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ABSTRACT
A gradient-based method has been developed and programmed to opti-
mize the NH3 injections of an existing biomass-fired bubbling fluidized
bed boiler, the targets being to minimize both the NO and the NH3 emis-
sions. In this context, the reactive flow inside the boiler is modelled using
a custom-built OpenFOAM� solver, and then the NO and NH3 species are
calculated using a post-processing technique. Themultiobjective optimiza-
tion problem is solved by optimizing several weight combinations of the
objectives using the gradient-projectionmethod. The required sensitivities
were calculated by differentiating the post-processing solver according to
the discrete adjoint method. The adjoint-based sensitivities are validated
against finite differences calculations. Moreover, in order to evaluate the
optimization results, the optimization problem is solved using evolutionary
algorithms software. Finally, the optimization results are physically inter-
preted and the strengths and weaknesses of the proposed method are
discussed.
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1. Introduction

NOx emissions have become a major environmental issue, especially in highly industrialized coun-
tries, since they contribute to the formation of photochemical smog and acid rain, as well as ground
level ozone, which is a dangerous pollutant. This fact provoked political action and the implemen-
tation of restrictive legislation in order to reduce nitric oxide (NO) emissions. As a consequence,
recently, in the field of industrial combustion, several studies have beenmade aiming at the systematic
optimization of various boiler design parameters for low NOx operation.

A few of those used Computational Fluid Dynamics (CFD) in order to model the NOx emissions
in combination with a derivative-free search method. Risio et al. (2005) conducted one of the first
studies combining CFD combustion modelling with evolutionary-algorithm-based optimization in
order to optimize NOx and carbon burnout in boilers. In addition, Saario and Oksanen (2008) used
evolutionary algorithms and CFD modelling in order to optimize the NH3 and NO emissions of a
bubbling fluidized bed boiler. Dal Secco et al. (2015) used a genetic algorithm combined with CFD
in order to identify low NOx configurations in an industrial boiler. Salahi (2012) optimized NOx and
CH4 emissions of a coal combustion reactor using the ε-constraint method combined with the SIM-
PLEX method for the resulting Single Objective Optimization (SOO) problems and CFD modelling
as the evaluation tool.

In general, similar methods have also been used extensively in the broader field of combustion
optimization. For example, Janiga andThévenin (2007) reduced theCOemissions in a laminar burner
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using genetic algorithms and also the SIMPLEX method. Also, Liu and Bansal (2014) improved a
boiler’s heat transfer while at the same time decreasing the probabilities for slagging by combining
the multiobjective optimization NSGA algorithm with CFD modelling.

From the above it can be seen that systematic combustion optimization is usually performed
using derivative-free (and stochastic in most cases) optimization algorithms. While those algorithms
usually converge to the desired optima, they are rather slow when compared with Gradient-Based
Methods (GBMs), which in turn add an extra complexity to the process owing to the need for the
calculation of the sensitivity derivatives of the objective function(s) with respect to the design vari-
ables. In CFD-based optimization, the adjoint method has proven to be an efficient way to compute
the sensitivity derivatives—see e.g. Chapter 4 of Thévenin and Janiga (2008). This method is intro-
duced in Pironneau (1982) for elliptic problems and then further extended in several publications by
Jameson for potential, inviscid and viscous flow equations (Jameson 1988; Jameson andReuther 1994;
Jameson, Martinelli, and Pierce 1998). There are two approaches for the construction of the adjoint
equations: (1) the discrete, in which the discretized form of the PDEs is differentiated; and (2) the
continuous, in which the adjoint differential equations are first formed from the PDEs in their con-
tinuous form and then discretized and solved. For more information on the differences between the
discrete and the continuous adjoint approaches, see e.g.Nadarajah and Jameson (2000) and Giles and
Pierce (2000).

In the field of reactive flows, the continuous adjoint method has been applied recently by Braman,
Oliver, and Raman (2015) to calculate the sensitivities of laminar flames to several chemistry and fluid
model parameters. In addition, Lemke, Reiss, and Sesterhenn (2014) applied the continuous adjoint
method in order to optimize 1-D and 2-D flame configurations.

The target of this article is to utilize the discrete adjoint method in the context of a gradient-based
method in order to reduce the NO and NH3 emissions of a Bubbling Fluidized Bed Boiler (BFBB),
which was previously optimized in Saario and Oksanen (2008) using Evolutionary algorithms. To
the authors’ knowledge this is one of the first applications of the adjoint method in industrial boiler
environments.

To this end, the reactive flow in the BFBB is modelled using a solver based on the OpenFOAM�
(Weller et al. 1998) libraries. The emissions are calculated by solving the Nitrogen species’ transport
equations in a post processing fashion. Then, the post processing solver is differentiated and the sensi-
tivity derivatives with respect to the design variables are computed using the discrete adjoint method.
For the optimization, a gradient-based algorithm, the gradient-projection method, is implemented.
In addition, the emission minimization problem is solved again using evolutionary algorithms, also
proposing several improvements over Saario andOksanen (2008), and the solutions obtainedwith the
different optimization methods are compared. Finally, the optimization results are physically inter-
preted and the strengths and weaknesses of the proposed method in terms of computational time are
discussed.

2. Case description

The bubbling fluidized bed is a combustion technology used to burn low quality (i.e. high moisture
and ash content, low calorific value) fuel efficiently. In a Bubbling Fluidized Bed Boiler (BFBB) the
lower part consists of a bed of silica sand particles of about 0.5–1mm in diameter. The primary air
is fed upwards through the bottom of the bed with a velocity between 1 and 2m/s, so that the bed
material and other solids remain mainly in the bottom part of the furnace.

In this study, a BFBB burning mainly biomass sludge and a small amount of plastic reject is mod-
elled (Figure 1). In addition, a small amount ofmethane (CH4) is injected into the boiler as supporting
fuel. The boiler has a capacity of 40MWth, a height of approximately 18m and a bed area of about
50m2. The primary air is fed through the bed. The secondary air injections are at the level of 3.6m
and three fuel feeds are at the level of 2.83m.
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Figure 1. Modelled boiler geometry.

Usually, those boilers are supplied with a Selective Non-Catalytic Reduction (SNCR) system,
which is a post combustion system for NOx abatement. The SNCR system consists of several noz-
zles which inject NH3 into the flue gas in order to react with NO, the main products being harmless
N2 and water. It is well known that NO reduction is possible only in a confined temperature range
between 800 and 1100◦C, the so-called ‘temperature window’. Temperatures that are lower relative
to the window stop the SNCR reactions, while higher temperatures oxidize the injected ammo-
nia to NO and even higher NOx emissions can be observed. The efficiency of the SNCR process
varies between 30 and 80% and depends on several factors including temperature, NOx level, the
mixing of NH3 into the flue gas, NH3/NO molar ratio and residence time (Radojevic 1998). In
addition, the presence of CO in the flue gas shifts the temperature window down to lower tem-
peratures (Saario, Ylitalo, and Oksanen 2008). From the above, it is obvious that the SNCR system
should be finely tuned in order to reduce NO in the flue gases effectively. Otherwise, if the mix-
ing between NH3 and NO is not proper and/or if the injected NH3 follows a path outside the
optimum temperature window, not only will SNCR fail to reduce NO to the desired level, but an
appreciable amount of NH3, an equally harmful substance, will also be released into the environment
(ammonia slip).

In this study, the boiler is equipped with an SNCR system consisting of nine injections in total that
feed amixture ofNH3 and air into the flue gas. From them, eight injections are at the level of 7.5m (see
Figures 2 and 3 ), from which two are on the front wall and six are shared between the two side walls,
and the last one is on the rear wall at a level of 6.5m (the jet that can be seen in Figure 4(a,b) originates
from this injection). The target of this work is to optimize the NH3 distribution between those inlets
so that NOx emissions are minimized, while ammonia slip is kept to an acceptable level. At the design
point the distribution between all the SNCR injections is uniform. How much the outlet ammonia is
allowed to increase in order to improve the NO emissions is defined by the so-called decisionmakers,
who are engineers with in-depth technical knowledge of the subject.
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Figure 2. Contour of the NO volume fraction at the design point over the z = 7.5m slice plane (viewed from the top).

Figure 3. Temperature contour at the design point over the z = 7.5m slice plane (viewed from the top).

3. Mathematical modelling

In the optimization process, for any given distribution of NH3 between the ammonia inlets, the
amounts of NO and NH3 at the outlet should be calculated. Since pollutant (NO and NH3)
concentrations are very small compared to other species present in the flue gas mixture, it is assumed
that they do not affect the main flow variables and themajor species concentrations. Therefore, it suf-
fices to calculate them in a post-processing fashion. Hence, the modelling of the BFBB comprises two
separate stages: the reactive flowmodelling and the emissionsmodelling. Since the design parameters
of the optimization are the NH3 concentrations in the ammonia jet inlets, only the post processing
emission calculator will run during the optimization. Based on this, since this article focuses on the
optimization, the first modelling stage will be discussed in brief.
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Figure 4. Temperature contours over the slice planes at z = 6.5m and z = 10m. Figures on the right and the underlined bold
numbers on top of all the figures are CFD and experimental results, respectively, from the work of Saario, which are reported in
Saario, Ylitalo, andOksanen (2008) and Saario (2008). (a) Solutionwith OpenFOAM� (present) at z = 6.5m; (b) Solution from Saario
et. al. at z = 6.5m; (c) Solution with OpenFOAM� (present) at z = 10m; and (d) Solution from Saario et. al. at z = 10m.

3.1. Reactive flowmodelling

To model the BFBB, the Favre-averaged equations for the compressible, turbulent, reactive flow were
solved using the open source software OpenFOAM�. Apart from the continuity, Navier–Stokes and
the energy equation, a convection–diffusion equation is solved for any species mass fraction that
is present in the gaseous mixture, except for N2, which is set so that the sum of the species mass
fractions amounts to one. As for the turbulence, although in previous studies of the same boiler the
realizable k–ε model had been used successfully—see Saario, Ylitalo, and Oksanen (2008) and Saario
and Oksanen (2008) and the references therein—in this study, the standard k–ε model (Launder
and Spalding 1983) is used, because it was observed to be more stable. For more information on the
turbulent reactive flow equations, see e.g. Poinsot and Veynante (2005). The reactions are modelled
using the four-step Lindstedt and Jones reaction mechanism (Jones and Lindstedt 1988) and the tur-
bulence–chemistry interaction is modelled with the Eddy Dissipation Combustion Model (EDCM)
(Magnussen and Hjertager 1976), which was programmed by the authors. The radiation is modelled
using the finite volume discrete ordinates method (Raithby and Chui 1990) to solve the radiative
transport equation, in combination with the weighted-sum of grey gases model (Smith, Shen, and
Friedman 1982) to calculate the gas-phase absorption coefficient.
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The boundary conditions for this simulation can be found in Saario (2008). However, in the work
of Saario, a constant heat flux boundary condition with a uniform value of−500Wm−2 was used for
the refractory walls of the boiler. Since in practice the heat flux to the boiler walls is not uniform, it
was here consideredmore accurate to solve for the wall heat transfer instead, through an approximate
1-D model. More specifically, the refractory wall boundary condition is derived from the following
equation:

U (Tw − T∞) = Qr − k∇T, (1)

where U is the so-called wall U-value, or thermal transmittance, set at 0.6 (Wm−2K−1), in order to
match the experimentally calculated heat losses from the respective walls, Tw is the temperature of
the inner wall, T∞ is the ambient temperature, set at 298K, Qr (Wm−2) is the incident radiation on
the wall calculated from the radiation model, and k (Wm−1K−1) is the thermal conductivity of the
flue gases.

The geometry is discretized using a grid sufficiently fine for the present purposes consisting of
3.2 million cells. Keep in mind that the grid used here is an order of magnitude finer than the one
used previously in Saario (2008). As a solver, a custom built modification of the reactingFoam solver
is used. The convection terms are modelled using a second-order upwind scheme and the diffusion
terms are discretized applying a second-order central-differencing scheme.

3.2. Emissionmodelling

The nitrogen species reactions inside the boiler are modelled using a computationally economical,
global, two-step reaction mechanism:

NH3 + O2−−−−→NO + H2O + 0.5H2 (r1)

NH3 + NO−−−−→N2 + H2O + 0.5H2. (r2)

Here, as proposed by Saario, Ylitalo, and Oksanen (2008), the kinetic parameters developed by Brink,
Kilpinen, and Hupa (2001) and Duo, Dam-Johansen, and Østergaard (1992) will be used in the
lower (z ≤ 3.65m) and upper (z> 3.65m) parts of the boiler, respectively. The NO and NH3 species
concentrations are calculated by solving a steady-state transport equation for each one, i.e.

∂

∂xi

(
ρ̄ũiỸk

) = ∂

∂xi

((
ρ̄D + μt

Sct

)
∂Ỹk

∂xi

)
+ S̄k for k = 1, 2, (2)

where ρ̄ is the time-averaged density, ũi is the Favre-averaged velocity component in the direction i,
Ỹk is the Favre-averagedmass fraction of species k,D is the diffusion coefficient of the solved species in
the mixture, which is considered constant and set at 1.43 × 10−4 m2s−1, Sct is the turbulent Schmidt
number set at 0.7 and S̄k is the time-averaged production rate of species k. S̄k is given by

S̄k =
Nr∑
r=1

Mk
(
ν′′
k,r − ν′

k,r
)
ω̄eff,r , (3)

where Nr is the number of reactions, ω̄eff,r is the effective progress rate of the reaction r, which is
dependent on the reaction mechanism and the combustion model considered, Mk is the molecular
mass of species k and, finally, ν′′

k,r and ν′
k,r are the corresponding stoichiometric coefficients for species

k in the reaction r on the product and reactant sides. Here, the effective reaction rates are calculated
using the Partially Stirred Reactor (PaSR) combustion model (Chomiak 1990; Chomiak and Karls-
son 1996) in place of the Eddy Dissipation Concept (EDC) (Magnussen 2005), which was used in
Saario (2008). PaSR is based on a similar concept to EDC, considering that reactions occur in a part
of the computational cell. It also takes into account finite rate chemistry, similarly to EDC, which is
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important here since the nitrogen species reactions are in general slow (i.e. the chemical timescale
is comparable to the mixing timescale). The main reason for selecting PaSR is that its steady-state
implementation is much faster than that of EDC, since it does not require the integration of an ODE
system for each cell of the domain in order to calculate the reaction source terms. At the same time,
PaSR has recently been shown to be of comparable accuracy to the EDC model and has been used
successfully in various studies (Li et al. 2017; Fortunato et al. 2018). According to this model, the
(effective) progress rate can be calculated as

ω̄eff,r = κω̄ch,r , (4)

where κ is the volumetric fraction of the reacting part of the cell and ω̄ch,r is the ‘laminar’ progress
rate of reaction r. In Equation (4) the rate ω̄ch,r is calculated using the law of mass action, i.e.

ω̄ch,r = kf ,r
N∏
l=1

c

(
η′
l,r+η′′

l,r

)
l , (5)

where kf ,r is the forward reaction rate given by the Arrhenius law, cl is the molar concentration of
species l, η′

l,r and η′′
l,r are the rate exponents for the reactant and product species, respectively, and

N is the number of species present in reaction r. In addition, the reactive volume fraction κ can be
calculated as

κ = τch

τch + τmix
, (6)

where τch and τmix are the chemical and mixing timescales, respectively. Here, the NH3 production
rate diagonal Jacobian element is used for the calculation of τch as follows:

τ−1
ch = − ∂fNH3

∂CNH3

, (7)

where fNH3 is the production rate of NH3 (kmolm−3s−1) and CNH3 (kmolm−3) is the molar
concentration of NH3 in the mixture. The τmix is given by

τmix = Cmix

√
μeff

ρε
, (8)

where Cmix = 0.5 is used.
Although the PaSR model is in the official OpenFOAM� repositories, it is reimplemented by the

authors, since OpenFOAM� uses a different chemistry time scale than the one in Equation (7). The
species transport equations for the NH3 and NO are solved in a segregated way using a custom-built,
OpenFOAM� based solver keeping all the other species concentrations (apart from N2, which is
set so that the sum of the species mass fractions is equal to one) and the flow variables constant.
The convection term is discretized using a first order upwind scheme, while the diffusion term is
discretized applying a second-order central-differencing scheme.

4. Optimization

From Section 2, it can be inferred that, for this problem, there is not a single optimum solution, but
rather a set of optima (a Pareto set). Eachmember of this set is better in terms of one of the pollutants
NO or NH3, but worse in terms of the other. Here, multiobjective optimization (MOO) is applied in
order to identify this set. To achieve this, the optimal ammonia concentration distributions between
the SNCR injections are being searched for, while the injected air–NH3 mixture mass flux from each
injection feed is kept constant. In addition, the total injected ammonia is constrained so that it does
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Table 1. Optimization cases solved.

Case ṁNH3,max (kg s−1) XNH3,max (ppmvol)

MOO 0.0093 15
Case-I 0.0046 15
Case-II 0.0046 6.1

not surpass the capacity of the feeding system, which is twice the value at the current design point.
Moreover, for the NH3 emission, a limit of 15 ppmvol should be guaranteed based on knowledge from
the decisionmakers. All in all, the expected result from the optimization process is an approximation
of the part of the Pareto set with NH3 values less than 15 ppmvol.

Apart from this, two additional optimization cases will be studied, which will be referred to from
nowon as ‘Case-I’ and ‘Case-II’. Case-I optimizes the distribution between the SNCR injectionswhile
keeping the total injected ammonia at most the same as the current design point. This case is of
significant importance, since boiler operators prefer to keep the injected ammonia as small as possible
for cost reasons. For this case, the upper limit for the NH3 at the outlet is set at 15 ppm. Case-II has
the same total ammonia injection constraint, but a more stringent NH3 outlet limit, equal to the
current design point’s NH3 emissions. This is also an interesting case, since it proposes a solution
that reduces NO emissions without any cost in exchange (neither the total SNCR injection or the
NH3 at the flue gases outlet are increased). It can be observed that both Case-I and Case-II are Single
Objective Optimization (SOO) cases, where the second objective (outlet NH3) is converted into a
constraint.

4.1. Formulation of the problem

Consider a minimization problem. Since the target is the simultaneous minimization of the NO and
NH3 emissions, the objective function vector f (x) is given by

f (x) = (
fNO(x), fNH3(x)

)T , (9)

where fNO(x) and fNH3(x) are the mole weighted averages of the mole fractions of NO and NH3 in
the flue gas at the boiler outlet, respectively. For the SOO cases, Case-I and Case-II, only fNO(x) is
included in (9). The design variable vector x is given by

x = (Y1,Y2,Y3, . . . ,Y9)
T , (10)

where Yi stands for the mass fraction (kg/kg) of NH3 in the ith SNCR injection. The feasible set, S, is
defined as

S = {
x ∈ R

9 | 0 ≤ Yi ≤ Ymax ≤ 1, for i = 1, 2, 3, . . . , 9,

c1(x) = ṁflow

9∑
i=1

Yi − ṁNH3,max ≤ 0,

c2(x) = fNH3(x) − XNH3,max ≤ 0
}
, (11)

where ṁflow is the mixture mass flux in each injection (ṁflow = 0.1313 kg s−1), ṁNH3,max is the maxi-
mum allowed total NH3 injected into the boiler and XNH3,max stands for the maximum allowed NH3
emission at the outlet. The design variable upper bounds (Ymax) are set equal to ṁNH3,max/ṁflow, by
virtue of constraint c1. A compact representation of the optimization cases solved and their respective
constraints can be found at Table 1.
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4.2. Multiobjective optimization

Themost popularmethod for solving amultiobjective optimization problem is the weightingmethod
(see e.g. Cohon [2004]) due to its simplicity in implementation and intuitiveness. According to this,
the MOO problem is converted into a set of SOO problems by minimizing several convex combina-
tions of the objectives. For example, here, 21weight combinationswere used and so theMOOproblem
was converted into a series of 21 SOO problems. Specifically, the following problem is solved using
an even distribution of 21 weight combinations in the interval [0, 1]:

min F = wNO f̂NO (x) + wNH3 f̂NH3 (x) withwNO,wNH3 > 0,wNO + wNH3 = 1

s.t. x ∈ S, (12)

where min–max normalized objective functions are used, namely f̂NO and f̂NH3 , in order to capture
a better representation of the Pareto front. More precisely, f̂NO and f̂NH3 are given as

f̂NO = fNO − fUNO
fNNO − fUNO

, f̂NH3 = fNH3 − fUNH3

fNNH3
− fUNH3

(13)

where (fUNO, f
N
NH3

) and (fNNO, f
U
NH3

) are the objective function values obtained when a SOO of NO and
NH3 emissions, respectively, is performed. It should be noted here that the weightingmethod has two
well known drawbacks—see Das and Dennis (1997). Firstly, it is not able to capture the non-convex
regions of the Pareto set, and secondly, a uniform distribution of weights can lead to a highly non-
uniform distribution of the Pareto set points in the objective space, especially if the Pareto set has
some flat regions (i.e. with almost constant slope of the Pareto curve).

Another popular method for MOO is the ε-constraint method introduced by Haimes, Lasdon,
andWismer (1971), in which one of the objective functions is minimized while setting upper bounds
on all the rest, having them act as constraints. This method is used in practice when solving the two
additional cases described previously as Case-I and Case-II.

Although it is straightforward to combine the aforementioned methods with evolutionary algo-
rithms, the SPEA2 (i.e. Strength Pareto Evolutionary Algorithm) method (Zitzler, Laumanns, and
Thiele 2001) is used instead, mainly because with one EA run the whole Pareto set can be approx-
imated. Moreover, SPEA2 encourages front spreading so that the elite set individuals are evenly
distributed in the objective space.

4.3. Gradient-based optimization

4.3.1. Solution of SOO sub-problemswith the gradient-projectionmethod
The independent SOO problems resulting from the weightingmethod, as well as the SOOCase-I and
Case-II, are solved using a modification of the steepest descend method, the Gradient-Projection
Method (GPM). This is a primal, first derivative method that dates back to Rosen (1960), initially
developed for linear constraints and then extended to handle nonlinear ones as well (Rosen 1961).
The basic idea behind this method is to project the steepest descend direction onto a tangent to the
active constraints subspace, remaining this way on the feasible side of the domain while improving
the objective function at the same time. In this way, the algorithm produces feasible and continuously
improved solutions at any iteration, until convergence.

Here, a brief description of the method follows. Let F be the function to be minimized. This
algorithm keeps track of the active constraints, which belong to the so called active set, An. GPM
applies a movement

�x = xn+1 − xn = −η P∇F, (14)

where η is a coefficient (step) and P is a projectionmatrix. P is calculated from the QR decomposition
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of the matrix N, whose columns are the active constraints’ gradients. It is

N = [Q1 Q2]
[
R
0

]
= Q1R (15)

and

P = Q2QT
2 . (16)

Also an additional step,�x′, is taken in order to restore any lost feasibility because of the nonlinearity
of the constraints, i.e.

�x′ = −N
(
NTN

)−1
ca, (17)

where ca is the vector of active constraints. Here, the two steps given by (14) and (17) are combined
into one, as proposed by Arora and Haug (1979; see also Haftka and Gürdal 2012, 179). In addition,
during the iterations a constraint can be removed from the active set dependent on the sign of its
first-order Lagrange multiplier approximations.

4.3.2. Calculation of the sensitivity derivatives
In this study, the discrete adjoint method is used for the calculation of the sensitivity derivatives. In
this section, the implementation of the discrete adjoint method will be briefly presented. The adjoint
method is a powerful and fast way (comparing with finite differences) to calculate the sensitivity
derivatives of a PDE constrained problem. Here, the problem is constrained by the nitrogen species
transport equations (2). In the following, F is the objective function to be minimized, R are Equa-
tions (2) in their discretized form (more precisely a column vector containing the residuals of the
discretized equations), Y is a column vector containing the NH3 and NO mass fractions at the cen-
tre of the cells, which are the unknowns of the direct problem, and YNH3,b are the mass fractions of
ammonia at the SNCR inlets, which are the design variables of the optimization problem. In general,
F is a function of the unknowns of the direct problem and the design variables, i.e.

F = F
(
Y ,YNH3,b

)
. (18)

It can be observed that Y is an implicit function of the design variables, i.e. Y = Y(YNH3,b), through
Equations (2). So, a change in YNH3,b changes F by

δF = ∂F
∂Y

δY + ∂F
∂YNH3,b

δYNH3,b. (19)

The variations δY and δYNH3,b can be related through the direct problem equations in their discrete
form, R, which should be satisfied at any design point. So,

R
(
Y ,YNH3,b

) = 0 ⇒ δR = ∂R
∂Y

δY + ∂R
∂YNH3,b

δYNH3,b = 0. (20)

Because of Equation (20), Equation (19) can be written as

δF = ∂F
∂Y

δY + ∂F
∂YNH3,b

δYNH3,b − AT
(

∂R
∂Y

δY + ∂R
∂YNH3,b

δYNH3,b

)

=
(

∂F
∂Y

− AT ∂R
∂Y

)
δY +

(
∂F

∂YNH3,b
− AT ∂R

∂YNH3,b

)
δYNH3,b, (21)
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whereA is a column vector containing the adjoint variables. ThenA is chosen so that the δY product
term is discarded from Equation (21) by solving the following, so-called adjoint, equation:

(
∂R
∂Y

)T
A =

(
∂F
∂Y

)T
, (22)

or, if tensor notation is used,

∂Ri
∂Yj

Ai = ∂F
∂Yj

, (23)

where both indices i, j run through the unknowns of the problem at hand (e.g. the number of differen-
tial equations times the number of cells). Then, according to Equation (21), the sensitivity derivatives
can be given from the relation

δF
δYNH3,b,i

= ∂F
∂YNH3,b,i

− Aj
∂Rj

∂YNH3,b,i
, (24)

where here the indices i and j run through the design variables and the unknowns of the direct
problem, respectively.

One can observe from Equations (23) and (24) that

∂R
∂Y

,
∂F
∂Y

,
∂F

∂YNH3,b
and

∂R
∂YNH3,b

should be calculated. Assume that the target is to minimize the NO emissions of the boiler. Then, the
objective function can be defined as the mole weighted average of the NOmole fraction at the outlet

F =

∫
out

ρuini
YNO

WNO
dS∫

out

ρuini
Wmix

dS
, (25)

where Pout = ∫
out ρuini/Wmix dS is the outlet mixture mole flux, Wmix is the mixture molar mass,

which is considered to be unaffected by NO concentration, andWNO is the NO species molar mass.
In Equation (23), the discrete form of Equation (25) is used, i.e.

F ≈ 1
Pout

∑
outlet,i

φi
YNO,i

WNO
, (26)

where φi and YNO,i are the mass flux and the NOmass fraction of the outlet face with index i, respec-
tively. Since at the outlet a zero-gradient boundary condition is used for the species, YNO,i = YNO,Pi ,
with YNO,Pi being the value at the centre of the cell neighbouring the face i. Now ∂F/∂Y and
∂F/∂YNH3,b can easily be calculated by differentiating Equation (26). In fact, it is easy to observe
that here ∂F/∂YNH3,b is a zero row vector. In a similar manner, after having formed R, ∂R/∂Y and
∂R/∂YNH3,b are calculated by hand, differentiating the respective terms.

Afterwards, the adjoint code is programmed in the OpenFOAM� framework. The resulting
adjoint equations are solved using a biconjugate-gradient block solver from the foam-extend project
(https://sourceforge.net/projects/foam-extend/), which is a fork of OpenFOAM�.

https://sourceforge.net/projects/foam-extend/
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Table 2. Evolutionary algorithm parameters.

Parents’ population size 15
Offspring population size 40
Elite set size 26
Mutation probability 4%
Coding Binary–Grey, 12 bits
Discretization accuracy �Y ≈ 0.0017wt%

4.4. Evolutionary algorithm optimization

In order to validate the optimization results, the MOO problem is also solved using an Evolutionary
Algorithm (EA) through the generic EAbased software platform ‘EASY’ (Giannakoglou 2008; Parallel
CFD and Optimization Unit 2008). Although the EA based optimization of the problem presented
in section 4.1 is also performed in Saario and Oksanen (2008), it is repeated here since some of the
models used are different, and so the results are not anticipated to be exactly the same. The basic
parameters of the EA run can be found in Table 2. Keep in mind that finding the best tuning of the
EA is beyond the scope of this work.

In an attempt to improve the performance of the EA, the following changes in the setup over the
previous work by Saario and Oksanen (2008) are performed.

• Here, the whole optimization process is automated and the problem is solved directly as a
MOO problem using the SPEA2 technique to assign fitness values to the individuals (see also
Section 4.2). In this way, the Pareto set is approximated with one EA run. In contrast, in the pre-
vious study, an interactive method was used together with an achievement scalarizing function
to convert the problem from MOO to SOO, see Saario and Oksanen (2008) and the references
therein.

• It can be observed that the calculation of the first of the constraints in Equation (11) does not
require any CFD evaluation. This fact is smartly exploited to reduce the computational cost by
bypassing the CFD solver run when the first constraint is strongly violated (more that 10%).

• In order to reduce the computational cost further, online trained metamodels are used to provide
low cost approximations of the objective functions through the Inexact PreEvaluation (IPE) mode
of the EASY software (Karakasis and Giannakoglou 2005; Giannakoglou 2002; Karakasis, Giotis,
and Giannakoglou 2003). In this study, the metamodels are based on Radial Basis Function (RBF)
networks. The inexact preevaluations start after having collected approximately 4000 successful
evaluations in the database, a file written by EASY containing all the candidate solutions and their
evaluations. This happens after 186 generations. From the 187th generation onwards, all the indi-
viduals are first evaluated using themetamodels and, after that, the best 6–16 of them are evaluated
using the ‘exact’ CFD (OpenFOAM�) solver.

The EA runs are performed using 10 processors and continued until the algorithm has stopped
finding better solutions. In the end, approximately 16,000 ‘exact’ (CFD) evaluations and another
13,000 ‘inexact’ ones are performed.

5. Results and discussion

5.1. Reactive flowmodelling results

In order to validate the OpenFOAM� solver, the solution obtained is compared with experimen-
tal and CFD modelling results from the PhD work of Saario, who used a different, commercial,
solver—see Saario (2008) and the references therein. Figure 5 plots the area-weighted average of
the temperature as a function of boiler height up to z = 13m, as modelled with OpenFOAM� in
the present study, in comparison with the solution of Saario (2008). Although the solver, the mesh,
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Figure 5. Area-weighted average of temperature as function of boiler height.

the refractory wall temperature boundary condition and the version of the k–ε model are different
between the two boiler models, the average temperature differs by nomore than 20K. Figure 4 shows
the temperature contours resulting from the reactive flowmodelling with OpenFOAM� at the levels
z = 6.5 and 10m, in comparison with the CFD and experimental results from the work of Saario,
reported in Saario, Ylitalo, and Oksanen (2008) and Saario (2008). From this figure, it can be seen
that the temperature contours calculated here are rather similar to the ones reproduced from Saario’s
results. In addition, the locations of the temperature peaks of both CFD models are in close prox-
imity. One difference between the two models is that the temperature peak of Saario’s solution is
higher (67.4 degrees higher at the z = 6.5m level and 36.3 degrees higher at z = 10m). As for the
measurements, it can be seen that they are all well below the CFD results. This discrepancy can be
attributed mainly to the fact that a bare unshielded thermocouple was used, which typically underes-
timates the temperature due to the radiation losses to the walls. For temperatures that prevail at the
height z = 6.5m, the error can be asmuch as 100K (Kitto and Stultz 2005; Saario 2008). Nevertheless,
refractory walls, which have a relatively high temperature, are used at this height, and so the radiation
losses to them can be somewhat restrained. In fact, at a level of z = 6.5m, the maximum differences
between the CFD and the experimental results are in the order of 80–100 degrees and are observed in
the hottest region of the slice, near the maximum temperature, as anticipated. However, in the rest of
the slice, the differences are below 50 degrees, decreasing with decreasing temperature, as expected.
At the higher level of z = 10m, bigger deviations between the CFD and the experimental results are
anticipated, since the bounding walls are composed of pipes carrying steam, and so they are much
colder (T = 572K) than the flue gases. Indeed, at this level, the differences between the CFD and
the experimental results are in the order of 100K. Anyway, the radiation losses of the pyrometer are
difficult to calculate, and so those measurements can only be used as an indication of the temperature
levels at different locations. All things considered, the OpenFOAM� model applied is able to predict
the temperatures inside the BFBB reasonably well, in accordance with the CFD modelling and the
experimental results of Saario.
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Figure 6. NO versus SNCR load (left), and NH3 versus SNCR load (right).

5.2. Emissionmodelling results

Figure 6 shows this work’s prediction of the NO and NH3 emissions versus different SNCR loads in
comparison with CFD predictions and the experimental results of Saario (Saario 2008; Saario, Yli-
talo, andOksanen 2008). Keep inmind that here the PaSR combustionmodel is used for the emission
calculations instead of the EDC used in Saario (2008). Nevertheless, as far as the CFD results are con-
cerned, they predict almost the same efficiencies for NO reduction with increasing SNCR load (see
Figure 6 (left)). It can also be observed that bothmodels underestimate theNO reduction at small and
big SNCR loads, while for loads close to the design point, Saario’s model gives a better match with the
experiments. In contrast, for the NH3 (see Figure 6 (right)), the modelling applied in this work pro-
vides generally a better match to the experimental results. The discrepancies between the CFD and
experimental results are attributed mainly to the approximate nature of the RANS based model com-
binedwith a globalmechanism. This type ofmodels can only be expected to provide approximate and
qualitatively correct predictions and trends for nitrogenous species pollutants (NO, NH3) (Zahirović
et al. 2010). Considering that this work deals with an industrial scale boiler in the context of opti-
mization, with hundreds at least CFD based evaluations being performed, the cost of using a detailed
mechanism in combination with LES or even RANS would have been prohibitive. Another source of
error might be the simplified modelling of the bubbling bed. Besides CFD models, the experimental
results are susceptible to several errors. Firstly, the measurement equipment manufacturer reports an
error of 10%. In addition,measurements are taken fromonly one position in themiddle of the flue gas
channel. For more information about the measurements, see Saario (2008, 61 ). All in all, the model
applied here is able to predict the emissions from the BFBB reasonably well, and so it is considered a
credible tool for the evaluation of the different candidate solutions during optimization.

5.3. Verification of the sensitivity derivatives

The adjoint gradients are verified against Finite Difference (FD) derivative calculations using a for-
ward difference formula with a step equal to 1 × 10−8. As shown in Figure 7, the differences between
the adjoint and the FD gradients are negligible.

5.4. Optimization results

Figure 8 shows the results obtained from all the optimization runs. It contains the elite set of the evo-
lutionary algorithm, the results of the SOO problems resulting from the use of the weighting method
and then optimized using the GPM and the two extra optimization cases considered here and also
solved with the GPM, i.e. Case-I and Case-II. It can be observed that, for the weighting method, only
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Figure 7. Comparison of adjoint versus finite differences gradient calculations.

18 points appear in the figure, while 21 different weight combinations were used. That is because,
for wNO ≥ 0.85, the optimal solutions collapse onto the same point because the outlet NH3 upper
limit is reached. Also in Figure 8, the four points of most interest to the decision makers are marked
as ‘a’, ‘b’, ‘c’ and ‘d’. Points ‘a’ and ‘b’ are the weighting method solutions with the lowest NO emis-
sions. Those points are rather significant, since NO reduction is the main target here. Additionally,
points ‘c’ and ‘d’ are the solutions for Case-I and Case-II, respectively. Point ‘a’ gives the highest NO
reduction (19.2%) from the design point. In return, it increases NH3 emissions by 145.9% and also
the injected NH3 by 84.8%. Point ‘b’ decreases outlet NO by 16.7%, and increases the outlet NH3 and
the injected NH3 by 104.9% and 54.3%, respectively. Point ‘c’ decreases NO by 14.5%with NH3 emis-
sions remaining marginally below the 15 ppmvol limit, while not increasing the injected ammonia at
all. Finally, point ‘d’ achieves an NO reduction of 8% without injecting more ammonia or increasing
the ammonia emissions. One can also observe that points ‘c’ and ‘d’ essentially lie on the Pareto front
which would be obtained with a stricter ammonia injection limit equal to the current design’s value.

The representations of the Pareto front found by the gradient-projection method and the evolu-
tionary algorithms are in general rather similar. One difference is that the points found when using
the weighting method are a little biased towards the uninteresting, low NH3/high NO end of the
Pareto front, while the EA results with the SPEA2 method are more evenly distributed. Nevertheless,
a satisfactory representation and distribution of Pareto points is still achieved when using the weight-
ing method. This is because the Pareto set for this problem does not contain any non-convex or ‘flat’
regions. So it can be concluded that the weighting method is suitable and effective for the solution of
the MOO problem here. Another difference is that the gradient-projection method, being exploita-
tion oriented, has provided more refined solutions when compared with the exploration oriented
evolutionary algorithms (see Figure 8). Moreover, after 16,000 exact and 13,000 inexact evaluations,
the evolutionary algorithm could not provide any global optima with significantly improved perfor-
mance over the GPM solutions. Even though this is not a guarantee that the GPM found the global
optima, it means that, probably, the optima found by the GPM do not differ much in the objective
space from the global ones. Therefore, it can be concluded that the danger of converging to local
optima when using the GPM is of minor practical importance here.
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Figure 8. Optimization results in the objective function space. ‘MOO-EA’ is the solution to the MOO problem using evolutionary
algorithms, ‘MOO-GBM’ is the solution to the MOO problem using the weighting method with the gradient-based method for the
SOO subproblems, and Case-I and Case-II are the solutions to Case-I and Case-II using the gradient-projection method.

Figure 9 shows the representation of the solutions ‘a’, ‘b’, ‘c’ and ‘d’ in the design space. The figure
reveals that the optimum distributions are far from the uniform distribution of the design point. It
can also be seen that, at the optimum solutions, several of the constraints are binding. For example,
for the solution ‘a’, five constraints are binding; four of them are the simple variable bounds and the
fifth is the outlet NH3, which is 15 ppmvol. It is interesting to notice that all solutions of Figure 9 run
with ‘Front left’, ‘Side left a’ and ‘Side left b’ injections completely turned off. Also, the injection ‘Front
right’ is turned off in ‘a’ and ‘c’ and almost turned off in ‘b’ and ‘d’. In addition, all of the solutions
propose that the injected NH3 from the ‘Side left c’ injection should be increased. A similar finding
was also noticed by Saario and Oksanen (2008).

In order to interpret the results physically, the contours of NO at levels z = 7 and 7.5m, as well
as the temperature contour at the level of z = 7.5m are plotted in Figures 10, 2 and 3, respectively.
Figures 2 and 10 reveal that most of the NO is formed in the rear part of the boiler, close to the left
and right walls with even higher concentrations at the left walls. That is why mainly the ‘Side left c’
but also the ‘Side right c’ injections have higher concentrations than the design point in the optimum
solutions. In addition, Figure 3 shows that the temperature close to the left front part of the boiler
is higher than it should be for the SNCR to perform properly. Also, close to the right front part, the
temperature is less than the optimum SNCR temperature owing to the impact of two of the SNCR
jets, which are much colder than the average flue gases in the region. That is why all the optimum
solutions run with ‘Front left’, ‘Side left a’ and ‘Side left b’ injections turned off and with at most a
very small NH3 concentration at the ‘Front right’ injection.

5.5. Adjointmethod efficiency

The cost of solving the adjoint equations and calculating the gradients is similar to one direct emission
calculation problem. So the cost of one optimization cycle employing the adjoint method is equal to
two emission calculation problems (since both the direct and the adjoint problem have to be solved),
while this increases to n+ 1 direct problems if FDs are used (n = 9 here). Keep in mind that, in areas
close to the maximum allowed NH3 constraint, one extra adjoint calculation is needed for the NH3
gradient, thus increasing the optimization cost to three emission calculation problems per optimiza-
tion round. From the above, it is apparent that there is an enormous performance benefit (70–80%)
when using the adjoint method over FDs.
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Figure 9. Representation of the solutions ‘a’, ‘b’, ‘c’ and ‘d’ (see also Figure 8) in the design space. The dashed-line represents
the uniform distribution of NH3 concentration at the design point. (a) Solution ‘a’: fNO = 71.4 ppmvol, fNH3 = c2 = 15 ppmvol

(active), c1 = 0.0085 kg s−1 (inactive); (b) Solution ‘b’: fNO = 73.6 ppmvol, fNH3 = c2 = 12.5 ppmvol (inactive), c1 = 0.0071 kg s−1

(inactive); (c) Solution ‘c’: fNO = 75.6 ppmvol, fNH3 = c2 = 14.9 ppmvol (inactive), c1 = 0.0046 kg s−1 (active); and (d) Solution ‘d’:
fNO = 81.3 ppmvol, fNH3 = c2 = 6.1 ppmvol (active), c1 = 0.0046 kg s−1 (active).

Figure 10. Contour of the NO volume fraction at the design point over the z = 7m slice plane (viewed from the top).
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5.6. Gradient-projectionmethod efficiency

The SOO problems solved with the GPM converged in about 140 optimization cycles. Every cycle
comprises the solution to the direct problem, the gradient calculation of the objective function and
the gradient calculation of the nonlinear constraint c2. So the equivalent cost of each optimization
round is about three direct problems and the optimization cost for each point in Figure 8 is about
420 direct problems. In practice, the cost is actually much less than that since the gradient of the
constraint c2 is only calculated when the current iterate approaches the constraint isosurface within
some user specified tolerance. All the SOO subproblems are independent of each other and so are
solved in parallel with the exception of the first two SOO problems needed for the normalization of
the objectives. Considering the 16,000 exact and 13,000 inexact evaluations performed during the
EA optimization, the enormous performance benefit when using gradient-based methods becomes
evident.

6. Conclusions

Here, the discrete adjoint method was successfully applied in this industrial combustion case. In
the end, it was found to be rather efficient and accurate for the sensitivity derivatives calculation,
providing a great speed-up over the use of FDs.

The weighting method, which was used to convert the MOO problem into a series of SOO prob-
lems, was able to provide a satisfactory distribution of Pareto set points. This can be attributed
to the shape of the Pareto front for this specific application. In addition, the gradient-projection
method proved to be satisfactorily efficient in solving the resulting SOO problems. The efficiency
of the optimization can be further improved if a second order gradient-based method is used uti-
lizing the Hessian or an approximation thereof (e.g. using the Broyden-Fletcher-Goldfarb-Shanno
[BFGS] algorithm). All in all, the gradient-based method applied in this study was more efficient in
terms of computational time, providing at the same timemore refined solutions than the evolutionary
algorithm. This fact encourages the use of adjoint-based optimization in other industrial combustion
cases as well.

In the end, a 19.2% decrease in the NO emissions could be achieved at the expense of increasing
the injected SNCR ammonia and also the NH3 emissions at the outlet (which still remained at an
acceptable level). Also, according to the result for Case-II, an 8% improvement in NO emissions can
be achieved at no extra cost. Ultimately, which solution will finally be selected will be decided by
the decision makers based on the increase of the outlet as well as the injected NH3 that they can
tolerate in exchange for the NO reduction. For general guidance, the ‘Side left c’ and the ‘Side right
c’ concentrations should be increased, while the injections ‘Front left’, ‘Front right’, ‘Side left a’ and
‘Side left b’ should be turned off.

It should be noted that the exact gains, if the proposed solutions are actually used, depend on the
accuracy of the modelling. Here, as seen in Section 5.2, the predictions are only qualitatively correct.
In practice, this means that, while the proposed NH3 distributions would probably decrease the NO
emissions, the decrease percentageswill not be exactly equal to those predicted by themodel. This fact
does not detract from the usefulness of the applied optimization, since the results are still a valuable
indication of the changes that should be made to reduce the emissions. In order to be on the safe side,
the proposed solutions should be tested further by experiments before they are applied in practice
and/or a solution well below the upper NH3 limit (e.g. Case-II), which still decreases NO, can be
selected.

Although the results produced here are specific to this geometrical configuration, the method and
the tools developed and used in this work are general and can be tailored and applied to other opti-
mization problems relating to industrial boilers as well. Finally, it is worth mentioning that in cases
optimizing the more fundamental parameters of the boiler, such as the geometry or the speed of the
secondary air injections, the reactive flow solver should also be coupled to the optimization process,
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since a change in those parameters would also change the flow field and the major species concentra-
tions in the boiler. Thismeans that the reactive flow solver should also be run during the evaluation of
each candidate solution. In addition, it should also be differentiated for the calculation of the required
sensitivity derivatives.
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