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Abstract
Advanced Internet-of-Things applications require control-oriented codes to be executed with low latency for fast responsivity
while their advanced signal processing and decision making tasks require computational capabilities. For this context, we
propose three multi-issue core designs featuring an exposed datapath architecture with high performance, while retaining
energy-efficiency. These features are achieved with exploitation of instruction-level parallelism, fast branching and the use
of an instruction register file. With benchmarks in control-flow and signal processing application domains we measured in
the best case 64% reduced energy consumption compared to a state-of-the-art RISC core, while consuming less silicon area.
A high-performance design point reaches nearly 2.6 GHz operating frequency in the best case, over 2× improvement, while
simultaneously achieving a 14% improvement in system energy-delay product.

Keywords Low power · Instruction stream · Energy-efficiency · Instruction register file · IoT · Always-on · RISC-V ·
TTA · Exposed datapath · Transport Triggered Architecture

1 Introduction

It is estimated, that the information and communication
technology (ICT) sector will consume up to 20% of global
energy production by 2025 [1]. From an environmental
point of view, there are estimates that around 14% of
total greenhouse gas emissions emerge from the ICT
sector by 2040 [2]. The era of Internet-of-Things (IoT)
and its increasing demands on computational complexity
are expected to result in the introduction of billions of
compute devices. Many of these small form factor devices
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are battery-powered or use energy harvesting for their power
supply, requiring energy-efficient and low power operation.

While maintaining low energy consumption, devices
such as always-on surveillance cameras, small drones, and
sensor nodes, are required to react to events and perform
demanding signal processing and artificial intelligence
tasks, and also to handle external events with low control
code execution latency. Besides their low power and energy
consumption requirements, this calls for the devices to be
highly performance scalable.

For maximal energy-efficiency, fixed function accelera-
tors are typically used. Compared to programmable devices,
their hardware is optimized at design-time to match pre-
defined requirements. This allows removing instruction
delivery overheads and tailoring the datapath, resulting
in high computational capability and energy efficiency in
small chip area. The clear drawback is that the accelera-
tors perform poorly or not at all with tasks not defined
at design time. Moreover, their design, optimization and
verification is a costly, time consuming process requiring
manual effort [3, 4]. In contrast, software programmable
devices offer flexibility [5] in terms of non-predefined tasks
and reduce the design cost and time with reusable compute
and logic elements, but incur overheads due to the flexible
software based control.
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In this article, we propose energy-efficient, pro-
grammable processor cores for always-on applications.
The cores feature fast branching and efficient exploitation
of exposed datapath instruction-level parallelism (ILP) to
achieve high performance. In order to reduce the energy
overhead of instruction delivery, a compiler-controlled
instruction register file (IRF) is used. The cores are com-
pared to a publicly available LatticeMico32 (LM32) [6]
core offered by Lattice Semiconductor and zero-riscy [7],
a RISC-V [8] ISA implementation using benchmarks rep-
resenting both control oriented and signal processing tasks.
All the cores are evaluated on a 28 nm ASIC standard cell
technology.

For this article we extended our previous conference
paper [9] with the following additions:

– The previously proposed LoTTA design was adapted
to two additional design targets: high energy-efficiency
and high clock frequency.

– More accurate results obtained by place & route as
opposed to original synthesis results.

– A comparison to a state-of-the-art low power RISC-V
based core, zero-riscy was added.

– Extended textual presentation with detail added specif-
ically to parts that were pointed out by the conference
paper reviews.

The article is organized as follows. Section 2 overviews
related work. Section 3 describes the three core variants
along with an explanation of their underlying architecture
and programming model. Section 4 details the concepts
of instruction register files and the two implementation
variations used in this work. Section 5 presents the
evaluation results, and Section 6 concludes the article.

2 RelatedWork

The emerging era of IoT has resulted in plenty of processor
proposals suitable for always-on energy constrained scenar-
ios. The approaches vary from generic to highly domain-
specific. SleepWalker [10] and the IoT SoC [11] proposed
by Klinefelter et al. are targeted for scenarios, where energy
delivery is difficult and solutions such as energy-harvesting
are required to power the device, such as wireless sensor
networks. The latter is targeted for biomedical applica-
tions and includes domain-specific accelerators to maximize
energy-efficiency with the trade-off of computational flex-
ibility. Recryptor [12] is an ARM Cortex-M0 based IoT-
targeted cryptoprocessor, where energy-efficiency stems
from near-threshold voltage operation and in-memory com-
puting. Senni et al. [13] leverage the non-volatility and low
leakage power consumption of magnetic random access
memory (MRAM) to reduce processor energy consumption

when idling. Wang et al. [14] propose a dual-core proces-
sor system, where one core has high performance and the
second core has relatively low performance, but is 3× more
energy-efficient. The authors utilize their two-core system
with a proposed energy-aware task scheduler. Roy et al. [15]
utilize sub-threshold voltage operation in their implementa-
tion of MSP430 targeted for IoT domain and especially for
biomedical applications.

The recently proposed zero-riscy [7] implements the pop-
ular RISC-V instruction set architecture (ISA). It includes
lightweight instruction prefetching and compressed instruc-
tions, and thus seems to be closest to our work in terms of
processing capabilities and target context. Since its imple-
mentation is available as open source, it was picked for
closer comparison to this article.

Another openly available alternative is the Lat-
ticeMico32 [6]. It is a 32-bit microprocessor core with a
Harvard architecture and a RISC ISA, with optional config-
urable multiplier and shifter units.

Sleepwalker [10] is also close to our work. It uses
adaptive voltage scaling along with sub-threshold voltage
operation to achieve energy-efficiency. Both of these
techniques could be applied on top of our proposed cores
to improve the energy efficiency even further. In fact,
there is already previous work of a chip implementation
of an application-specific sub-threshold voltage transport-
triggered architecture (TTA) core developed using the same
tools and the processor template as the cores proposed in
this paper [16].

The most apparent feature differentiating the proposed
processor is its transport-triggered programming model,
where data forwarding is controlled by software, eliminat-
ing the forwarding logic hardware overheads and support-
ing instruction-level parallelism with simpler register files.
Maxim Integrated commercialized a TTA-based microcon-
troller in 2004. The microprosessor called MAXQ [17] uses
the transport programming model to simplify the processor
structure and is optimized for control oriented codes char-
acterized by heavy branching. From their white papers we
observe that the key difference of MAXQ to the cores pre-
sented in this article are is its 16b scalar data path, while
the proposed cores include a 32b data path and integrate
additional features to reduce the instruction stream energy
footprint and to support higher maximum clock frequencies
combined with instruction-level parallelism.

3 Proposed Cores

In previous work [9], we designed the Low-power Transport
Triggered Architecture (LoTTA) by using the TTA-based
Co-Design Environment (TCE) [18] processor design tools.
Figure 1 shows LoTTA in the TCE processor designer with
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Figure 1 TCE view of the function unit and interconnection architecture common to the proposed cores. LSU—load-store unit, IO—standard
input-output, MUL—multiplier, ALU—arithmetic logic unit, RF—register file, IU—immediate unit, CU—control unit.

an overview of the databus interconnection network and
individual function units. The same interconnection network
and function unit organization was used as a basis for all
three of the proposed cores. As increasing the number of
connections in the interconnection network increases the
logic required, often ends up in the critical path, and widens
the instruction width of the bus transport programmed
architecture, it is important to prune the interconnection
network carefully to a minimal level, that can still maintain
good performance.

The core intends to combine qualities needed for fast
execution of control code along with signal processing, and
is designed with the mindset to support various workloads.
Therefore, special purpose function units were not utilized
in addition to generic load-store units, register files, ALUs
and multipliers. This mindset was continued in the other
two proposed cores. Operations implemented in the cores
are listed in Table 1. The cores utilize software based data
forwarding enabled by a transport-triggered programming
model which result in a very simple and energy efficient
control unit and reduced register file microarchitecture
complexity.

This paper extends our previous work by proposing two
design points modified from the original processor core. For
the purposes of this paper we set the instruction bit width

Table 1 Operations implemented in the proposed cores.

Function unit Operations

LSU {8, 16 & 32} bit load/store

IO write to stdout

MUL multiply

ALU abs, add, and, eq, gt, gtu, ior,

max, maxu, min, minu, ne, neg, shl,

shr, shru, sub, sxhw, sxqw, xor

RF read/write register

IM load/store 32 bit immediate

CU jump, call, {bz, bnz}a

aLoTTA core uses predicated execution instead of conditional branch
operations

to the exact number derived from the core features, even
if it is not a power of two or even byte-aligned. Instead
of extending the instruction width to a byte alignment or
a power of two, we assume that in an application-specific
processor, the memory architecture can be customized for
maximal energy-efficiency. If needed, the instruction width
can be aligned depending on the use case.

Next we describe the underlying architecture and
programming model in the proposed cores, followed by
details of the core variants.

3.1 Transport Triggered Architecture

Transport triggered architecture (TTA) belongs to the fam-
ily of “exposed datapath architectures”, where the datap-
ath interconnection network is controlled by the program-
mer. TTAs feature a long instruction word to describe
instruction-level parallelism in applications. Compared to
similar very long instruction word (VLIW) processors, hav-
ing an exposed datapath allows TTAs to transport data
values between function units via software bypassing. This
has the advantage of not requiring hardware to detect data
hazards when forwarding. Optionally registered input and
output ports of function units reduce unnecessary regis-
ter file traffic, allowing TTAs to reach equal performance
with a simpler register file, with fewer physical ports when
compared to a VLIW [19].

An understudied advantage of TTA is its simplified
execution pipeline. Similar to traditional RISC processors
with multiple pipeline stages, the first stages in TTA
pipeline are instruction fetch and decode. However, whereas
different types of operations are fixed to a distinct stage in
a RISC pipeline, TTAs can perform any type of operation
after the decode stage. These include memory operations,
register file transfers, or any kind of ALU or custom
operations. This is illustrated in Fig. 2, where the three
different TTA execution pipelines of the proposed cores are
compared against a classic RISC pipeline and two of its
variants implemented in the reference cores.

While TTAs have been targeted and studied extensively
as overcoming some of the shortcomings of VLIW proces-
sors since the 1990s, they were first originally introduced
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Figure 2 Execution pipelines stages of the evaluated cores compared with a classic RISC pipeline organization.

as control processors in the 1970s [20]. Here, only a single
data move instruction was used to transport data between
memory mapped control registers.

The pipeline flexibility, simplified register files and elim-
ination of data forwarding hardware allow TTAs to merge
the instruction fetch and decode stages, while retaining a
high clock frequency. This results in fast branching and,
therefore, efficient execution of control code. This is done
while still providing ILP required by more complex algo-
rithms.

The next sections describe the details of the proposed
cores. Execution pipelines of the cores are compared in
Fig. 2. Comparison of the differences in the architecture of
the proposed cores is listed in Table 2.

3.2 LoTTA

In the LoTTA core, the primary design goal was to minimize
the use of hardware resources and to minimize branching
delays for fast execution of control-oriented code [9], while
maintaining good signal processing performance. For fast
branching, we merged the instruction fetch, decode and
move stages into the same pipeline stage. This is feasible
thanks to the straightforward, yet efficient fetch and decode
logic of the TTA programming model. LoTTA utilizes
predicated execution for streamlining conditional codes.
However, together with the merged fetch and decode, this
results in a long critical path delay [9] as the instruction
SRAM implemented in the processor system ends up in the
critical path.

3.3 PeLoTTA

PeLoTTA is a clock frequency optimized high-performance
version of LoTTA. Here, the target was to optimize the
maximum clock frequency, while still supporting the fast
branches and energy-efficient operation of the original

LoTTA. To achieve this, the instruction pipeline was split
from one to two stages; the first, instruction fetch stage,
retrieves an instruction from the memory, with decode and
the move/execute in the second.

In order to further optimize the clock frequency, the
predicated execution of LoTTA, which ended up in the
critical path [21], was replaced with conditional branch
operations branch equal to zero (bz) and branch not equal
to zero (bnz). This also reduced the instruction width, as
the boolean RF used to hold predicate values was removed,
saving bits in the instruction word that were used to control
it. Likewise, the instruction decode unit was simplified, as
the predicate evaluation was removed.

3.4 SuperLoTTA

As a design point targeting maximum operating clock
frequency even with the trade-off in additional operation
execution latencies that need to be dealt with in the software
side, we designed the SuperLoTTA core. In order to achieve
this design target, we added extra pipeline registers to the
ALU, load-store unit and multiplier unit, isolating them
from the interconnection network. The same was done to the
control unit, which allowed to isolate instruction memory
from the critical path.

As with PeLoTTA, to further optimize the clock
frequency we added conditional branch operations. This
allowed us to simplify the decoder logic compared to full
predicated execution capabilities.

4 Instruction Register File

While “exposed datapath processors” have benefits in terms
of simplified hardware, they incur a trade-off in increased
compiler complexity due to the additional programmer
responsibilities. Moreover, increased programmer control

Table 2 Feature comparison of
the proposed cores. Instr. Branch Predicated Cond. branch ALU Optional Design

width delay slots execution operations delay IRF style target

midrule LoTTA 49 0 � 1 basic Branch delay

PeLoTTA 45 1 � 1 improved Energy-efficiency

SuperLoTTA 43 3 � 2 Clock frequency
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translates to a wider instruction word and increased code
size in general, which conflicts with the need to optimize
the instruction stream’s energy consumption. [22]

Instruction memory hierarchies typically employ small
storages close to the core to store temporally and spatially
related code, while larger but slower storages are kept
farther away. Traditionally, caches controlled by hardware
have been used as lower level instruction storages. Their
operation requires keeping track of values present in the
cache with separate tag bits, which need to be checked upon
a cache read. If the value requested is not present in the
cache, execution stalls while the cache miss is resolved from
higher levels in memory hierarchy.

Caches can be integrated into a system with relatively
small effort, due to being hardware-controlled, but with
the cost of control logic overhead. This overhead can be
removed, if control is moved to software, such as in an
instruction register file. An IRF is explicitly instructed
to fetch new instructions, with the additional benefit of
possibility to separate the fetching of instructions from their
execution. While this allows a type of speculative fetching,
the compiler is required to efficiently decide the placement
of special IRF load instructions for good performance. With
their fine-grained control qualities, IRFs have been shown
to be suitable for low power architectures. [23]

IRFs require certain design choices for their implementa-
tion. Bypassing allows instructions to be read directly from
the next level in memory hierarchy without first storing
them into the IRF. However, the access time of the larger
instruction memory unit is likely to add to the design’s crit-
ical path. With a smaller unit such as IRF, the effect on the
critical path is smaller. This requires analyzing the applica-
tion for instructions, that are beneficial to be executed from
the IRF such as loops, and instructions whose writing to the
IRF would incur an energy overhead in relation to their exe-
cution amount. In the latter case, bypassing the instruction
would be preferred.

Common to both of the two IRF design variations we
used in our cores introduced in the next section, IRF
execution starts with a compiler-inserted header instruction,
which contains the number of entries to fill into the IRF.
At compile time, the instruction scheduler groups sequential
instructions into IRF instruction windows. These are groups,
that can simultaneously exist in the IRF, and are indicated
by the header instructions.

4.1 Basic IRF

The basic IRF from our original work [9] is described in
Fig. 3. Two program counter registers are utilized here:
one for addressing the global instruction memory address
space and another for addressing IRF entries. In cases
where execution does not fall through from the IRF and

a conditional branch exits IRF execution, instructions in
the branch not taken would not be executed. To eliminate
unnecessary fetching, the IRF is accessed using presence
bits, which use a single bit per IRF entry to indicate, whether
an instruction has been fetched or not. If the presence bit
is not set, the instruction is fetched and then executed. The
presence bits are reset at the start of a new IRF window
execution. This differs from the state-of-the-art work [23],
where no presence bits are used.

The presence bits also prevent cases, where an instruction
branches forward inside the IRF and the target instruction
is not fetched. Without presence bits the compiler would
be forced to discard every instruction window containing
forward jumps from being placed to the IRF.

As a design choice, we implement IRF bypassing to
avoid writing instruction with low execution counts to
the IRF while simultaneously maintaining zero delay slot
branching. In other words, we allow execution of code
directly from the next level in the instruction memory
hierarchy. To maintain good performance, this would
require low access times for the next level in memory
hierarchy. Otherwise, the maximum clock frequency would
be limited by the memory access times. Previous work [23]
avoids this issue by writing all instructions to the IRF and
then executing them with no option for bypassing.

In order to not increase the instruction width due to the
addition of new IRF control instructions, we implemented
the special header instruction into the immediate control
field of the TTA instruction, where enough free bit
combinations were available. A comparator pre-decodes
this field during the instruction fetch stage and stalls
execution for one clock cycle, as the header instruction is
only used by the instruction fetch unit and not executed
by the rest of the core. At this time, length of the IRF
instruction window and prefill amount are read from the
instruction and stored into a register in the instruction
fetch unit. Next instruction following the header is the first
instruction in the instruction window.

To differentiate between global and IRF address spaces,
we implement a new branch instruction targeting the IRF
address space and use existing branch instructions to
target the global address space. The unconditional irfjump
instruction is only allowed when executing from the IRF
and branches to a target inside the current instruction
window. Regular branches are allowed anywhere in the
code. Encountering them during IRF execution transfers
execution into bypassing the IRF.

When IRF execution reaches the last instruction in
the current instruction window or the last physical IRF
entry and execution does not branch back into the IRF,
execution is again transferred into bypassing the IRF with a
fallthrough to the next code block. We implement these with
hardware comparators in the instruction fetch unit.
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Figure 3 Instruction fetch unit
of the proposed cores when
using the basic IRF.

Adding the irfjump instruction to LoTTA core, where
guarded execution is used for branching, increased the
instruction size from 49 bits to 50 bits.

4.2 Improved IRF

According to our investigation [21] of IRF design choices,
we optimize the IRF design in order to improve its energy-
efficiency and maximum operating clock frequency. The
improved IRF is depicted in Fig. 4. We remove the hardware
presence assurance, which guarantees that instructions are
written into the IRF before trying to execute them and
instead, we move the presence assurance to software. This
removes the status bit register from the IRF.

During compilation, groups of instructions, instruction
windows, to be placed into the IRF are analyzed for forward
branches. Different from the basic IRF, if there are forward
branches in the window, the compiler writes the number
of instructions to prefill when starting IRF execution, into
the header instruction, in addition to the current window

size. The prefill guarantees the presence of instructions,
removing the need to check each IRF entry individually.

As an optimization to improve clock frequency, we
implement conditional branches into the IRF in addition to
the irfjump operation: irfjumpnz and irfjumpz correspond
to branch not equal to zero and branch equal to zero
instructions. To minimize the hardware overhead, these are
implemented as having 1-bit condition operand.

4.3 Compiler Support

Efficient utilization of the IRF requires consideration of two
questions: which instructions should be executed from the
IRF and when should the IRF be filled. Program control
analysis in the context of IRFs has been previously studied
in detail [24]. We implement compiler support primarily
targeting loops and nested loops as these are typically
the most heavily executed code structures in applications.
Forming the instruction windows is done as a post-pass
following the compiler instruction scheduling.

Figure 4 Instruction fetch unit
of the proposed cores when
using the improved IRF.
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Our IRF instruction window allocation algorithm is pre-
sented in Fig. 5. Overall, on lines 3 to 9 the algorithm first
splits program basic blocks (BBs) into blocks that fit into the
IRF and merges them (lines 10 to 18) with two constraints:

1. Incoming jumps must target the first instruction of the
instruction window.

2. Function calls are only allowed as the last instruction of
an instruction window.

Respecting these constraints, upon encountering a
function call, instruction windows are split at function
calls, which are left as last instructions of a window.
Returning from the function, execution continues from
the next instruction address, which can contain a header
instruction to start a new IRF instruction window, or start
direct execution, bypassing the IRF.

Instruction windows with no backward branches are
assigned to bypass the IRF on lines 19 to 26. For instruction
windows with backward branches, the window’s first local

Figure 5 The IRF window allocation routine.

branch target and the last local branch instruction are
marked on lines 23 and 24, as these are effectively the loop
boundaries. The algorithm first assigns inner loops into IRF
instruction windows and continues to outer loops if the IRF
capacity allows, as inner loops are expected to be program
hot spots.

On lines 27 to 38, code outside loop boundaries is
removed from each instruction window, as this is code that
is only expected to execute once each time an instruction
window is programmed into the IRF.

When the instruction windows are completed, a header
instruction is inserted into the beginning of the window
on lines 39 to 44. As we stall execution during IRF
programming, the minimum amount of stall cycles required
(prefill amount) is calculated according to forward branches
in the instruction window. Instructions in IRF windows
branching back into the window are converted into IRF
branch instructions on lines 45 to 53 and their targets are
converted into IRF indices. As a last step, all branch targets
are fixed with respect to the additional header instructions.

As an improvement over our previous work [9], code
that is executed only once is removed from the end of
instruction windows. This further eliminates unnecessary
writes to the IRF registers, saving energy. Moreover, support
for conditional IRF branches is added. For the software
presence assurance of instructions, on line 41 the minimum
amount of stall cycles is calculated, if the IRF supports it.
In this work, this is done for PeLoTTA core, which uses the
improved IRF.

As the improved IRF is used in PeLoTTA core, IRF
operations for the conditional branching were required.
Irfjumpz and irfjumpnz, corresponding to the bz and bnz for
regular branching were added to PeLoTTA, resulting in an
increase of the instruction word from 43 to 45 bits.

5 Evaluation

The proposed cores and the reference cores were evaluated
with benchmarks from two different use cases typical to
always-on microcontrollers. All benchmarks were compiled
with tcecc, the program compiler of TCE. Coremark [25]
was used to evaluate the performance in control-oriented
code. Competence in the other area of interest, digital
signal processing (DSP), was evaluated with eight fixed-
point benchmarks from CHStone [26]. To verify the correct
functionality of the C language benchmark programs, they
were compiled for the processor and simulated using ttasim,
TCE’s instruction cycle-accurate simulator. Hardware level
correctness was ensured by generating memory images
from the compiled programs and then simulating them
at register transfer level (RTL) with Mentor Graphics
ModelSim 10.5.
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For the RISC cores, benchmarks were compiled with
‘-O3’ optimization level. Zero-riscy uses a custom compiler
of the PULPino project, based on GCC 5.4.0 and
LatticeMico32 uses a custom compiler from Lattice
Semiconductor, also based on GCC.

To compare the LoTTA core with a traditional multistage
RISC architecture in our previous work, the LatticeMico32
core was used as a reference point. In addition to comparing
LoTTA with LatticeMico32, in this extended work we
compare PeLoTTA with a closer match, the recent low-
power zero-riscy [7] core. SuperLoTTA is also compared to
zero-riscy and PeLoTTA, as its architecture is closer to the
latter than that of LoTTA.

For comparison to LatticeMico32, hardware operations,
their latencies, and register file sizes were matched in
LoTTA. Arithmetic and logic operations in both cores were
made very similar with separate multiplier and barrel shifter
units. Register files in all cores are 32 × 32 bit, with
two read ports and one write port. Physical area of the
LatticeMico32 and LoTTA was validated to be roughly the
same via ASIC place and route.

To evaluate our proposed core architecture with a recent
low-power core intended for similar application domains,
we used zero-riscy [7], a RISC-V core from the PULP
[27] platform, and more specifically PULPino platform.
For evaluation, we matched the number of pipeline stages,
memory access delays and hardware operations closely in
the PeLoTTA-ZR core, and adopted the latch-based register
file used in zero-riscy. Of the two multiplier choices shipped
with zero-riscy, a fast version was chosen over a slow
variant. The PULPino framework was used to simulate the
benchmarks on zero-riscy and generate switching activity
files for power analysis after place and route. To provide a
reference point of the PeLoTTA core also to LatticeMico32,
we produced another subvariant with datapath components
matching the those of LatticeMico32, named PeLoTTA-
LM32 in the results.

Comparison of the architecture features of the proposed
and reference cores is listed in Table 3.

In addition to LoTTA and PeLoTTA being evaluated
individually, to evaluate the two IRF design alternatives,

LoTTA was also evaluated together with the basic IRF and
PeLoTTA with the improved IRF.

All the cores evaluated were synthesized with Synopsys
Design Compiler Q-2019.12. The process technology was
28 nm fully depleted silicon on insulator (FD-SOI) with
0.95 V voltage, with typical process corner and 25 ◦C
temperature. After synthesis, place and route was performed
with Synopsys IC Compiler II Q-2019.12. Switching
activity interchange format (saif) files were produced
with ModelSim 10.5 and used to estimate power for the
synthesized designs.

5.1 Code Size

Compiled code sizes are listed in Table 4. As the zero-riscy
core programs include operating system and debug related
code, those were removed from the reported code sizes. Jpeg
is not reported as the compiler could not fit it into the 32 kB
instruction memory set in the PULPino framework.

For the TTA cores with non-byte-aligned instruction
widths, results are reported as total instruction bits as bytes.
On average, LoTTA program size is 1.84× larger than the
LatticeMico32 code. Coremark has the largest difference,
where LoTTA instruction bit amount is 3.5× larger. When
long instruction word processors cannot fill all of their
instruction slots for each cycle, No-Operations (NOPs) are
inserted into the code, bloating the code size. However, in
aes, blowfish, mips and motion, LoTTA code size is smaller
than that of LatticeMico32. This is due to loop unrolling and
function inlining. These allow the wide TTA instructions
to be efficiently utilized. Moreover, LatticeMico32 requires
32 bits for each instruction, whereas in LoTTA, a maximum
of 3 instructions can fit into the 49 instruction bit wide
instruction word per cycle, in the best case resulting in 16.3
bits on average per instruction slot. However, it is to be
noted that the instructions in the two cores cannot be directly
compared, as in the TTA programming model, individual
data moves are controlled, whereas in the RISC model, the
internal moves are controlled by hardware based on the input
operations. In this sense, the TTA instructions more or less
correspond to the internal data moves of a RISC processor.

Table 3 Architecture comparison of evaluated cores.

Instruction Architecture Issue HW HW mul div Pipeline Data mem.

width (bits) width mul div latency latency stages access delay (cc)

LoTTA 49 TTA 3 � 3 cc 1 1

PeLoTTA 45 TTA 3 � 3 cc 2 1

SuperLoTTA 43 TTA 3 � 5 cc 3 3

LatticeMico32 32 RISC 1 � � 3 cc 34 cc 6

zero-riscy 32 & 16 RV32IMC 1 � � 3 cc 36/0 cc 2 1
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Table 4 Cycle counts and program sizes.

coremark adpcm aes blowfish gsm jpeg mips motion sha

Cycle count

LatticeMico32 582818 88355 75184 798794 26798 3018543 27348 7757 677708

zero-riscy 407036 149865 45268 942344 19872 26099 3846 781108

LoTTA 403416 81683 25690 673151 12745 8097755 23649 7797 543428

PeLoTTA 521658 82814 34855 661369 13071 2361449 27735 9525 559836

SuperLoTTA 802529 93691 41505 765160 16973 3275662 40023 7412 630984

Code size (B)

LatticeMico32 12400 9396 17052 6820 6000 17520 3328 8620 4148

zero-riscy 18292 9254 11660 5328 7290 5724 4472 4712

LoTTA 42979 16445 16372 6100 11851 50500 2597 6161 4269

PeLoTTA 13787 12298 13406 5607 10283 42979 2887 9052 3704

SuperLoTTA 18662 13949 16432 6440 14346 64775 3903 9858 4220

Compared to LoTTA, benchmark code size for the
PeLoTTA core is smaller in all but mips and motion
benchmarks. This is mostly due to the smaller instruction
word in PeLoTTA, 43 bits as opposed to 49 bits in LoTTA.
Although only visible in mips and motion, the conditional
branches used in PeLoTTA typically affect code efficiency
as they are not always scheduled in an optimal fashion.
The predicated execution in LoTTA typically results in more
efficient code.

The effect of IRF on the compiled code size was similar
with the basic IRF and the improved IRF. Table 5 lists
the code sizes for each benchmark on different sizes of
the improved IRF. Code size with IRF is slightly larger
than without IRF, due to the additional header instructions
required for starting IRF execution. In coremark, gsm and
jpeg the code size is smaller with IRF. This likely results
from a different scheduling result due to the chaotic nature
of tcecc in some cases.

5.2 Clock Frequency

Timing results are presented in Table 6. To evaluate the
potential for maximizing serial performance, the LoTTA
and LatticeMico32 were synthesized with target clock
frequencies at intervals of 0.05 ns in order to find the
maximum clock frequency allowed by the ASIC technology.
LoTTA reached a maximum clock frequency of 1333 MHz
and LatticeMico32 reached 1667 MHz. The ALU output
port in LoTTA can be used directly for predicated execution,
and thus reduce need for branching, but the trade-off
becomes visible in the critical timing path which ended
up between the ALU output and the instruction fetch
unit. LatticeMico32 utilizes a six-stage pipeline without
predication support, allowing a shorter critical path and
higher clock frequency in this case.

Between LoTTA and PeLoTTA-LM32, replacing guarded
execution with conditional branching and splitting the

Table 5 Performance and code size results for PeLoTTA core with the improved IRF. Code size did not vary significantly between IRF entry
amounts.

coremark adpcm aes blowfish gsm jpeg mips motion sha

Cycle count

8 511517 82728 34783 667430 12938 2397328 27153 7762 557779

16 502962 82728 34783 667560 12938 2389895 27153 7762 557779

32 500691 82728 34756 667560 12938 2477417 27153 7763 557779

64 500864 82728 34891 667239 12864 2508551 27153 7767 557523

128 583237 82728 34906 667239 12852 2583892 27153 7784 555210

256 583304 82728 34600 667986 12987 2578699 27153 8169 553668

512 583304 82728 34600 667986 12914 2581820 27153 8688 553154

Code size (kB)

13.2 12.8 13.9 5.7 10.3 42.7 3.0 9.1 3.8
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Table 6 Timing results for the evaluated cores after place and route on
a 28 nm process technology.

max Cf (MHz) Result after

LatticeMico32 1667 Synthesis

LoTTA 1333 Synthesis

PeLoTTA-LM32 1670 Place and route

PeLoTTA-ZR 1790 Place and route

SuperLoTTA 2630 Place and route

zero-riscy 1230 Place and route

instruction fetch and decode stages allowed an increase in
maximum clock frequency of 25%.

Adding the 3-stage execution pipeline, conditional
branching and the additional ALU delay allowed an
increase of 97% in the SuperLoTTA core maximum clock
frequency in comparison to LoTTA. The maximum clock
frequency of 2630 MHz is enabled by the efficient
instruction fetch and decode logic of the TTA programming
model, the lightweight interconnection network connecting
components inside the core, and the simple register file that
still supports the multi-issue capabilities. The critical path
ended up inside the latch-based register file.

The effect of adding an IRF to PeLoTTA-ZR on
maximum operating clock frequency is presented in Table 7.
As reading instructions from the IRF ends up on the
timing critical path, increasing the IRF size decreases the
maximum clock frequency. With the smallest size of 8, the
maximum clock frequency is reduced by 15%. With size
512, the reduction is 37%.

In our previous work, LoTTA core was synthesized with
two timing constraints: a relaxed constraint to obtain a
low-power design point and a tight constraint for a high-
performance design point. Since the 28 nm technology
library includes body-biased variations of the standard cells,
a 10 ns timing constraint was chosen in order to mostly
utilize the less energy consuming but slower standard cells.
With the 10 ns constraint, the LoTTA core reached a

Table 7 PeLoTTA-ZR place & route results with IRF. To obtain the
maximum clock frequency, instruction memory timing characteristics
modeled with 0.40 ns hold time for instruction read and 0.15 ns for
address setup time.

IRF entries max Cf (MHz) Cell area (μm2)

8 1612 10769

16 1538 12880

32 1515 16121

64 1351 22036

128 1266 33018

256 1266 55098

512 1136 99269

maximum clock frequency of 311 MHz after synthesis, with
the timing critical path starting from the ALU predicate
output, through RF read into the instruction fetch unit and
ending in the program counter register.

With the same configuration, LatticeMico32 reached a
maximum clock frequency of 351 MHz, with the critical
path in the multiplier unit. LoTTA including the basic IRF
with 256 entries reached a maximum clock frequency of 221
MHz.

5.3 Execution Performance

Benchmark execution cycle counts for the evaluated cores
are presented in Table 4. The data memory accesses are
scheduled statically in TCE, so the reported cycle counts
are instruction cycles. Due to the zero delay slot branching
in LoTTA, its cycle counts are the lowest in all benchmarks
except jpeg and motion. A large fraction of execution time in
jpeg consists of manually written memcpy operations. Due
to a chaotic effect in the TCE compiler between compiling
for LoTTA and PeLoTTA, the latter resulted in a significant
improvement in execution cycles, as the compiler unrolled
the manual memcpy loop, unlike with LoTTA.

Compared to LoTTA, disregarding jpeg not to emphasize
the effect of compiler memcpy behaviour, LatticeMico32
requires a geometric average of 1.29× more cycles to
execute the benchmark set. This is explained by the 6-stage
pipeline as opposed to the 1-stage of LoTTA, as well as the
ILP provided by LoTTA. In addition, predicated execution
from RF and directly from the ALU output port help in
saving clock cycles. In the control-oriented Coremark, the
predicated ALU execution of LoTTA improved the cycle
count by 10%. The best speedup (2.9×) was obtained in aes.
Here the TTA compiler could exploit the instruction-level
parallelism in the benchmark very efficiently.

Compared to LoTTA, PeLoTTA uses on geometric
average 1.08× more cycles to execute the benchmarks.
This is due to the additional instruction pipelining and
conditional branching added to increase the operating
clock frequency. Zero-riscy uses 1.34× more clock cycles
compared to LoTTA. Although otherwise matched to zero-
riscy, PeLoTTA is able to achieve lower cycle counts due
to its multi-issue architecture and aggressive loop unrolling.
Zero-riscy performs better in Coremark and mips, which
are control-oriented benchmarks, and in the data oriented
motion. In Coremark, with IRF sizes larger than 64 entries,
the cycle count increases by 16%. This is caused by an
inner loop, that does not fit into an IRF of 64 entries and
its execution always exits on the second iteration. Due to its
structure, this loop requires 99 instructions to be prefilled
into the IRF before execution can resume. As the IRF block
allocation routine does not in its current form take into
account the loop iteration counts even if they are known at
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Figure 6 Runtime comparison. Results normalized to LoTTA per benchmark.

compile time, this inner loop always adds 99 stall cycles to
execution when it is entered.

SuperLoTTA uses 1.35× more cycles compared to
LoTTA. The largest increase in cycle counts is found in
the control-flow-oriented coremark and mips. The increase
is explained by the 3 delay slots in branching, conditional
branches instead of predicated execution, and the added
ALU latency.

On average, SuperLoTTA and zero-riscy consume close
to same amount of clock cycles, although SuperLoTTA has a
longer branching delay. This is explained by the multi-issue
architecture and aggressive loop unrolling in SuperLoTTA.
SuperLoTTA used less clock cycles in adpcm, aes, blowfish
and sha.

Cycle counts for benchmarks when using PeLoTTA with
IRF are listed in Table 5. As the number of IRF entries
grows, the cycle count grows. This is explained by the
IRF prefilling required for instruction presence assurance,
and the stall cycle required when entering and exiting IRF
execution. As the number of entries grows, the compiler
allocates larger instruction windows into the IRF. This
typically leads to increased prefill amount, which increases
the cycle count. Also, the current IRF architecture used in
TCE always assumes that there is no valid data in the IRF,
when starting execution. This increases the cycle count, if
prefill is required in an instruction window, that is executed
multiple times from the IRF, but the execution switches to
instruction memory in between.

Figure 6 presents absolute runtimes for the benchmarks.
In nearly all cases, SuperLoTTA with the highest clock

frequency is the fastest when measured in absolute time
units. Only in Coremark, PeLoTTA with LatticeMico32-
matched hardware is slightly faster. As seen from Table 4,
even though it requires more cycles than any of the other
evaluated core, it performs the best when measured in
absolute runtime. The increase in cycles and achieved clock
frequency stem from the same reason: increased pipelining
in the instruction stream and compute units.

Organized in the order of geometric average of the
runtimes over the benchmark set (excluding jpeg)), Super-
LoTTA is the fastest with 36.7 μs, followed by PeLoTTA-ZR:
45.0 μs, LoTTA: 47.7 μs, PeLoTTA-LM32: 48.7 μs, Lat-
ticeMico32: 66.4 μs and zero-riscy: 72.6 μs.

5.4 Area

Area comparison for the evaluated cores after place and
route is presented in Fig. 7. LoTTA without IRF is roughly
the same size as the LatticeMico32. When incorporating an
IRF, the increment in area is quite linear in relation to the
number of IRF entries. The entries are implemented as flip-
flops in the RTL description. In the baseline LoTTA, the RF
occupies more than half of the silicon area.

PeLoTTA matched with zero-riscy hardware is the small-
est, followed by PeLoTTA matched with LatticeMico32. The
difference between the two is mostly due to the latch-based
RF being smaller than the flip-flop based, as can be seen
from Fig. 7.

SuperLoTTA occupies more area than PeLoTTA due to
the added registers for pipelining in the instruction stream,

Figure 7 Cell area (μm2)
distribution after place and route.
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Figure 8 Core energy
consumption compared to
PeLoTTA-ZR.

load-store unit and ALU. Also, to achieve the higher clock
frequency, the synthesis tool has replaced some cells with
more energy-consuming and larger but faster versions.

5.5 Energy Consumption

Figure 8 presents the core energy consumption for the
benchmark set relative to PeLoTTA-ZR. Here, PeLoTTA-
LM32 with LatticeMico32-matched hardware consumes
slightly more energy than PeLoTTA-ZR due to the register-
based RF. Zero-riscy consumes on average 58% more
energy on the benchmarks than PeLoTTA and in the worst
case, 175% more. SuperLoTTA consumes on average 153%
more energy than PeLoTTA and in the worst case 203%
more. In motion, zero-riscy consumes less energy than
PeLoTTA-ZR, as it executes the benchmark in 2.5× less
clock cycles.

In order to highlight the execution latency in conjunction
with the energy consumption, Fig. 9 presents the energy-
delay-product (EDP) of the cores relative to PeLoTTA. Here,
PeLoTTA achieves 6.8× better EDP in the best case com-
pared to zero-riscy and 2.5× on average. This is due to
better overall execution cycle counts in the benchmarks,
smaller power consumption and higher clock frequency. The
difference to LatticeMico32-matched PeLoTTA is negligi-
ble, as it has a slightly higher clock frequency, compensat-
ing for its higher energy consumption in the EDP results.

PeLoTTA has 2.1× better EDP in the best case over Super-
LoTTA, but on average the difference is not significant.

To evaluate the effect of using different IRF sizes on
the instruction stream overall in a processor, we evaluated
a system, where the instruction stream hierarchy consists
of an on-chip SRAM instruction memory and and IRF.
Energy consumption for LoTTA core with different basic
IRF sizes is presented in Fig. 10. Here, the combined core
and instruction memory energy consumption is presented
with an instruction memory size of 16k entries. As LoTTA
has a 49 bit instruction word and 50 bit instruction word
with IRF, we equalized the memories between LoTTA
and LatticeMico32 not according to the amount of bytes,
but number of entries. This takes into account the wider
instruction word in LoTTA for a fair comparison. Here,
the energy benefit of the IRF increases, as the memory
size increases. This is due to the low-power flavour ITRS-
LSTP SRAMs energy consumption consisting mostly of the
number of accesses to them, due to having a low standby
power. The instruction SRAM access energy numbers were
generated with Cacti-P [28].

Comparing the energy consumption of different IRF
sizes with the proportions of instruction executed from
either memory or IRF in Fig. 11, it can be seen that with
small IRF sizes, when the IRF utilization is low, energy is
not saved significantly or not at all. As the amount of IRF
entries grows, so does the IRF utilization and the energy

Figure 9 Energy-delay product
of cores compared against
PeLoTTA-ZR, lower is better.
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Figure 10 Core + instruction memory energy of LoTTA without and with basic IRF at 200MHz. Each benchmark normalized to LatticeMico32.
Instruction memory size is 16k entries (LoTTA: 100 kB, LoTTA + IRF: 102 kB, LatticeMico32: 64 kB).

savings. Increasing the number of entries from 128 does
not increase the IRF utilization significantly, worsening
the energy saving as the larger, but less utilized IRF now
consumes more energy.

Figure 12 shows comparison of the combined core and
instruction memory energy consumption for zero-riscy,
SuperLoTTA and PeLoTTA, which is compared with and
without the improved IRF. Compared to SuperLoTTA, in
aes, gsm, mips, motion, gsm and coremark, zero-riscy
consumes significantly less energy. This is due to the
increased cycle count in the benchmarks on SuperLoTTA
due to the added pipelining in conjunction with the
wider instruction word. In other words, SuperLoTTA
reads significantly more bits from the instruction memory,
consuming more energy as a trade-off for high clock
frequency. At small IRF sizes, as seen from Fig. 13, the
benchmarks mostly execute directly from the instruction
memory instead of the IRF. Increasing the amount of entries
in IRF also increases its utilization. From size 128 onwards,
IRF utilization does not increase significantly, except in
aes. This behaviour in utilization is translated to energy
consumption in Fig. 12. At large IRF sizes, the large amount
of entries starts to result in excessive energy consumption,
countering the benefits gained from IRF. On geometric
average, SuperLoTTA consumes 1.4× more energy than
zero-riscy on the benchmark set.

PeLoTTA without IRF consumes slightly less energy in
adpcm and blowfish compared to zero-riscy. In motion,
PeLoTTA requires 2.5× more cycles to execute the

benchmarks, resulting in the significantly higher energy
consumption. Comparing the geometric average of energy
consumption over the benchmark set, PeLoTTA consumes
42% more energy compared to zero-riscy.

Although the proposed cores consume less energy com-
pared to zero-riscy in most benchmarks, the zero-riscy com-
piler is able to utilize a high number of compressed instruc-
tions in all benchmarks, leading to good energy-efficiency
of the instruction stream. It is left as a future work for
us to add instruction compression to further reduce energy
consumption in addition to the locality based optimization
provided by IRF.

Finally, evaluation of energy-delay product in a processor
system with an on-chip instruction memory with either zero-
riscy, PeLoTTA or SuperLoTTA is presented in Fig. 14.
SuperLoTTA achieved the best individual benchmark EDP
improvement compared to zero-riscy in adpcm, where it’s
EDP was 3.0× lower. On a geometric average over the
full benchmark set, SuperLoTTA achieved and EDP within
1% difference to zero-riscy. In Coremark, mips and motion,
SuperLoTTA had higher EDP compared to zero-riscy, due to
using more clock cycles and, thus, increasing the instruction
memory energy consumption as more instructions were
fetched. In these cases, the higher clock frequency of
SuperLoTTA could not compensate for the increased energy
consumption, leading to higher EDP than zero-riscy.

PeLoTTA achieved a geometric average of 16% better
EDP than zero-riscy. Like SuperLoTTA, it had worse EDP in
Coremark, mips and motion. As the IRF size was increased,

Figure 11 Fraction of instructions fetched from memory and from the basic IRF in LoTTA.
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Figure 12 Comparison of processor energy consumption with adpcm, aes, blowfish, coremark, gsm and sha. Numbers normalized to zero-riscy.
Instruction memory of 8192 entries, 32 kB on zero-riscy, 44 kB on SuperLoTTA and 46 kB on PeLoTTA.

Figure 13 Instructions fetched from memory and from the improved IRF in PeLoTTA. Instruction memory has 16 k entries.

Figure 14 Relative energy-delay product, normalized to zero-riscy with an instruction memory of 8192 entries. Lower is better.
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Table 8 Comparison of the
proposed cores with related
work.

Technology Max. Cf (MHz) Vdd (V) μW/MHz pJ/cycle

SleepWalker [10] 65 nm 25 0.32–0.48 7.0 2.6

zero-riscy [7]a 65 nm 560 0.8–1.2 2.3–11.0

PeLoTTA-ZR 28 nm 1790 0.95 14.1 4.4

SuperLoTTA 28 nm 2630 0.95 63.6 9.2

aResults for zero-riscy from publication [7]

the EDP increased, as the maximum clock frequency
decreased as illustrated in Table 7. Simultenously, energy
consumption of the IRF increased and while the IRF
utilization improved with larger IRF sizes, the combined
effect was not enough to improve the EDP.

Finally, a comparison of PeLoTTA-ZR and SuperLoTTA
is presented in Table 8. Although SleepWalker and zero-
riscy have better μW/MHz values, our proposed cores
provide similar order of magnitude for pJ/cycle values, with
significantly higher maximum operating clock frequencies.

5.6 Analysis and Effect of IRF

As the IRF header instructions incur a stall of one clock
cycle in program execution while the IRF window size is
read in the proposed cores, there is overhead in execution
time. Similarly, when entering IRF execution, there is a stall
of one clock cycle. However, the increase from these stalls
in all benchmarks was less than 0.8% and had no significant
impact on performance.

With PeLoTTA and the improved IRF, cycle counts when
using the improved IRF were in many cases slightly lower
than PeLoTTA without IRF. This is due to the additional
instruction pipeline register in PeLoTTA, that does not exist
in LoTTA. If a section of code executes directly from
instruction memory, there is always a delay of one clock
cycle when branching. Depending on the program, the
compiler delay slot filler may not be able to fill in useful
instruction to these delay slots. If the same section of code
is executed from IRF, branching inside the IRF has no delay.
With 8 IRF entries, only blowfish and jpeg used more clock
cycles with IRF in the design. From IRF size 128 onwards,
also coremark starts using more cycles with than without the
IRF.

Due to the code structures in the benchmark programs,
utilization of the IRF is low, when IRF size is less than
128, as seen in Figs. 11 and 13. In mips, the IRF is never
used, due to a large while loop containing all the code
in the benchmark. This loop cannot be split by the TCE
compiler to fit into the IRF. As similar structure is found
in adpcm, where an encoding and a decoding function are
executed within a for loop and do not fit into the IRFs
evaluated. An optimization to improve the utilization and

reduce energy consumption, would be allowing execution of
code sequences such as loops from both the IRF and the next
level of memory hierarchy consequently. In the current IRF
design, if there is a loop that does not fully fit into the IRF,
the compiler does not utilize the IRF at all. Partial execution
of loops in this manner from IRF would reduce the energy
consumption.

With the smallest basic IRF configuration, eight entries,
the IRF is only utilized efficiently in jpeg. This is due to a
heavily executed loop in the code containing exactly eight
instructions. Compared to the basic IRF, due to replacing
predicated branching with conditional branch instruction
and different instruction scheduling, the improved IRF is
not used as efficiently in jpeg with small IRF sizes. Both
IRFs are mostly used in the benchmark set, when it has 128
entries. At this point, in jpeg and motion nearly all code
structures fit into the IRF. Doubling the IRF size to 512
entries does not notably increase the IRF utilization.

5.7 Discussion

As previous work [23] has extensively studied the energy
benefits of the instruction register files compared to small
filter caches, and concluded that IRF can save energy
over an already effective filter cache, we did not make
comparisons to caches in this work.

Although an important design consideration for IoT devices,
we left the optimization of standby energy consumption
outside the scope of this article, as techniques such as
retention registers and power gating are considered generic
enough to be adapted on top of our approach as well.

As the IRFs are mapped as registers in the ASIC tech-
nology, and in the synthesis flow we used a simple clock
gating scheme, where all the registers are gated using the
same condition, there is likely room for implementing hier-
archical clock gating to the IRF and doing so, decreasing the
energy consumption.

As some of the benchmarks have no or poor utilization
of IRF, for a processor system it would make sense to
implement power gating to the IRF for these cases. These
benchmarks should be compiled not to use the IRF, and
executed directly from the instruction memory, powering off
the costly registers in the IRF.
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6 Conclusions

In this paper, we proposed three cores targeting mixed
control flow and data processing applications in internet-
of-things always-on devices. We evaluated design points
targeting maximum clock frequency for high throughput
tasks and energy-delay product for energy and delay critical
tasks. We compared against two RISC cores, LatticeMico32
and zero-riscy.

The TTA programming model alone saved on geometric
average 60% of core energy compared to zero-riscy.
As the most obvious drawback of the transport-triggered
programming model used in the proposed cores is the larger
program size, we designed, optimized and integrated an
instruction register file to act as the first-level instruction
store. This allowed us to mitigate the effect of the wide
instruction word, allowing us to combine the excellent data
path energy-efficiency of transport-triggered architectures
with an energy efficient instruction supply.

Even though our proposed cores consumed less energy
compared to zero-riscy, due to their long instruction word,
the energy consumption was higher in a system including
an instruction memory. However, in the case of an energy-
optimized design point, we achieved on average 14% better
EDP compared to zero-riscy and a best-case of 68% better
EDP in a processor system with an on-chip instruction
memory. In a high-performance design point we achieved
2.1× higher maximum clock frequency with a similar level
of energy-delay product.

Evaluation of only the processor cores without the
instruction memory hierarchy motivates further research
on optimizing the instruction stream, as our energy-
optimized core achieves nearly 2.5× improvement in energy
consumption and an 8× improvement in energy-delay
product in the best case. In addition to the IRF, we plan to
investigate instruction compression to further mitigate the
overhead of the instruction stream. Other plans for future
work include moving even more of the control of the IRF
from hardware to software, and developing more efficient
IRF utilization strategies as these are the low hanging fruits
for improvement.
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