 84◦ HFoV, 59◦ VFoV, 6 mm Focal Length Lens,
20 cm baseline for each stereo pair.

(ii) 1 × KVH 1750 IMU, fiber optic gyro, bias instability ≤

0.05 ◦/h, 1σ , 200 Hz.
(iii) 1 × NovAtel PwrPak7, OEM7 GNSS, 20 Hz.
(iv) 1 × CC320 Machine Vision Timing Controller, 8 Digital

Inputs of 5 V to 24 V at 3 mA to 20 mA, 8 Digital Outputs
of 24 V and 20 mA.

(v) 1 × Embedded system with Quad Core Intel Core i7 pro-
cessor, 2 DDR4 with 64 GB memory, 6 GigE LAN with 4
PoE.

For the sensors and their coordinate systems, we use the
following notations,
C1 Camera 1
C2 Camera 2 (reference frame)
C3 Camera 3
C4 Camera 4
I IMU
G GNSS

All cameras were connected to the embedded computer. The
cameras stored data on the computer while the IMU and GNSS
data was recorded on the internal memory of the NovAtel Mod-
ule. To minimize write latency into storage and to prevent losses,
we used CAT7 cable and wrote on SSDs using parallel threads for
all the cameras.

To obtain high quality images it was essential to control the
exposure time of the cameras during the acquisition. To minimize
the effect of motion blur, the exposure time was kept below
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Fig. 3. The figure illustrates the mounting positions of the sensors with respect to each other from various views. The calibrated transformations are provided as
part of the dataset.
10 ms. Moreover, to obtain images from four cameras for stereo
analysis, it was of the utmost importance to enforce synchronic-
ity. Hence, to acquire synchronized feed from four cameras at 40
fps on a Windows based platform, we utilized a special purpose
triggering hardware known as Machine Vision Timing Controller.
This timing controller or triggering device sent synchronized
signals to all the cameras in order to enforce realtime consistent
capture. Additionally, one trigger signal was sent to the NovAtel
Module from the triggering device to generate timestamps. The
NovAtel module was configured to store a timestamp in GPS time
upon receiving the signal from the triggering device. The GPS
time is more accurate and does not drift, unlike the clock on the
Windows platform. This timestamp signal was sent at a delay
of 1.5 ms. Even though this would have had a negligible effect,
nonetheless, we compensated for this delay during the ground
truth generation. The IMU and GNSS data are pre-synchronized by
the NovAtel receiver. Hence, we have a precise synchronization
among the cameras, IMU and GNSS data in effect. The raw data
of GNSS and IMU are acquired at 20 Hz and 200 Hz, respectively.
However, they are not the limits of the system. The maximum
acquisition rate of the system is 100 Hz and 1000 Hz, respectively.
For this study 20 Hz GNSS is used and interpolated to 50 Hz with
the IMU data during post-processing by NovAtel Inertial Explorer
software.

The sensor arrangement is illustrated in Fig. 3. It constitutes
four cameras, a GNSS antenna and an IMU unit. The sensor rig
has the middle cameras (C2 and C3) facing forward and houses
the IMU unit in between them. The outward facing cameras (C1
nd C4) are at nearly same angle from the forward direction.
he motivation backing this camera arrangement is to test the
ffects of various camera configurations on the accuracy of joint
erception. It is mostly observed in SLAM implementations that
uring forward motion, the view is dominated by consistently
racked areas of interest that are further away from the camera.
his negatively affects the scale estimation for visual odometry.
his is more apparent in monocular SLAM algorithms where the
LAM methods fail at certain point because the further points
o not exhibit enough disparity change. The methods survive
s long as the closest features are not lost due to motion blur.
owever, if the camera is fixed at an angle, instead of facing the
orward direction, then the effective area in which the feature
oints exhibit disparity change increases as well.
Fig. 4. The GPS trajectory of our recordings in the forest area in the outskirts
of Tampere, Finland.

3. Data overview

Our primary contribution through publishing this dataset is
to provide publicly accessible data recorded in forest for re-
search towards Advanced driver-assistance systems (ADAS) and
autonomous work machines. In general the dataset provides chal-
lenges by incorporating sequences that are recorded at various
times of day and weather conditions. Moreover, the sequences
have been recorded so that they present considerable challenges
for both visual odometry and SLAM approaches. The area ex-
plored during the course of the recording sessions can be viewed
in Fig. 4. The dataset comprises unique trajectories, most of which
are recorded in two seasonal conditions. In winter, a part of
the route was blocked due to heavy snow and could not be
re-recorded in snowy conditions. An overview of the dataset is
provided in Table 1. The dataset offers a total of 11 sequences.
We provide the dataset at different sampling rates to facilitate
testing. The original visual data was recorded at 40 Hz and later
subsampled to facilitate testing. The subsampled versions are
provided in the form of compressed image packages and Rosbags.
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Fig. 5. Montage of images from all cameras arranged left to right illustrating the significant changes in appearance of same scene over seasonal and route changes.
able 1
n overview of the nature of data in the FinnForest Dataset.
Seq. No Frames Distance (km) Loop Season Time of Day

40/20 Hz 13/10 Hz 8/7 Hz

W01 27630 9210 5526 1.29 Yes Winter Daylight, Overcast
W03 23100 7700 4620 1.69 No Winter Daylight, Overcast
W04 37010 12337 7402 2.35 No Winter Daylight, Overcast
W05 57288 19096 11458 4.74 No Winter Daylight, Overcast
W06 20875 10438 6959 3.59 No Winter Night
W07 43780 21890 14594 6.48 No Winter Dusk, varying illumination
S01 27960 9320 5592 1.29 Yes Summer Daylight, Sunny
S02 21333 7111 4267 1.99 Yes Summer Daylight, Sunny
S03 15000 5000 3000 1.69 No Summer Daylight, Overcast
S04 30662 10221 6133 2.32 No Summer Daylight, Sunny
S05 61662 20554 12333 5.84 No Summer Daylight, Overcast
The number of frames at each sampling rate is provided against
the sequence name in Table 1. Three of the sequences offer loop
closure opportunities while the remaining sequences are aimed at
testing visual odometry. We have also tabulated the distance cov-
ered while traversing each path. The range of distance traveled
varies from 1.3 km to 6.48 km. Information regarding the season
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Fig. 6. Illustration of the drastic changes in appearance of the scene produced
by different illumination and weather conditions.

and the illumination condition is also provided corresponding
to each sequence. The seasonal name is also abbreviated in the
name of each sequence for clarity. The dataset covers a variety
of conditions with different illumination such as overcast, direct
sunlight, dusk and night. However, we would like to state that the
dataset does not offer sequences with rain and fog which would
have provided further useful information for testing. Further de-
tails about the unique challenges of each sequence are provided
in Section 7, Discussion.

Fig. 5 presents a montage of selected images illustrating the
range of varying appearances of the environment encountered
as a result of different season and routes. The left half of the
montage constitutes the left to right camera images from the
summer dataset while the right half of the montage shows the
left to right images from the winter dataset of same scene from
almost the same vehicle locations.

Fig. 6 illustrates the changes in appearance of the scene from
almost similar camera perspective and location during both sea-
sons and the challenges it brings about. The dark overcast in
winter demands longer exposure time and slower vehicle motion
to capture the details in the scene accurately. On the other hand,
summer season presents challenges like overexposure, rain, pud-
dle and flares in the scenes. The last row of images exhibit the
conditions of a night and dusk time with varying illumination.

The high resolution and frame rate of the data recordings
make it challenging to store the data on online data repositories.
In order to make the usage of the data convenient for users,
we have split the dataset into subset sequences. Each sequence
can be downloaded and used independently as a .zip package at
three sampling rates. Moreover, the most common configuration
preferred for stereoscopic analysis is parallel, hence, we only
provide the processed images from the forward facing stereo pair
i.e C and C . Nonetheless, the raw images from all the cameras
2 3
Fig. 7. Directory layout for a sub-sampled subset from the dataset. Extracting
them will preserve the folder structure.

are provided in the dataset along with a toolkit to easily extract
and process them in ready to use format. The MATLAB toolkit
readily extracts the raw images into stereo pairs C1-C2, C2-C3 and
C3-C4.

The data structure or format for each sequence is illustrated
in Fig. 7. The name of the folder constitutes the nature of the
data and the rate at which it is sampled. Each sequence is self-
contained and is provided with supporting files inside the com-
pressed file format. The compressed file in turn constitutes sub
folders, which correspond to the stereo pairs for forward facing
cameras (C2 and C3). The Rosbag version contains the Rosbag
file instead of the PNG image files for the cameras (C2 and C3).
Additionally, the calibration files, timestamps and the ground
truth poses are provided in the corresponding directories for
the rectified cases. The ground truth data already corresponds
directly to the images provided and does not need further match-
ing or synchronization. Each row of the ground truth text file
corresponds to a new reading of the ground truth pose of 3 × 4
matrix [R|t] in the row first vectored form as shown below:

R11 R12 R13 tx R21 R22 R23 ty R31 R32 R33 tz]

. Sensor calibration and ground truth

In this section, we will discuss two forms of calibration that
re essential to use the data effectively.
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4.1. Cam-to-cam calibration

The first calibration step is the camera-to-camera calibration,
which is performed to compute the intrinsic parameters and
extrinsic transformations for the cameras. In the dataset, we have
included both the processed data (using the calibrations) and the
raw data. The processed data from the cameras can be directly
used with any SLAM pipeline using the provided calibration pa-
rameters. However, for researchers who wish to re-calibrate the
cameras and process the raw data themselves, we have included
the raw images along with the calibration images in the dataset.

The calibration images are provided as stereo pairs between
the nearest two cameras. Special attention was given to cali-
bration by recalibrating the cameras for each recording session.
Although, the sensor setup was not altered, some minute nu-
merical differences are possible. It is strongly recommended to
use the calibration parameters from the calibration files and not
the illustrations. The camera-to-camera calibrations are provided
for the nearest camera pairs, namely C1-C2, C2-C3 and C3-C4.
These camera pairs are jointly calibrated using MATLAB stereo
calibration toolbox for their intrinsic and extrinsic parameters
based on the approach presented in [22]. The calibration informa-
tion is provided in two forms, namely MATLAB stereo-parameters
object file and a text file with excerpts of the object file along the
dataset.

4.2. Cam-to-IMU calibration

We calibrate the camera and IMU in order to obtain the exter-
nal transformation between the camera and IMU unit. For this, a
sequence was recorded in front of the calibration board, where
the motion in all the six degrees of freedom was stimulated by
moving along and around each axis. The relation between the
camera and the IMU is then analogous to hand-eye calibration
problem. For this, we utilize Kalibr toolkit [23] which estimates
the spatial and temporal parameters of a camera system with re-
spect to an intrinsically calibrated IMU. Since we have an accurate
synchronization between the images acquired from the camera
and the data from IMU/GNSS using the timestamps, we are not
interested in the temporal relationship provided by the toolkit.
However, the spatial parameters or the extrinsic transformation
between the camera and the IMU is of interest to this work. We
calibrate the IMU unit with the camera C2. We choose camera
C2 for calibration in order to be consistent with our ground
truth coordinate system and the general approach of choosing a
forward facing camera.

4.3. Ground truth quality evaluation

Acquiring ground truth information in an enclosed environ-
ment is a challenging step. The global accuracy of the ground
truth solution is dependent on the availability of GNSS signals.
In general, the strength and accuracy of GNSS signals are high in
an open area, while poor signals are received in enclosed areas
such as indoors, narrow city streets and forests. On the other
hand, the local accuracy can be improved by fusing the infor-
mation acquired through local sensing mechanisms such as IMU,
Odometer, Radar, Lidar, Camera, etc. with the GNSS information
for better results. As mentioned earlier, we utilize the NovAtel’s
PwrPak7TM module to acquire a ground truth solution through a
tightly coupled pose estimation framework that uses GNSS and
IMU information.

To assure the readers of the quality of the ground truth, we
provide the estimated position accuracy in the form of standard
deviations for the positions at every timestamp for all sequences
Fig. 8. Estimated position accuracy for ground truth poses (a) Winter sequences
W01–W05 (b) Winter sequence W06 (c) Winter sequence W07 (d) Summer
sequences S01–S05.

in Fig. 8. The graphs indicate the standard deviation in the esti-
mated position in the North, East and Elevation/Height directions.
The accuracy in North, East, and Elevations directly correspond to
the accuracy in the local coordinate frame. The statistics in these
figures are provided by the Inertial Explorer application used with
the NovAtel’s PwrPak7TM module.

To facilitate readers, we show the range of each sequence in
the figures. It can be observed from Fig. 8(a–c) that the average
standard deviation for the winter sequences (W01, W03–W07)
is lower than 2 cm for East and North with occasional larger
deviations. The spikes in deviation are obtained where the vehi-
cles traverse a narrow path with trees densely covering the area
around it for a longer period. In all the sequences, the errors in
the East axis are the lowest followed by errors in the North. The
largest deviations are found in the elevation, which is typical of
such a system.

On the other hand, the summer sequences (S01–S05) exhibit
slightly larger standard deviations (see Fig. 8(d)). Except for S02,
the errors for all the summer sequences in East and North are
lower than 15 cm and 20 cm, respectively. As before, the largest
deviation is observed in the elevation. This is in the sequence
S05 with a value of 0.54 m. The deterioration of the GNSS per-
formance for the summer sequence is logical. In contrast to the
winter sequence, which was recorded in December 2018, the
summer sequence was recorded near the springtime of May
2019. In the springtime, the GNSS results can be affected by the
foliage which can cause 24 to 35% attenuation at L-band [24].
The contributing factor to the attenuation of the signals is the
combined effect of signal absorption and scattering from the con-
glomeration of tree canopies and trunks. In winter, the sparsity
of foliage in the tree canopy provides for a larger interval of non-
attenuating space, while that advantage is lost in springtime in
the presence of dense foliage [25]. In the absence of the GNSS
signal, the ground truth pose estimation system relies more on
the information provided by the IMU. Nonetheless, considering
the task at hand, the results obtained for the summer sequence
are good and provide a valid reference for experimentation.

5. Development and evaluation toolkit

The dataset is accompanied by a set of MATLAB scripts that can
be used for processing of raw data or evaluating the odometry
obtained from user’s algorithm against the ground truth poses.
The dataset includes ready to be used information for easy access
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to the researchers. Nonetheless, we provide a set of MATLAB tools
for processing the data. Each data sequence is accompanied by a
set of raw images. The raw data is of interest to the researchers
who wish to re-calibrate the cameras using the set of calibration
images provided with the dataset with their own or different
calibration algorithms. The new calibration can then be used
to process the raw images of the dataset. MATLAB script read-
Raw_Debayer.m and readRaw_Rectify.m can be used to read the
raw images from a folder and write the debayered and rectified
images onto another directory, respectively. The debayered color
images can then be used with the provided calibration data or any
newly computed calibration data using the calibration images.

An evaluation script is also provided as part of the toolkit
to assess the results. The MATLAB script mainEvaluate.m can be
used to evaluate the obtained visual odometry poses against the
ground truth poses. Prior to using the script, the directories for
the text file with the ground truth poses and the self-computed
poses should be specified. The evaluation script computes relative
pose error (relative translation and rotation errors) and absolute
trajectory error (ATE) for each sequence and the overall errors
for all sequences. The core reason for selecting these metrics
is that relative pose error provides a good analysis of the local
accuracy of the trajectory over a fixed distance. Relative compar-
ison over fixed distances can measure the effect of drift more
effectively and provide a better response for visual odometry.
On the other hand, ATE provides a more coherent and globally
consistent comparison using the absolute distances between the
corresponding ground truth poses and the poses estimated by the
assessed system.

The ATE can be obtained by computing the absolute distance
between the estimated and the ground truth trajectory. For global
consistency, it is essential that both trajectories are in the same
reference coordinate system. If that is the case, then the ATE can
be computed directly, otherwise, the alignment can be calculated
in the form of a transformation matrix T in closed-form using
Umeyama’s method [26]. It is to be noted that ATE only considers
the translational errors. The commonly used form of ATE is given
as follows [27]

ATErmse =

√ 1
N

N∑
i=1

∥Tpi − p̂i∥2, (1)

where T ∈ SE(3) transforms the trajectory pi to the coordinate
ystem of the ground truth poses p̂i. Additionally, the mean,
tandard deviation, minimum, median and maximum errors can
e computed to analyze the performance from different perspec-
ives.

As mentioned earlier, relative errors can provide more accu-
ate local information about visual odometry errors. Kümmerle
t al. [28] proposed to compute relative error over an interval
ollowed by an average over all these errors. The interval was se-
ected based on fixed distance. This is a good approach, however,
he trajectory and orientation errors are amalgamated and form a
oint error metric. Geiger et al. [11] took this concept and isolated
he rotation and translation part. This enabled them to compute
he rotation and translation error independent of each other. The
solated relative translation error (RTE) and relative rotation error
RRE) are defined as follows

TE(τ ) =
1
|τ |

∑
(i,j)∈τ

∥(pj ⊖ pi) ⊖ (p̂j ⊖ p̂i)∥2 (2)

RRE(τ ) =
1
|τ |

∑
(i,j)∈τ

̸ [(pj ⊖ pi) ⊖ (p̂j ⊖ p̂i)], (3)

here the interval τ corresponds to the set of image frames (i, j)
hat cover a specific length in the trajectory and p and p̂ are
i i
he estimated and ground truth poses, respectively. The symbol
denotes the inverse compositional operator explained in [28]

nd ̸ [ ] is the rotation angle for the rotation error.

6. Benchmarking

In this section, we discuss the nature of the trajectories
planned and traversed during the dataset recording. Furthermore,
we provide experimental results of using state-of-the-art visual
SLAM methods on the FinnForest dataset.

All sequences start from and end at the same location. Each
trajectory has been recorded with an intent to tackle different
conditions. The first route (W01 and S01), shown in Figs. 9(a–
c) and 10(a–c), comprises a short ellipse shaped trajectory that
offers two repeated loop closures while traveling in the same
direction and a third loop closure from the opposite direction.
The terrain is rather harsh and mimics the uneven ground tra-
versed by work machines. The second sequence (S02), shown
in Fig. 10(d–f), offers another loop based trajectory for SLAM
approaches. Unlike W01 and S01, this path is traveled only once
and therefore forming a single closed loop. Moreover, as men-
tioned before, no winter recordings are available for this trajec-
tory due to route blockage. The remaining sequences are more
visual odometry oriented sequences. These sequences do not offer
loop closures by traveling in the same direction. However, the
same routes are traversed from the opposite direction, hence, of-
fering an opportunity to explore relocalization possibilities while
traveling from the opposite direction. The third, fourth and fifth
sequence routes offer short, medium and relatively long trajec-
tories for estimating visual odometry. The third route (W03 and
S03), shown in Figs. 9(d–f) and 10(g–i), is the shortest of visual
odometry sequences and offers the simplest case for testing. The
fourth route (W04 and S04), shown in Figs. 9(g–i) and 10(j–l), of-
fers more of an exploration type of trajectory with back and forth
driving to mimic investigative movements of work machines. The
fifth route (W05 and S05), shown in Figs. 9(j–l) and 10(m–o), is
relatively long and provides more of a challenging odometry test
course. Two more visual odometry sequences are provided in the
winter condition W06 and W07 (see Fig. 9(m–o) and (p–r)) that
are recorded in night and dusk time, respectively. In our opinion,
sequence 3–7 are helpful for improving the autonomy of heavy
work vehicles in such environments. The sequences mimic the
movements of heavy machines that are more fixated on the task
at hand in an exploratory manner.

It is noteworthy that the area traversed is deliberately kept
limited in terms of displacement from the starting point. Un-
like urban infrastructure, forest covered routes provide limited
chances to record loop closure over large distances. Recording
large distances without loop closure does not suit visual SLAM
approaches, therefore, we focused on maintaining short distances
with more information in terms of frame rate for improved ac-
curacy. Moreover, at the given framerate, the data recorded is
significantly high for the route traversed during the recordings.

Among the state-of-the art visual SLAM implementations that
rank high in the KITTI benchmarking suite [29], we chose ORB-
SLAM2 [4] and Stereo-Parallel Tracking and Mapping (S-PTAM)
[30]. These studies provide open-source implementation of a
stereo based visual SLAM method which facilitates the testing
phase of our study. It is important to note that both ORBSLAM2
and S-PTAM are used in their standalone mode in order to process
all the frames. S-PTAM in specific was not able to process all the
incoming frames in its native ROS mode, where it attempts to
simulate time-constrained real-time scenario. The implementa-
tion was not able to keep up with the incoming frames using
the given computational resources. As a consequence, some of
the frames were dropped in the ROS mode. To provide a fair and
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Fig. 9. Estimated trajectories plotted against the ground truth for the winter sequences in FinnForest dataset.
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Fig. 10. Estimated trajectories plotted against the ground truth for the summer sequences in FinnForest dataset.
thorough comparison, we provide the results of both methods in
their standalone mode with no time constrains for processing. In
addition, S-PTAM was used without the loop closure capability
due to compatibility issues of the implementation with new
versions of dependencies. Except for the sequences with loops,
the remaining majority visual odometry sequences should not be
affected.
Nonetheless, ORB-SLAM2 and S-PTAM yield excellent results
in a typical structured urban environment. These methods have
been extensively tested in urban and indoors settings over KITTI,
EuRoC, and Level 7 block-set datasets [4,30].

The results obtained with the aforementioned implementa-
tions over FinnForest dataset are plotted against the ground
truth in Figs. 9 and 10 for all the sequences recorded with the
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forward facing stereo pair (C2-C3). Thorough quantitative result is
tabulated in Tables 2 and 3. For all these experiments, a standard
laptop with an Intel Core i7 @ 1.90 GHz processor and 32 GB RAM
was used.

The primary aim of testing the dataset with state-of-the-art
method is to educate the readers about the challenges provided
by the dataset. Large drift and scale errors are observed for
the visual odometry sequences, compared to the sequences with
loops, in spite of short distances being covered. We will discuss
the results obtained from experimentation in more detail in the
next section.

7. Discussion

In this section, we discuss the experimental results using the
new dataset and state our observations. Our remarks are intended
to aid further research and experimentation with the given data.

7.1. Feature tracking in FinnForest

The forest environment provides unique challenges for track-
ing features. Due to self-similar and repetitive patterns, extracting
correct matches and maintaining tracking with a low number of
feature points is tricky. To avoid any obvious obstacles towards
tracking, we recorded the data at low driving speeds around
25–30 km/h and low exposure time for image acquisition to
avoid motion blur. Following the recommendation in [21], we
include the skyline in the scene which is expected to be useful
for navigation and augments to reliable features for matching.
Furthermore, the forest view near the skyline significantly adds
to the rotation accuracy (especially yaw and pitch) by providing
features that are far away from the camera.

In most of the testing cases, we used 2000 feature points to
track with ORB-SLAM2 and 1000 feature points with S-PTAM. The
number of feature points selected was a compromise between
the image resolution and memory management of the imple-
mentation. However, we observed that the selected parameters
were suitable for testing most of the sequences and provided
sufficient cross over candidates between frames for matching.
During experimentation, we observed that S-PTAM required more
tuning of the parameters compared to ORB-SLAM2, in which they
were kept mostly the same for all experiments. ORB-SLAM2 uses
ORB features which are both faster and more robust (due to
rotation invariance) compared to features used by S-PTAM. S-
PTAM uses the GFIT feature and BRIEF descriptors for matching.
The descriptor is not invariant to rotation and as a result, the
implementation requires parameter adjustment for various se-
quences of FinnForest dataset to maintain tracking on the parts
of the route with harsh terrain.

As mentioned earlier, unlike urban routes, the path traversed
while recording the dataset is a rough terrain. The combined
effect of erratic motion, speed and data sampling introduce chal-
lenges for testing. It is apparent from the experimental results
that the highest errors are observed in the visual odometry se-
quences while the errors are reduced and distributed in the
sequences where loop closure has been achieved.

Effect of data sampling on tracking: The sampling of the
dataset at lower rates is intended to facilitate testing and investi-
gate a suitable data rate for real cases. Though lower frames per
second (fps) are advantageous for testing purposes, information
processing at lower fps can considerably compromise the visual
odometry pipeline during real field operation. To exemplify the
behavior, we take the experimental results of ORBSLAM2 on S02
at 8 Hz. ORBLSLAM2 fails to continue its tracking of feature
points when the vehicle hits a pothole and the scene observes a
sharp motion. It is important to note, that ORBSLAM2 successfully
completed the same test sequence at higher frame rates (13 and
40 Hz). For further investigation, we significantly changed the
parameters by increasing the feature points to 5000 and varying
the FAST feature threshold between 4 and 18. However, the result
remained the same. Surprisingly, S-PTAM successfully completed
the test sequence S02 at 8 Hz when the feature points to detect
were set to 1500.

On the contrary, ORBSLAM2 was able to handle a similar
situation in W01 at 8 Hz with loosened parameters while S-PTAM
failed to continue the tracking. However, none of the implemen-
tations were able to successfully complete the sequences W05,
W06, and S04. A similar effect was observed in W07 at 7 Hz and
the parameters were loosened again. This time ORB-SLAM was
able to successfully process the entire sequence while S-PTAM
failed.

Effect of motion on tracking: In some cases, the erratic
motion due to terrain in combination with the scene is already
too much even at a higher frame rate. In the case of W01,
we observed that S-PTAM fails to complete the sequence at all
sampling rates. The implementation fails while locally adjusting
the poses that lie in the range where the sharp movements are
observed. On the other hand, ORBSLAM2 was able to process the
sequence with relative ease at 40 and 13 Hz without fine-tuning
of the parameters. However, at 8 Hz the feature points used for
tracking were increased, and the feature threshold lowered to
maintain tracking even with ORBSLAM2.

A different cause is expected to be affecting S-PTAM while
processing W05 at 8 Hz. The tracking failure occurs when the
vehicle slows down to a momentary stationery state and restarts
motion. We believe the source of the issue is the predictive
feature search that fails to find matches. In both S-PTAM and ORB-
SLAM2, a motion model is used to predict the position of the map
points on the latest image frame and find matches in the small
neighborhood for tracking. In case, if the feature matches are not
found in the small predicted neighborhood, ORBSLAM2 expands
the search window as a fallback option. On the other hand, we
believe, S-PTAM relies only on the decaying velocity model and
does not expand its search neighborhood as a fallback option. As
a result, a sudden change in velocity at a lower frame rate affects
the tracking of feature points. This phenomenon is aggravated
by the sub sampling since the same behavior is handled by S-
PTAM at sampling of 13 Hz but fails at 8 Hz when change is more
abrupt. By requesting more feature points to be detected in the
new image frame, we can avoid the tracking failure altogether,
however, poor matches with the map then lead to convergence
issue in the local bundle adjustment step of S-PTAM.

Effect of illumination on tracking: The dataset includes var-
ious opportunities to test the robustness of visual SLAM im-
plementation towards tracking and pose estimation in a scene
with varying illumination. The notable opportunities regarding
illumination change are provided by W07, S04, and W06. In W07,
we observe gradual illumination change as it gets darker. The
sequence was recorded at the dusk time and the illumination
changes drastically between the start and end of the sequence.
ORBSLAM2 did not face any issue in terms of tracking feature
points in this sequence, however, S-PTAM faced considerable
problems to maintain tracking at all sampling rates. S-PTAM also
failed tracking at sampled data of 13 Hz, however, we have
included the results since the failure point was close to the end
of the sequence.

On the other hand, a more rapid change is observed in il-
lumination due to direct sunlight in the sequence S04. At a
sampling rate of 40 and 13 Hz, both ORBSLAM2 and S-PTAM can
successfully process the sequence. However, at 8 Hz they fail at
different points. The S-PTAM fails directly due to overexposure
and flare observed in the scene while ORBSLAM2 fails due to fast
erratic motion following the over-exposed scene in the recording.
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Table 2
Quantitative results of ORBSLAM2 for the FinnForest dataset at different sampling rates.
Data Sampling 40/20 Hz 13/10 Hz 8/7 Hz

Seq. No ATE (rmse) RTE (%) RRE (deg/m) ATE (rmse) RTE (%) RRE (deg/m) ATE (rmse) RTE (%) RRE (deg/m)

W01 3.35 2.1785 0.00014197 3.6738 2.3016 0.00019584 3.4914 2.4092 0.00021607
W03 12.266 9.1805 0.00012107 12.025 9.2299 0.00013344 12.249 9.1962 0.0001253
W04 17.421 7.7753 9.7778e−05 17.244 7.8332 9.935e−05 20.666 7.6746 0.00011482
W05 55.422 9.2678 0.0001298 56.323 9.4365 0.00013865 75.715 9.7977 0.00022451
W06a 21.789 32.14 0.00020608 TL TL TL TL TL TL
W07a 37.933 7.2208 0.00011185 34.324 7.2193 0.00013786 48.88 7.2107 0.00016175
S01 4.3677 1.9672 0.00022474 3.8189 1.917 0.00019894 6.2793 2.1462 0.00027508
S02 26.132 4.2061 0.00017796 26.874 4.2181 0.0001728 TL TL TL
S03 12.633 5.873 0.00020877 10.986 5.6022 0.00018197 9.8899 5.5459 0.00018258
S04 30.053 5.5827 0.0001988 26.825 5.4608 0.00018299 TL TL TL
S05 228.88 9.4575 0.00025169 191.52 8.8165 0.00020505 200.81 8.9426 0.00021338

aIndicates that the data is subsampled at 20/10/7 Hz.
TL: Tracking lost.
Table 3
Quantitative results of S-PTAM for the FinnForest dataset at different sampling rates.
Data Sampling 40/20 Hz 13/10 Hz 8/7 Hz

Seq. No ATE (rmse) RTE (%) RRE (deg/m) ATE (rmse) RTE (%) RRE (deg/m) ATE (rmse) RTE (%) RRE (deg/m)

W01 TL TL TL TL TL TL TL TL TL
W03 19.709 10.166 0.00011828 27.663 12.63 0.0004809 28.369 14.819 0.00063508
W04 25.852 9.4934 0.00014839 45.091 14.9 0.00071498 48.944 14.914 0.00073208
W05 TL TL TL 79.774 11.312 0.00011181 TL TL TL
W06a TL TL TL TL TL TL TL TL TL
W07a TL TL TL 102.54 8.319 0.00019895 TL TL TL
S01 7.3247 2.883 0.00018821 9.4022 4.0914 0.00066569 8.652 3.9342 0.00030787
S02 34.391 9.2735 0.0005317 44.68 11.63 0.00061402 34.752 9.2786 0.00020271
S03 21.779 7.0644 0.00025365 31.418 11.105 0.00025333 47.392 14.82 0.00031883
S04 31.891 7.1297 0.00023556 39.749 9.703 0.00019259 TL TL TL
S05 130.41 10.182 0.00022272 171.55 14.517 0.00032586 201.65 17.9 0.00038022

aIndicates that the data is subsampled at 20/10/7 Hz.
TL: Tracking lost.
The Night sequence, W06, is especially challenging for both
mplementations. Neither of the implementations could process
he sequences under normal parameter settings. ORBSLAM2 was
ble to process the sequence at 40 Hz with relaxed parameters
fter the FAST feature threshold was reduced to 4 to avoid losing
he track of features. S-PTAM is not able to process the W06
equence at any sampling rate. Even after the feature threshold
s reduced, S-PTAM fails to converge at local bundle adjustment.
his is expected since the scene in view is limited to a few meters
f the snow-covered road. As a result, the poses estimated do
ot agree over a longer duration and fail to converge at bundle
djustment.

.2. Loop closure

The dataset provides three sequences with loop closure oppor-
unities. Among these, S01 and W01 repeat the same route twice
n one direction and the third time in the opposite direction. This
eans that ORBSLAM2 can identify the loop closure opportunity
t any time of the second lap of the drive. During experimen-
ation we observed that ORBSLAM2 successfully closes the loop
nd distributes the errors for the aforementioned sequences. In
ontrast, ORBSLAM2 fails to close the loop for the sequence S02,
ven though, enough overlap of the start and end scenes is
rovided. Oddly, ORBSLAM2 can re-localize itself at the end of the
equence S02 that is processed at 8 Hz after losing track of the
eature points. A closure can be observed due to re-localization in
ig. 10(f) in the trajectory estimated by ORBSLAM2. We believe
hat sparser keyframes formed at 8 Hz provided more decisive
nformation compared to the same sequence at higher fps, where
he relocalization was not observed.
7.3. Drift

A drift in scale and rotation can be observed in the estimations
provided by ORBSLAM2 and S-PTAM for all of the visual odometry
sequences. This effect of drift becomes stronger as the sample rate
drops down from 40 to 8 Hz. The effect is most apparent in S03
and W03 (see Fig. 9(d–f) and (g–i)).

7.4. Seasonal effect

Seasonal changes have an apparent effect on various aspects
of this dataset. As discussed earlier, the ground truth accuracy
reduced in the summertime compared to the wintertime due to
considerably higher foliage effect in the summer. An added chal-
lenge from the perspective of recording was that, while traversing
the forest, different parts of the forest provided different levels of
shade from the sun due to the density of the trees in that specific
part. This created a challenge to avoid over or underexposure of
the scenes since we used a fixed aperture. These effects are more
obvious in the sequence S04.

The winter sequences, on the other hand, were adequately
exposed since most of the recordings are in overcast. In addition,
there was enough texture on the ground due to tire tracks in
the snow. ORBSLAM2 handled tracking very well with evenly
distributed points on the snow-covered ground. S-PTAM focused
more on the obvious texture from the trees. Most of the feature
points from the snow-covered road are discarded by S-PTAM as
false matches.

7.5. Effect of ground truth precision

It is important to note that the experimentation is indepen-
dent of the precision level of the ground truth position since
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the test algorithms did not use the IMU and GNSS information.
However, the effect of the ground truth precision indeed has to
be considered when comparing the experimental results against
the ground truth poses. The ground truth precision for each
sequence is shown using Fig. 8 and discussed in Section 4.3. In the
context of benchmarking, we can say that we are more confident
in the comparison performed in Tables 2 and 3 for the winter
sequences (W01–W07) than the summer sequences (S01–S05)
since the precision of ground truth position for winter sequences
is comparatively higher. Nonetheless, the precision of the ground
truth is high enough in both cases for valid analysis of visual
odometry/SLAM algorithms.

It is important to remember that the visual odometry/SLAM
algorithms may give different responses for the same trajectory
recorded under different condition, as we discussed throughout
Section 7. Therefore, arguing that one result is better than the
other without comparing to the provided ground truth is not an
objective conclusion.

8. Summary

In this paper, we have presented a novel dataset that offers
a forest-like environment in various light and weather condi-
tions for visual odometry and SLAM systems to process. The
dataset provides synchronized and processed image frames from
4 cameras that can be used independently or as stereo pairs.
Moreover, raw data is also provided to encourage further exam-
ination into the system. We believe this dataset will prove im-
mensely useful towards enlarging the spectrum and diversity of
the testing data for autonomous vehicles, especially, autonomous
heavy work machines. We hope that this dataset will provide
new challenges and inspire exploration of new possibilities for
autonomous vehicles/machines.
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