
Vol.:(0123456789)1 3

European Journal of Forest Research 
https://doi.org/10.1007/s10342-020-01304-5

ORIGINAL PAPER

Separating the impact of work environment and machine operation 
on harvester performance

Lari Melander1   · Risto Ritala1 

Received: 27 February 2020 / Revised: 15 June 2020 / Accepted: 26 June 2020 
© The Author(s) 2020

Abstract
In mechanized logging operations, interactions between the forest machines and their operators, forest resources and envi-
ronmental conditions are multifold and not easily detected. However, increased computational resources and sensing capa-
bilities of the forest machines together with extensive forest inventory data enable modeling of such relationships, leading 
eventually to better planning of the operations, better assistance for the forest machine operators, and increased efficiency 
of timber harvesting. In this study, both forest machine fieldbus data and forest inventory data were acquired extensively. 
The forest inventory data, acquired nationwide, was clustered to categorize general tree and soil types in Finland. The found 
forest categories were applied when the harvester fieldbus data, collected from the forest operations in the North Karelia 
region with two similar harvesters, was analyzed. When the performance of the machine and the operator, namely the fuel 
consumption and log production, is studied individually for each forest cluster, the impact of working environment no 
longer masks the causes based on the machine or the operator, thus making the observations from separate forest locations 
comparable. The study observed statistically significant differences in fuel consumption between the most general tree and 
soil clusters as well as between the harvester-operator units. The modeling approach applied, based on multivariate linear 
regression, finds such reasons for the differences that have clear interpretation from machine setup or operator working style 
perspective, and thus offers a feasible method for assisting the operators in improving their working practices and thus the 
overall performance specifically at forest of given type.
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Introduction

Forests resources are being digitalized throughout the world. 
Remote sensing in its many forms (see, e.g., Holopainen 
et al. 2014; Dash et al. 2016; White et al. 2016; Talbot et al. 
2017) has been widely applied to provide tree and topo-
graphic data of forests, enabling better planning of forest 
operations. This is often referred to as precision forestry or 
Industry 4.0 in wood supply (Holopainen et al. 2014; Mason 
et al. 2016; Müller et al. 2019). Related to this trend, for-
est inventory data is collected worldwide, in particular in 

Europe, Canada, USA, Russia, Brazil, China and New Zea-
land (Tomppo et al. 2010). Furthermore, at least in the Nor-
dic countries, the effort is to make forest data public (Kangas 
et al. 2018). In Finland, most of the forest inventory data 
collected with public resources have been made publicly 
available, and the latest effort is to gather all forest related 
data sources accessible via a single service (Venäläinen et al. 
2015; Hämäläinen 2016; Rajala and Ritala 2016). The key 
aspect in this service is to fuse the heterogeneous data into 
constant grid cells (16 m × 16 m in Finland). Openly acces-
sible and aggregated forest inventory data is now enabling 
all stakeholders to develop new applications for supporting 
forest operations. For example, forest machine manufactur-
ers are collecting a vast amount of forest data with their 
machines but are currently not utilizing existing forest data 
when developing new products or optimizing the current 
machines.

Cut-to-length (CTL) forest machines dominate the 
market in the Nordic countries, as almost all the logging 
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is performed with CTL systems in Finland, Sweden and 
Norway (Lundbäck et al. 2018). This is due to a long tra-
dition in cross-cutting the stems already in the forest for 
easier transportation (Gellerstedt and Dahlin 1999). The 
numerous demands set for the timber harvesting in the 
CTL system, such as the ability to respond to precise cut-
ting specifications of sawmills and to work with minimal 
forest floor impact, have developed CTL forest machines 
to intelligent systems capable for extensive sensing of the 
forest environment and information processing (Lindroos 
et al. 2015; Olivera and Visser 2016). Efficient timber har-
vesting necessitates careful planning of the forest opera-
tions, as appropriate machines should be chosen to do the 
correct work at the right time. Forest inventory data, as 
depicted above, is being widely used for better planning 
and scheduling of the operations in this general level. 
However, from the perspective of a single forest machine 
carrying out a specific operation the forest environment is 
dynamic: while the machine travels through the intended 
harvesting route, the environmental conditions and for-
est types are changing, affecting both the forest machine’s 
actual and maximum achievable performance (Suvinen 
and Saarilahti 2006; Ala-Ilomäki et al. 2012; Obi and Vis-
ser 2017; Melander et al. 2019). Olivera et al. (2016) have 
pointed out that the type of forest, i.e., the properties of 
the trees, affects the productivity. Therefore, the operator 
has to decide the actual route of the harvester, taking into 
account, for example, the bearing capacity of the forest 
floor at the given season, while simultaneously keeping 
in mind the correct harvesting density and the resulting 
width of the logging road. Due to complex dynamical rela-
tionships of the environment with respect to the machine 
and goals of the operation, an operator can hardly have 
exhaustive understanding of the optimal actions in the 
ongoing forestry operation. Today, CTL forest machines 
assist the operator in many tasks, for example by opti-
mizing the cross-cutting points for each tree, but mostly 
the operator relies to his own experience and skills while 
working (Häggström and Lindroos 2016). Furthermore, 
the operator has a possibility to adjust forest machine set-
tings, which have a considerable effect on the performance 
of the machine (Prinz et al. 2018). For helping the operator 
in these many adjustments, the impact of the environment 
to the optimal machine settings needs to be understood. 
Such understanding can only be developed by analyzing 
forest machines in a variety of environments. However, 
this requires that the effects of the environment and the 
effects of the machine operation can be separated. The 
future of the forest machines is foreseen to be increasingly 
autonomous (Hellström et al. 2009; Ringdahl 2011; Ring-
dahl et al. 2011), removing the variation caused by the 
operator, but the requirement for separating the effects of 

the forest machine and the environmental factors continues 
to be highly relevant.

Until now, research on Big Data solutions suitable to for-
est operations has resulted in a rather limited number of 
publications, as recently pointed out by Rossit et al. (2019). 
The existing research is mostly concentrated on modeling 
the processed trees in the forest operations (see, e.g., Lu 
et al. 2018; Shan et al. 2019) or evaluating the productivity 
from the production records (see, e.g., Olivera et al. 2016; 
Eriksson and Lindroos 2017; Rossit et al. 2019). However, 
analysis of the interactions between the forest machine and 
its environment necessitates large amounts of data collected 
from the machines, in particular, fieldbus data in addition to 
the production records. Data collection of this extent inevi-
tably creates challenges for the data warehousing and com-
munication capabilities while working in remote locations. 
The solution lies in the machine learning and data mining 
algorithms, which detect patterns and structures in large data 
sets (Murphy 2012). Most of these algorithms can be divided 
into categories of predictive (supervised) and descriptive 
(unsupervised) learning. In predictive learning, a regression 
or classification model is constructed between known inputs 
and outputs available in the dataset. Descriptive learning 
is used for revealing unknown relationships and structures 
without any prior knowledge of the data, and it has typically 
applications in clustering and dimensionality reduction. Use 
of such algorithms for data in forestry has been depicted, for 
example, by Rossit et al. (2019) and Melander et al. (2019). 
By exploiting pre-trained machine learning models and the 
computational power of the forest machine, it is feasible to 
analyze most of the data while at the harvesting site, reduc-
ing the need for vast data transmission between the forest 
machine and data warehouses.

The current paper is based on the idea and the early 
results in Melander et al. (2019), where forest inventory 
data and machine fieldbus signals were fused for revealing 
machine–environment relationships. This paper concentrates 
on explaining performance differences of two harvesters, 
similar with each other, found in a long-term collection of 
fieldbus data. This paper expands our earlier work, firstly 
in that it analyzes the performance both while the machine 
is cutting and in motion, secondly in that it shows how to 
separate the performance differences due to the forest type 
and the operation of the machine, and thirdly that the forest 
and soil categorization is based on nationwide analysis of 
forest inventory data. The main contribution of this paper is 
the methodological basis for fleet-wide analysis of the per-
formance of the forest machine and its operator in relation 
to the working environment.
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Materials and methods

This study analyzes two datasets: firstly, fieldbus and pro-
duction data collected from two similar harvesters in a 
recording of 20 working days, and secondly a set of forest 
inventory data systematically sampled from the database 
covering whole Finland. In addition, detailed forest inven-
tory data with whole areal coverage was acquired for the 
areas where the machines were working, allowing fusion of 
machine and environmental data. Therefore, forest inventory 
data is used at two levels: the sampled inventory data from 
the database covering whole Finland for learning generaliz-
able categories of Finnish forests, and the non-sampled for-
est inventory data for each grid cell where the machines have 
visited for comparing machine performances individually 
for each forest type. As the two forest machines under con-
sideration were similar, the differences in performance due 
to operator actions are highlighted in this study. However, 
some of the parameters in the control system of the forest 
machine are user-specific and were set differently in the two 
harvesters, so the comparison in this paper is actually done 
between the two machine-operator combinations.

Harvester data collection

Fieldbus data was collected from two Ponsse Scorpion 
harvesters with the same age and with similar equipment, 
including, for example, the harvester head. Ponsse Scorpion 
is an 8-wheeled CTL harvester with 210 kW diesel engine, 
weighing approximately 21 tonnes. Further details on the 
machine can be found from the datasheet of the machine 
(Ponsse Plc 2020). The collected data consists of signals 
from various actuators of the harvester, including signals 
from the harvester head and boom, transmission system, 
steering system and the GNSS device. In total there were 
48 signals recorded constantly from the fieldbus of a sin-
gle harvester and eight variables related to the production 
output. Table 1 shows an overview of the types of the col-
lected signals. The sampling interval of the fieldbus sig-
nals was 0.02 s, meaning that in a single 8-h working day 

approximately 1.5 million rows of fieldbus data was recorded 
for a single variable (roughly 1 GB of fieldbus data per day 
for one harvester).

The recording period was from late September to early 
October 2019, when the outside temperature in the daytime 
was between 0 and 10 degrees and there were occasional 
subzero temperatures in the night-time. The soil was free 
from frost and the mean daily precipitation during the period 
was 2.9 mm. Data was recorded during harvesters’ normal 
timber harvesting routines, and the data collection was run-
ning in the background. No specific operation tests were 
arranged. Harvesters were operated in one shift, meaning 
that both harvesters were each operated by a single operator 
through the whole data collection period. The machine-oper-
ator units are referred to as Operator 1 and Operator 2 from 
now on. The operators had their own custom harvester con-
trol system settings, which they kept mostly constant during 
the data collection period. Both operators had regeneration 
felling and thinning tasks during the recording period. The 
datasets were labeled according to these work types. The 
work sites of both machines were at North Karelia region in 
Eastern Finland, specifically around municipalities of Kitee 
and Rääkkylä (Fig. 1).

Finnish forest data for forest categorization

The forest data platform allows user-defined queries with 
no limitations on the amount of the data or the number of 
retrieved grid cells. In our earlier study (Melander et al. 
2019), the data for representing the Finnish forests was 
delimited to ten small areas consisting of 100,000 grid cells, 
and to nine forest parameters. Here, the intention is to take 
advantage of the limitless data queries of the forest data 
platform and construct a dataset that genuinely represents 
Finnish forests, thus enabling search of the underlying struc-
ture, i.e., the forest categories of Finland, with unsupervised 
machine learning methods. However, the total number of 
grid cells in Finland is of the order of 109 , so retrieving 
and analyzing all the grid cells and all the forest param-
eters would require considerable computational resources. 
Therefore, a systematic sampling pattern was designed to 

Table 1   Overview of harvester signals

Boom and harvester head Transmission and motor Orientation and position Production

Boom rotation control Fuel consumption GNSS receiver variables Number of produced logs and felling cuts
Boom 1st joint control Speed Acceleration X, Y, Z Tree species and assortment
Boom 2nd joint control Diesel engine RPM and torque Longitudinal and lateral tilt Log length
Boom extension control Hydrostat RPM Steering control Log diameter (butt, average, top)
Harvester head rotator control Hydraulic motor control Log volume
Saw control Cooling unit control
Feed control forward/backward Working brake
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retrieve a representative set of Finnish forest inventory data 
(Fig. 2a). The sampling pattern consists of 176 square areas 
of size 12 km × 12 km, containing overall approximately 107 
grid cells.

The platform responds to the query by returning the grid 
data partitioned to map sheets (size 24 km × 48 km). This 
data (156 files) was sampled further, so that 10% of grid 
cells were picked randomly from each map sheet. After 
sampling, the data consisted of approximately 2.9 million 
grid cells with 80 continuous and 13 categorical forest vari-
ables for each cell. Data was preprocessed to remove any 

inconsistencies in data (Fig. 2b). All cells containing false 
or missing values were removed and only cells for which 
land type was indicated to be forest, were selected. In this 
process, it was noticed that two of the major data sources 
having similar forest inventory data, i.e., the forest inven-
tory data maintained by Finnish Forest Center (FFC) (Finn-
ish Forest Center 2019) and the National Forest Inventory 
(NFI) maintained by Natural Resources Institute Finland 
(Luke 2019), conflicted at many grid cells. The reason for 
the conflicts may be due to different inventory instants: if, 
for example, a forest area is harvested between the inventory 

Fig. 1   Recorded forest operation sites
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instants, rather different tree dimensions and density are to 
be expected. Because of the conflicts, only the FFC data was 
retained in the dataset. After preprocessing, the data com-
prises approximately 1.5 million grid cells with 28 continu-
ous forest variables. The categorical variables were reduced 
to four: soil type, harvesting accessibility, fertility class and 
drainage state. Other categorical variables were rather con-
stant in the final set of grid cells. The final set of variables 
is collected and given in Table 2.

Fusion of machine and forest data at worksites

The fusion of the forest and machine data closely follows the 
procedure presented by Melander et al. (2019). The forest 
inventory data for the data fusion is retrieved for each grid 
cell along the machine route, and should not be confused 

with the Finnish forest data collection for forest categori-
zation, presented in the previous section. The difference 
between the two is that the large-scale sampling presented 
in the previous section is needed for learning the underly-
ing structure of Finnish forest inventory data by clustering, 
so that the local forest inventory data on the machine route 
on every forest operation can then be set in proportion to 
all other Finnish forests. The fieldbus time series and forest 
inventory data on grid cells of the machine route are fused 
according to the position given by the GNSS of the machine. 
This associates time series of varying lengths to grid cells, 
according to the period the machine spends in a grid cell. 
Each repeated visit to a grid cell—if any—associates its 
own time series to the cell. These grid-positioned time 
series are further divided according to the working mode of 
the harvester: driving and processing trees. The division is 

Fig. 2   a Constant sampling grid for the forest inventory data retrieval (captured from the forest data platform user interface). b Realized samples 
after data cleaning process
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necessary because it is expected that quite different variables 
are relevant in the two working modes, e.g., forest ground 
and topography are expected to be important for harvester 
transmission and orientation, but tree properties are expected 
to be important for production and boom operation. This 
division shortens the time series considerably, as the work-
ing mode changes frequently inside a grid cell. For gaining 
statistical robustness, the time series are sampled using a 
window as many times as is possible without overlapping the 
windows. The length of the windows was chosen to be 10 s 
for the moving harvester and 30 s for the working harvester.

In this study, the performance of the harvester-operator 
combination is evaluated by fuel consumption and total vol-
ume of log production per time instance. Both performance 
indicators are examined together with the forest inventory 
data, revealing the effects of the forest parameters to the 
performance.

Forest clustering

For gaining generalizable results in every forest operation, 
the dimensionality of the Finland-wide forest inventory 
data was reduced and then clustered. The dimensionality of 
the continuous forest inventory data, consisting of 26 tree 
parameters, was reduced with principal component analysis 
(PCA). PCA necessitates selecting the number of the result-
ing variables, i.e., the number of principal components, for 
the model, and this number was chosen to be nine in this 
study as this preserves 90% of the original variation in the 

forest inventory data. The nine axes were further clustered 
with K-means algorithm (Jain 2010) for general tree types 
of Finland, referred to as tree clusters later in the study. 
K-means produces a pre-specified number of clusters, but at 
present there is no prior information about what is the appro-
priate number of clusters for the Finnish forest inventory 
data. Therefore, the clustering results, the sum of squared 
distances and a silhouette score, were evaluated as a func-
tion of number of clusters. The silhouette score (Rousseeuw 
1987) is a general measure of the quality of the clustering, 
ranging from − 1 to 1, with higher numeric values indicating 
better clustering. With the resulting cluster model, each grid 
cell on the route of the harvesters was labeled by the cluster 
index based on the forest inventory data in the cells. Cat-
egorical forest inventory data variables, describing the forest 
ground properties, were clustered with K-modes algorithm 
(Chaturvedi et al. 2001), that is similar to the combination 
of PCA and K-means for continuous variables. Resulting 
clusters are referred to as soil clusters later in the study.

Inferring about performance differences

When studying the effect of the soil and tree clusters to har-
vester performance, it was assumed that the soil conditions 
affect the most the moving harvester and correspondingly 
the tree clusters affect the felling operation. The effect of the 
clusters was examined by grouping the windowed fieldbus 
signals, such as the fuel consumption, according to those 
clusters and then identifying the most significant statistical 

Table 2   Forest variables included in the analysis

Variable name Explanation

Tree-related variables
Tree age Mean age of the trees in the grid cell. Includes separate variables for pine, spruce and deciduous
Tree mean diameter Mean diameter of the trees in the grid cell. Includes separate variables for pine, spruce and deciduous
Tree mean height Mean height of the trees in the grid cell. Includes separate variables for pine, spruce and deciduous
Tree basal area Total basal area of the trees in the grid cell. Includes separate variables for pine, spruce and deciduous
Stem count Stem count in the grid cell, given in stem count per hectare. Includes separate variables for pine, spruce and 

deciduous
Tree volume Tree volume in the grid cell, given in cubic meter per hectare. Includes separate variables for pine, spruce 

and deciduous
Laser height 85% point in the cumulative height distribution of laser observations over two meters in the grid cell
Laser density Number of laser observations above 2 m in the grid cell divided by the number of all the observations
Soil-related variables
Topographic wetness index (TWI) In this study, the continuous-valued TWI is transformed into a categorical variable by dividing its range to 

16 equally wide bins
Soil type Soil type according to the Finnish soil classification standard
Harvest accessibility Accessibility rating from 1 (always accessible) to 6 (only on wintertime). See Kankare et al. (2019) for 

detailed classification information
Fertility class Fertility class describes undergrowth vegetation which is seen to reflect fertility and productivity status of 

the site. The classification is based on the work of Cajander (1909, 1949) and is widely used in Finland
Drainage state Drainage state describes whether the area is ditched and the current state of the soil drying
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differences of the signal means between the groups. How-
ever, it is highly likely that there are other factors besides 
environmental ones affecting the performance. The differ-
ences caused by the operator actions and machine settings 
can be examined by studying machine signal features within 
a single soil or tree cluster so that the harvesters have been 
operating at similar environment, and then to repeat such 
analysis to each soil or tree cluster to find cross effects. One 
approach is to fit a predictive model for finding the func-
tion between variables of interest, such as operator control 
variables, and a performance metric, such as fuel consump-
tion, and study the relative importance of the independent 
variables given by the model. In this study, linear regression 
models were fitted for predicting the consumption of the 
harvester within the time window of samples. 80% of the 
total dataset (3398 window samples for the driving motion 
and 5134 samples for the felling work) was used for the fit-
ting and the rest was left for testing the model performance 
(850 and 1284 samples, respectively). The independent 
variables for the models were chosen to be either forest data 
variables or machine variables that are directly controllable 
by the operator. For example, diesel engine RPM level is 
a variable set by the operator and thus suited as an inde-
pendent variable. However, sets of variables that are highly 
correlated should be avoided in the regression model, and 
therefore most of the forest variables were not included as 
independent variables. Furthermore, production volume cor-
relates strongly with the feed control of the tree through the 
harvester head, so it was not taken into the model. Table 3 
presents an overview of the independent variables of the 
consumption models.

As all independent variables were standardized to zero 
mean and unit variance, the most important variables with 
respect to the target variable (fuel consumption) are found 
simply by examining the coefficients for the independent 
variables in the model. By weighting the differences in the 
independent variables (forest data or operator controls) with 
their coefficients, reasons for the differences can be inferred. 

For example, the cause for a higher consumption for one 
machine-operator unit over another can be reasoned by the 
distinctive usage of the harvester boom control, if the differ-
ence in the boom controls, multiplied with the correspond-
ing coefficient, is high.

Results

General forest clusters

The representative sample of the forest inventory data in the 
national level was processed separately into most typical tree 
and soil clusters, to support separate analysis for moving 
harvester (with soil clustering) and for working harvester 
(with tree clustering). Figure 3 shows principal component 
loadings of original tree-related forest inventory variables 
in the PCA transformation. Figure 4 shows the loadings of 
variables related to tree species.

To find the best number of clusters, the sum of squared 
distances between data points and cluster centers and sil-
houette scores are presented in Fig. 5. The sum of squared 
distances (Fig. 5a) decreases rather steadily as the number 
of clusters increases. The silhouette score (Fig. 5b) shows 
some variation as a function of the number of clusters but 
is rather low and constant. The K-modes clustering of the 
categorical soil variables shows similar results (Fig. 6), 
with the exception that the smaller values for the number 
of clusters seem to result for better clustering according to 
the silhouette score. In both cases, the low silhouette score 
values indicate that there are no clear clusters in the dataset.

Another way to assess the usefulness of the general forest 
clusters is to apply the clustering to the grid cells of the field 
tests and examine the variation of the forest inventory data 
inside every cluster, as the clustering is supposed to mini-
mize this variation inside the clusters. Based on the evalu-
ation shown in Fig. 5 and Fig. 6, number of clusters was 
chosen to be 45 in the tree clustering and 7 in the soil clus-
tering. With this choice, the five most common clusters in 
the field tests are next described in detail. The performance 
of the machine will be compared individually within each of 
these five clusters. All the cluster centers for the soil clusters 
are presented in Table 4, with clusters 1, 2, 4, 6 and 7 being 
the most common. Correspondingly, the five most common 
tree type clusters in the field tests are described in Table 5 by 
means of the original forest inventory data inside the cluster.

Figure 7 demonstrates the consistency of the forest inven-
tory data inside clusters by showing the distribution of forest 
inventory variables inside clustered grid cells along the route 
of the two harvesters. Two forest parameters, stem count and 
tree volume, are presented for the five most common clusters 
in the field tests for both harvesters.

Table 3   Independent variables selected for consumption models

Working harvester Driving harvester

Variables in consumption models
Diesel engine RPM
Boom rotation control
Boom 1st joint control
Boom 2nd joint control
Boom extension control
Number of tree cuts
Harvester head feed control (forward and 

backward)
Harvester head rotation control
Tree volume in the grid cell
Stem count in the grid cell

Diesel engine RPM
Speed
Harvester steering control
Inclination (front-rear)
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Fig. 3   Loadings of general 
forest variables in principal 
components

Fig. 4   Loadings of forest variables related to tree species related in principal components

Fig. 5   Scores of tree clustering with cluster numbers from 10 to 60
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Fig. 6   Scores of soil clustering with cluster numbers from 10 to 60

Table 4   Cluster centers for the soil clusters

*Denotes a cluster not included in field test analysis

Cluster number (share 
of the grid cells in field 
tests)

Soil type Harvesting accessibility Drainage state Fertility class TWI class

1
(34.2%)

Coarse moorland Mineral soil, accessible dur-
ing summer

Unditched moorland Fresh moorland or corre-
sponding wetland

2

2
(3.8%)

Coarse moorland Mineral soil, accessible dur-
ing summer

Unditched moorland Dry moorland or correspond-
ing wetland

2

3*
(0.7%)

Peatland Wetland, accessible during 
summer

Natural state wetland Dry moorland or correspond-
ing wetland

2

4
(9.2%)

Coarse moorland Mineral soil, accessible dur-
ing dry summer

Unditched moorland Fresh moorland or corre-
sponding wetland

1

5*
(2.1%)

Peatland Mineral soil and wetland, 
accessible during winter 
time

Natural state wetland Rough moorland or corre-
sponding wetland

3

6
(44.5%)

Fine moorland Mineral soil, accessible dur-
ing dry summer

Unditched moorland Moorland with rich grass-
herb vegetation or cor-
responding wetland

2

7
(5.4%)

Coarse moorland Mineral soil, accessible on 
summer time

Unditched moorland Dry moorland or correspond-
ing wetland

1

Table 5   Description of the five most common tree clusters in the field tests

Cluster number (share of the 
grid cells in field tests)

Dominant tree species Mean age 
(years)

Mean diameter 
(cm)

Mean height 
(m)

Stem count 
(pcs/ha)

Tree vol-
ume (m3/
ha)

15 (7.3%) Spruce 52 23.6 18.9 682 175.5
17 (9.2%) Spruce, pine, deciduous 66 25.6 19.9 466 133.7
22 (11.4%) Spruce 60 25.5 20.6 771 262.8
33 (8.0%) Deciduous 65 25.3 21.0 929 250.9
41 (12.5%) Spruce 79 30.2 24.1 673 378.5
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Factors affecting harvester fuel consumption

The most important factors affecting the fuel consumption 
of the harvester were studied separately for the moving and 
for the working harvester. The data for the working harvester 
was limited to cases of regeneration felling, as the consump-
tion between thinning and regeneration operations are con-
siderably different and thus should be studied separately. In 
the analysis of working harvester, only fieldbus data win-
dows containing at least one cut of a log according to the 
production records were included. In the analysis of moving 

harvester, data was restricted to cases where harvester incli-
nation in the direction of traversal was less than 5 degrees. 
Figure 8a and b shows the fuel consumption (mean of time 
series samples) for the driving motion in the most common 
soil clusters and for the felling work in the most common 
tree clusters. The significance of the cluster and machine-
operator unit in the differences between group means were 
evaluated using two-way ANOVA, see Table 6. According 
to the test, fuel consumption has statistically significant dif-
ferences between the machine-operator units and the forest 
cluster groups with a significance level of 0.05.

Fig. 7   General tree clusters applied to the grid cell stem count (a) and volume (b) of the visited cells in the field tests

Fig. 8   Distribution of the fuel consumption (mean of time series sample) for moving harvester under general soil clusters (a) and for regenera-
tion felling under tree clusters (b)
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Analyzing fuel consumption of the two harvesters sepa-
rately for each cluster (Fig. 8) means that the effect of 
differences due to forest properties has been removed, but 
differences due to their production rates still affect the fuel 
consumption. Figure 9 depicts the produced volume per 
fuel consumption for revealing the efficiency differences 
between the machine-operator units.

Figure 10 shows the performance of a linear regression 
model trained to predict the fuel consumption while the 
harvester is working, based on the signals listed in Table 3. 
Similarly, a model was trained for the moving harvester. 
The R2 value for the working harvester model was 0.61 and 

0.62 for the moving harvester model. The coefficients of 
the models are reported in Table 7.

Based on the weighted differences in the signals, three 
most important reasons for higher consumption between the 
machine-operator units at each cluster are presented in Table 8. 
The Operator 1 had higher fuel consumption while working, 
except for the tree cluster 22, whereas the Operator 2 had 
higher fuel consumption while driving in all of the presented 
soil clusters.

Table 6   Results of two-way ANOVA with soil (driving) and tree 
(working) clustering for fuel consumption

Sum of squares Degrees 
of free-
dom

F p

Harvester driving
Operator 3.853407 1 49.21 < 0.001
General soil cluster 1.197522 4 8.70 < 0.001
Operator: general soil 

cluster
4.743062 4 2.87 0.022

Residual 1.206663 3116
Harvester working
Operator 8246.85 1 4.28 0.037
General tree cluster 40317.92 4 5.23 < 0.001
Operator: general tree 

cluster
25885.93 4 3.36 0.010

Residual 4385958.0 2277

Fig. 9   Summed production volume per mean fuel consumption in the 
recorded time windows (regeneration felling)

Fig. 10   Test data predictions with a linear regression model of the 
consumption ( R2 = 0.61)

Table 7   Coefficients of the linear regression models with standard-
ized independent variables

Harvester working Harvester driving

Linear regression coefficients
Feed control forward 14.5 Inclination (front-rear) 63.6
Diesel engine RPM 13.6 Speed 45.2
Boom 2nd joint control 8.9 Diesel engine RPM 34.6
Number of cuts 7.2 Harvester steering control 28.6
Feed control backward 5.4
Boom rotation control 4.6
Boom 1st joint control 3.6
Boom extension control 3.1
Tree volume in the grid cell 1.6
Stem count in the grid cell 1.4
Harvester head rotation 

control
1.1
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Discussion

The availability of comprehensive forest inventory data 
in Finland enables new possibilities for analyzing forest 
machine performance automatically. Without the forest data, 
performance metrics of the harvesters are not comparable 
between the stands as the soil and tree properties affect the 
forest machine routing and production. The comparability 
of the performance metrics is important when instructing 
the operators or tuning the machine parameters, as these 
actions need to be tailored for the current forest environ-
ment. This study presented ideas for creating a machine 
learning pipeline capable for the generalization of the forest 
environment and detection of the reasons behind the meas-
ured differences.

The pipeline for generating the general tree clusters 
started with a dimensionality reduction of forest inventory 
data with the PCA. The contributions of the 28 forest inven-
tory variables in the PCA transformation are presented in 
Figs. 3 and 4. The meaning of each nine principal com-
ponent is not obvious, but when looking at the contribu-
tions of the original forest inventory variables in the figures, 
explanation in forestry perspective can be found rather easily 
for at least for the first four components. The first compo-
nent after the PCA transformation describes the sturdiness 
of the trees in the grid cell, regardless of the tree species. 
Original inventory variables that are related to the higher 
tree mass increase and decrease together, only exception 
being the stem count, which acts in the opposite way. Thus, 
the value of the first principal component is high in grid 
cells containing old and massive trees rather sparsely and 
low in grid cells containing young trees densely. The next 
two components mainly describe the tree species: the sec-
ond component separates forests where pine is the domi-
nant species from the rest, and the third component distin-
guishes spruce and deciduous dominant forests. The fourth 

component seems to react to the age of the trees in the grid 
cell, also separating forests with pine as the dominant tree 
species. Although PCA interpretations are logical and clear, 
the number of clusters for principal component scores is not 
evident for the K-means clustering. The quality of clustering 
as a function of number of clusters was evaluated with two 
techniques. Based on the stabilization of sum of squared 
distances (Fig. 5), the number of clusters was chosen to be 
45, but there seems to be no unique number of clusters that 
would lead to superior clustering results over other choices. 
Furthermore, low silhouette score values indicate that the 
tree data shows no clear clustered structure. However, the 
five most common clusters in our field tests turned out to 
be useful: the stem count and the tree volume, given as an 
example of the forest inventory variables in the grid cells, 
were similar in the grid cells having the same cluster index 
in the route of the two harvesters (see Fig. 7). Furthermore, 
the fuel consumption showed statistically significant differ-
ences between the clusters and the machine-operator units 
according to two-way ANOVA. Such findings signify that 
the clustering succeeded in the standardization of forest 
inventory data: the two machines experienced similar for-
est conditions in the grid cells with the same cluster so the 
performance indicators under the conditions of the cluster 
are comparable. However, clustering of forest inventory data 
needs further research as the K-means algorithm did not 
return strong clusters for the PCA transformed data.

Similar clustering, although with a K-modes algorithm 
suitable for categorical variables, was performed to find gen-
eral soil clusters in Finland. In this study, all the soil-related 
variables showing reasonable variation in the sampled areas 
and available from the forest data platform were included 
in the clustering. It should be noticed that some of the vari-
ables, such as trafficability, are originally derived partly from 
the other included variables. The results indicate that with 
the selected variables, the best number of clusters can be 

Table 8   Most important reasons for higher consumption of a machine-operator unit within a tree cluster

Reason 1 Reason 2 Reason 3

Soil clustering
1 Higher speed Increased steering movement More inclined route (front-rear)
2 Higher speed More inclined route (front-rear) –
4 Higher speed Increased steering movement –
6 Higher speed Increased steering movement –
7 Increased steering movement Higher speed –
Tree clustering
15 Higher diesel engine RPM setting Increased 2nd boom joint movement Increased boom extension movement
17 Higher diesel engine RPM setting Increased stem count in the grid cell Increased harvester head rotator movement
22 Increased feed control forward Number of cuts Increased feed control backward
33 Higher diesel engine RPM setting Increased 2nd boom joint movement Increased harvester head rotator movement
41 Higher diesel engine RPM setting Increased tree volume in the grid cell Increased boom extension movement
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found from the range of 2–15 clusters. This is a rather low 
number considering the number of possible combinations 
of the variable classes but can be partly explained with the 
rather strongly correlated categorical variables. The cluster-
ing into seven clusters shows significant differences in the 
fuel consumption between the clusters and the clusters with 
higher consumption have cluster centers which suggest more 
moist soil conditions. Unfortunately, in the field tests the 
most wet conditioned clusters (3 and 5) were scarce. In such 
conditions, the fuel consumption would have been expected 
to be at its highest based on earlier research (Melander et al. 
2019).

Labeling machine signal samples according to the nation-
wide grid cell clusters and analyzing each cluster label 
separately revealed differences in the fuel consumption and 
production of the machines-operator units (Fig. 9). Based 
on the presented summaries of the consumption, it seems 
that Operator 2 managed to work more efficiently in most 
of the tree type clusters: with less consumed fuel and with a 
higher volume of logs produced. Finding such differences is 
in itself important, but even more valuable knowledge is the 
reasons behind the differences. Therefore, a linear regres-
sion model was fitted for predicting the fuel consumption 
based on all the recorded forest inventory data and the opera-
tor controllable variables. The resulting R2 values, 0.62 for 
the moving and 0.61 for the working harvester, denote that 
the independent variables are not enough for explaining the 
entire variation in the fuel consumption. However, most of 
the variation is explained, and the learned coefficients for the 
variables seem reasonable regarding the preconceptions of 
the factors affecting the harvester fuel consumption. As seen 
in Table 8, the model predicts the RPM level being the most 
important reason for the higher consumption of Operator 1 
while working under most of the tree type clusters. This is 
not surprising, as it was known that the operator had higher 
RPM setting for the regeneration felling and higher motor 
RPM is known to cause higher fuel consumption. However, 
the higher RPM seems not to have justification as the pro-
duction done by the Operator 1 is lower. When driving for-
ward, the higher consumption of Operator 2 was explained 
mostly by the higher speed, indicating that, for example, the 
inclination of the route, the most influential cause accord-
ing to the model, was not significantly different between the 
harvested stands of the two operators.

Linear models are particularly well suited for problem 
settings where contributions of single features to the target 
variable needs to be understood. In this study, the impor-
tance of the operator control signals with respect to fuel 
consumption were characterized by multiplying the mean 
differences of the signals between operators with the learned 
model coefficients, in a certain tree type cluster. Generaliz-
ing this simple linear importance assessment to a nonlinear 
one has several options for importance evaluation, such as 

permutation importance. However, even this method would 
result only in the importance without indication of sign of 
the effect, thus reducing the possibilities to infer about the 
differences in the performance.

In any future fleet-wide application, comparing opera-
tors pairwise is probably not sensible or even feasible. If 
data—signal means labeled according to forest type—would 
be continuously collected, comparing each operator against 
a common forest-type specific distribution would be a more 
fruitful approach toward improving timber harvesting effi-
ciency. The methods presented in this paper would serve as 
the key functions of such a system. When the system would 
identify exceptionally low performance values, it could 
assist the operator to either tune the appropriate machine 
parameters or to change the detected non-efficient working 
routines.

Conclusion

In this study, large datasets of both, the forest inventory data 
and the machine fieldbus data were collected in order to 
reveal separately the impacts of the forest environment and 
of the way the harvester is operated on the machine perfor-
mance. The performance of two machine-operator units was 
compared by investigating the differences in fuel consump-
tion and log production after the variation in forest inventory 
data in individual forest locations was taken into account. 
The variation was successfully managed by clustering the 
forest inventory data in Finland with unsupervised machine 
learning methods, thus finding general forest types that 
apply for the whole country. Such clustering model is valu-
able when collecting data from individual forest operations, 
as the collected machine data will be comparable within 
all other locations in Finland sharing the same clustering 
group, i.e., the same forest type. Inside the clustering group, 
meaning all the grid cells having the same cluster index, 
the forest environment can be considered to be constant, 
enabling fair comparisons between machine-operator units. 
Additionally, this paper proposed linear regression model for 
predicting the fuel consumption of the machine based on the 
operator input and the forest inventory data. Such model can 
explain the actual reasons behind the detected differences in 
performance, if considered inside the clustered forest type. 
The statistically significant results suggest that the differ-
ences between the forest environments, operator actions and 
machine settings need to be closely monitored when evaluat-
ing the performance of separate forest operations.

The forest data processing methods presented in this paper 
are aimed for managing and taking advantage of the increas-
ing amounts of data produced in forestry operations. The pre-
sented pipeline of data fusion and machine learning methods 
was designed to enable continuous data collection of machine 
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fieldbus data in respect to the forest inventory data. Once the 
clustering model for the forest inventory data is trained, as 
shown in this paper, the data fusion process in individual forest 
machines necessitates only local forest inventory data for asso-
ciating the machine fieldbus data to the general forest types. 
This decreases the need for high capacity communication to 
data servers from the forest machines, as the data fusion results 
can be calculated in the on-board computer before transmis-
sion of the results. In addition, the suggested approach enables 
performance analysis to be constrained to very specific situ-
ations, for example to sawing of the logs, machine climbing 
uphill or single crane movement situations. Such automated 
methods are required for full-scale, commercial applications 
for fleet-wide performance improvement.

The clustering proposed in this paper offers a first version 
of the general forest types in Finland, but further cooperation 
of forestry researchers is needed for developing it further. The 
results regarding the impact of the environment to the har-
vester performance in this paper seem to be consistent with our 
earlier results in Melander et al. (2019), although the clustering 
of the soil-related data is somewhat different. Furthermore, 
in both studies, mean values of signals in the fieldbus data 
windows were used when analyzing the datasets. A future 
research is suggested on using more versatile signal features 
of the fieldbus data after the data fusion.
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