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Abstract

In this paper, we have introduced the notion of local and semilocal triangle algebras and propose

the theorems that characterize these algebraic structures. Additionally, we have established the

new properties of these algebraic structures and discussed the relations between local triangle

algebras and some interval valued residuated lattice (IVRL)-filters, such as n-fold IVRL-extended

integral filters and IVRL-extended maximal filters. The obtained results proved that the MTL-

triangle algebra is a subdirect product of local triangle algebras. Moreover, a correlation was

observed between the set of the dense elements and local triangle algebras. Finally, semilocal

triangle algebras were introduced and assessed in detail, and an association was observed between

the semilocal triangle algebras and quotient triangle algebras.
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1. Introduction

There is uncertainty regarding every sphere of daily life. Conventional mathematical tools do

to suffice to manage all practical problems, and controversies are constantly revealed in major

fields such as social sciences, engineering, and economics. In 1965, Zadeh introduced the fuzzy set

theory to address such uncertainties where traditional tools commonly fail. Later, the fuzzy logic5

became popular and has been exploited in computer sciences to deal with uncertain information.
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In recent years, the interest in the fuzzy logic has grown rapidly. The algebraic structures that

are involved in the structures of truth values have been introduced and axiomatized. Residuated

lattices originated in 1969 [2, 7, 9] when Goguen [4] studied residuated lattices as the algebras of

inexact concepts. In the 1970-s, Gaines and Pavelka were the first to observe the usefulness of10

residuated lattices in the cintext of fuzzy logic [3, 9].

H. Ono considered residuated lattices as an algebraic structure of substructural logic [8]. Fur-

thermore, P. Hajek introduced the notion of BL-algebras as residuated lattices with two more

conditions (divisibility and prelinearity) to prove the completeness of the BL-logic as a highly

valued logic [5]. Therefore, residuated lattices allow the study of all these algebras with a com-15

mon language. In particular, deductive systems of residuated lattices have a bijective counterpart

in substructural logics, namely the sets of logic formulas that are closed with respect to Modus

Ponens. Thus, all the information about deductive systems in an algebra can be interpreted as

knowledge of provable formulas in the corresponding logic. In literature, deductive systems are

also called filters (not to be confused with lattice filters).20

L. P. Belluce et al. introduced the notion of local MV-algebras [1], while E. Turunen et al.

studied the concept of local BL-algebras [12]. By definition, BL-algebras become local if they

have a unique maximal deductive system, thereby generalizing the correspondent concept for MV-

algebras. On the other hand, E. Turunen et al. evaluated local BL-algebras similar to Belluce et

al., analyzing local MV-algebras. Using this context, these researchers proved some of the basic25

properties of BL-algebras. In addition, S. Hoo characterized semilocal MV-algebras [6], while

E. Turunen introduced semilocal BL-algebras by initially showing that BL-algebras indefinitely

generate natural algebras and characterizing semilocal BL-algebras [13].

Van Gasse et al. introduced the class of triangle algebras as a variety of residuated lattices

equipped with approximation operators ν and µ, as well as a third angular point u are different30

from 0 and 1. According to Theorem 26, researchers have claimed that these algebras serve as an

equational representation of interval-valued residuated lattices (IVRLs) [17]. Based on the defini-

tion and properties of triangle algebras, researchers have defined triangle logic (TL), demonstrating

that this logic is sound and complete with respect to the variety of triangle algebras [17]. The

theory of triangle algebras has been enriched with the filter theory, and researchers have introduced35

the notion of IVRL-filters in triangle algebras, defining the Boolean and prime IVRL-filters and

reporting their remarkable properties [16].

Triangle algebras play key role in the study of fuzzy logics and the associated algebraic struc-
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tures. Moreover, filter theory, i.e. studies of deductive systems of triangular algebras is essentially

involved in the study of these algebras. Indeed, from a logic perspective, various filters have a40

natural interpretation as sets of provable formulas, while no studies have been focused on local

triangle algebras so far. This issue motivated us to investigate the notion of local and semilocal

triangle algebras.

In triangle algebras, ν and µ are important, which were used in our research to define local and

semilocal triangle algebras, which play a pivotal role in the recognition of such algebraic structures.45

Local triangle algebras behave differently, and we attempted to state and prove the Propositions

and theorems that determine the properties of these structure. Furthermore, we demonstrated that

triangle algebra A is local iff ord(νx) < ∞ or ord(¬νx) < ∞. It was proven that MTL-triangle

algebras are a subdirect product of local triangle algebras. In this regard, F is considered to be the

n-fold IVRL-extended integral filter iff A/F is local. The correlation between semilocal triangle50

algebras and quotient triangle algebras was also discussed, and a classification was proposed for

triangle algebras accordingly.

In Section 2 of the article, some of the definitions and properties of residuated lattices and

triangle algebras have been discussed. In Section 3, we have defined local triangle algebras, while

proposing further characterizations for these algebras. In addition, we have determined the cor-55

relations between local triangle algebras and some types of IVRL-filters. In Section 4, triangle

algebras have been considered semilocal if they only contains many finite different IVRL-extended

maximal filters, and some properties have also been denoted for this algebra.

2. Preliminaries

Definition 2.1. [17] A residuated lattice is an algebra (L,∨,∧, ∗,→, 0, 1) with four binary opera-60

tions and two constants 0,1 such that:

• (L,∨,∧, 0, 1) is a bounded lattice,

• operation ∗ is commutative and associative, with 1 as neutral element, and

• x ∗ y ≤ z iff x ≤ y → z, for all x, y and z in L.

The ordering ≤ and negation ¬ in a residuated lattice (L,∨,∧, ∗,→, 0, 1) are defined as follows,65

for all x and y in L: x ≤ y iff x → y = 1, and ¬x = x → 0, xn = x ∗ · · · ∗ x︸ ︷︷ ︸
n−times

.
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Lemma 2.1. [10, 16] Let (L,∨,∧, ∗,→, 0, 1) be a residuated lattice. Then the following properties

are valid, for all x, y and z in L:

(1) x ∨ y ≤ (x → y) → y(in particular x ≤ ¬¬x),

(2) x ∗
∨

i∈I yi =
∨

i∈I(x ∗ yi),70

(3) (
∨

i∈I yi) → x =
∧

i∈I(yi → x),

(4) (x → y) ∗ (y → z) 6 (x → z),

(5) If x 6 y, then x ∗ z 6 y ∗ z, z → x 6 z → y and y → z 6 x → z,

(6) (y → z) ≤ (x → y) → (x → z),

(7) x → (y → z) = y → (x → z) = (x ∗ y) → z,75

(8)
∨

i∈I(yi → x) ≤ (
∧

i∈I yi) → x,

(9) x → y 6 (y → z) → (x → z),

(10) ¬x ∧ ¬y ≤ ¬(x ∨ y).

Definition 2.2. [17] Given a lattice (A,∨,∧), its triangularization T(A) is the structure T(A) =

(Int(A),∨,∧) defined by80

•Int(A) = {[x1, x2] : (x1, x2) ∈ A2 and x1 ≤ x2},

•[x1, x2] ∧ [y1, y2] = [x1 ∧ y1, x2 ∧ y2],

•[x1, x2] ∨ [y1, y2] = [x1 ∨ y1, x2 ∨ y2].

The set DA = {[x, x] : x ∈ L} is called the diagonal of T(A).

Definition 2.3. [17] An interval-valued residuated lattice (IVRL) is a residuated lattice (Int(A),∨,85

∧,⊙,→⊙, [0, 0], [1, 1]) on the triangularization T(A) of a bounded lattice A, in which the diagonal

DA is closed under ⊙ and →⊙, i.e. [x, x] ⊙ [y, y] ∈ DA and [x, x] →⊙ [y, y] ∈ DA, for all x, y

in A. When we add [0, 1] as a constant, and pv and ph (defined by pv([x1, x2]) = [x1, x1] and

ph([x1, x2]) = [x2, x2], for all [x1, x2] in Int(A)) as unary operators, the structure (Int(L),∨,∧,→

, ∗, pv, ph, [0, 0], [0, 1], [1, 1]) is called an extended IVRL.90

Definition 2.4. [17] A triangle algebra is a structure (A,∨,∧, ∗,→, ν, µ, 0, u, 1) in which (A,∨,∧, ∗,→

, 0, 1) is a residuated lattice, ν and µ are unary operations on A, u a constant, and satisfying the
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following conditions:

(T.1) νx ≤ x, (T.1
′
) x ≤ µx,

(T.2) νx ≤ ννx, (T.2
′
) µµx ≤ µx,

(T.3) ν(x ∧ y) = νx ∧ νy, (T.3
′
) µ(x ∧ y) = µx ∧ µy,

(T.4) ν(x ∨ y) = νx ∨ νy, (T.4
′
) µ(x ∨ y) = µx ∨ µy,

(T.5) νu = 0, (T.5
′
) µu = 1,

(T.6) νµx = µx, (T.6
′
) µνx = νx,

(T.7) ν(x → y) ≤ νx → νy,

(T.8) (νx ↔ νy) ∗ (µx ↔ µy) ≤ (x ↔ y),

(T.9) νx → νy ≤ ν(νx → νy).

In a triangle algebra (A,∨,∧, ∗,→, ν, µ, 0, u, 1), the operator ν (necessity) and µ (possibility) are

modal operators, and u (uncertainty, u ̸= 0, u ̸= 1) is a new constant. It turns out that triangle

algebras are the equational representations of interval-valued residuated lattices (IVRLs).

Theorem 2.1. [17] There is a one-to-one correspondence between the class of IVRLs and the

class of triangle algebras. Every extended IVRL is a triangle algebra and conversely, every triangle95

algebra is isomorphic to an extended IVRL.

From now on (A,∨,∧,→, ∗, ν, µ, 0, u, 1) or simply A is a triangle algebra unless otherwise spec-

ified.

Proposition 2.1. [17] Suppose (A,∨,∧,→, 0, 1) is a residuated lattice such that ¬ is involutive

(¬¬x = x for all x ∈ A). If there exists an element u in A such that ¬u = u, if ν is a unary100

operator on A that satisfies T.1- T.6 , T.8, T.9 and if (νx ↔ νy) ∗ (ν¬x ↔ ν¬y) ≤ x ↔ y, then

(A,∨,∧,→, ∗, ν, µ, 0, u, 1) is a triangle algebra if we define µx = ¬ν¬x.

Proposition 2.2. [15] In a triangle algebra (A,∨,∧,→, ∗, ν, µ, 0, u, 1), the following identities and

inequalities hold, for every x, y and z in A:

(i) ν(x ∗ y) = νx ∗ νy.105

(ii) µ(x ∗ y) ≤ µx ∗ µy.

Definition 2.5. [21] Let A = (A,∨,∧, ∗,→, ν, µ, 0, u, 1) and B = (B,⊔,⊓,⊙,⇒, ν, µ, 0, u, 1) be

any two triangle algebras. If the mapping h : A −→ B satisfies for a, b ∈ A
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h(a ∨ b) = h(a) ⊔ h(b), h(a ∧ b) = h(a) ⊓ h(b),

h(a ∗ b) = h(a)⊙ h(b), h(a → b) = h(a) ⇒ h(b),110

h(νa) = νh(a), h(µa) = µh(a).

Then h is called a homomorphism.

Definition 2.6. [19] A triangle algebra A is called an MTL-triangle algebra if (a → b) ∨ (b →

a) = 1 (prelinearity), for all a, b ∈ A.

Definition 2.7. [16] An IVRL-filter of triangle algebra A is a non-empty subset F of A satisfying:115

(F.1) if x ∈ F, y ∈ A and x ≤ y, then y ∈ F ,

(F.2) if x, y ∈ F , then x ∗ y ∈ F ,

(F.3) if x ∈ F , then νx ∈ F .

Definition 2.8. [22] An alternative definition for an IVRL-filter F (called deductive system) of a

triangle algebra (A,∨,∧, ∗,→, ν, µ, 0, u, 1) is the following:120

(F.1′) 1 ∈ F ,

(F.2′) for all x and y in A: if x ∈ F and x → y ∈ F , then y ∈ F .

(F.3′) if x ∈ F , then νx ∈ F .

For all x, y ∈ A, we write x ≡F y iff x → y and y → x are both in F .

≡F is always a congruence relation [16]. Note that (F.3) is a necessary condition for this state-125

ment. Indeed, if ≡F is a congruence relation on a triangle algebra A = (A,∨,∧, ∗,→, ν, µ, 0, u, 1)

and x ∈ F , then x ≡F 1 and therefore νx ≡F ν1 = 1, which is equivalent with νx ∈ F .

Definition 2.9. [21] Let S ⊆ A, a nonempty subset of A, a ∈ A. Then [S) = {x ∈ A | s1 ∗ ...∗sn ≤

νx, for some n ≥ 1 and s1, ..., sn ∈ S}.

Definition 2.10. [17] The set of exact elements E(A) of a triangle algebra A is {x ∈ A|νx = x}.130

Proposition 2.3. [16] Let A be a triangle algebra, (E(A),∨,∧, ∗,→, 0, 1) be its subalgebra of exact

elements and F ⊆ A. Then F is a filter of the triangle algebra A if and only if (F.3
′
) holds and

F
∩
E(A) is a filter of the residuated lattice E(A).

Proposition 2.3 suggests two different ways to define special kinds of IVRL-filters of triangle

algebras. The first is to impose a property on a filter of the subalgebra of exact elements and extend135
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this filter to the whole triangle algebra, using (F.3
′
). We call these IVRL-extended filters. For

example, an IVRL-extended prime filter of triangle algebra (A,∨,∧, ∗,→, ν, µ, 0, u, 1) is a subset F

of A such that F ∩ E(A) is a prime filter of E(A) and x ∈ F if and only if νx ∈ F ∩ E(A).

The second way is to impose a property on the whole IVRL-filter. For example, a prime IVRL-

filter of a triangle algebra (A,∨,∧, ∗,→, ν, µ, 0, u, 1) is an IVRL-filter of A such that F is a prime140

filter of (A,∨,∧, ∗,→, 0, 1) [16].

Definition 2.11. [16, 18, 21] Let A be a triangle algebra.

• A proper IVRL-filter M is an IVRL-extended maximal filter of A iff for all x ∈ A, x /∈ M

there exist m ∈ M, n ≥ 1 such that m ∗ νxn = 0.

• The intersection of all IVRL-extended maximal filters of a triangle algebra A is called the145

radical of A and is denoted by Rad(A).

• An IVRL-filter extended prime filter of A is a filter F of A such that νx → νy ∈ F or

νy → νx ∈ F , for all x, y ∈ A.

• A proper IVRL-filter F is called n-fold IVRL-extended integral filter if for all, x, y ∈ A,

¬(νx ∗ νy) ∈ F implies ¬(νxn) ∈ F or ¬(νyn) ∈ F , for some n.150

Definition 2.12. [21] The set of dense elements of a triangle algebra A is defined as Ds(A) =

{a ∈ A : ¬νa = 0}. Its restriction to an IVRL-filter F is defined as Ds(F ) = {a ∈ F : ¬νa = 0}.

Definition 2.13. [21] The order of x ∈ A, denoted by ord(x), is the smallest n ∈ N such that

xn = 0. If there is no such n, then ord(x) = ∞.

Definition 2.14. A triangle algebra A is called a linear triangle algebra if x ≤ y or y ≤ x, for all155

x, y ∈ A.

Lemma 2.2. Let A be an MTL-triangle algebra and a ∈ A, a ̸= 1. Then there is an IVRL-extended

prime filter F of A not containing a.

Proof. There are IVRL-filters not containing a, for example, F0 = {1}. We shall show that if F

is any IVRL-filter not containing a and x, y ∈ A are such that νx → νy /∈ F and νy → νx /∈ F ,160

then there is an IVRL-filter F ′ ⊇ F such that a /∈ F ′ and νx → νy ∈ F ′ or νy → νx ∈ F ′. Note

that the least IVRL-filter F ′ containing F as a subset and z as an element is F ′ = {νu | (∃v ∈

F )(∃n ∈ N)(v ∗ zn ≤ u)}. Clearly, if F ′′ ⊇ F is an IVRL-filter and z ∈ F then for each v ∈ F and

n ∈ N, ν(v ∗ zn) ∈ F ′′, on the other hand, F ′ itself is an IVRL-filter since it is obviously closed
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under ∗, ν and contains with each z all z′ ≥ z. Thus assume νx → νy /∈ F, νy → νx /∈ F and165

F1, F2 be the smallest IVRL-filters containing F , as a subset and νx → νy, νy → νx respectively

as an element. We claim that a /∈ F1 or a /∈ F2. Assume a ∈ F1 and a ∈ F2. Then for some v ∈ F

and n ∈ N, v ∗ (νx → νy)n ≤ a and v ∗ (νy → νx)n ≤ a. Thus a ≥ v ∗ (νx → νy)n ∨ v ∗ (νy →

νx)n = v ∗ ((νx → νy)n ∨ (νy → νx)n) = v ∗ 1 = v. Hence a ∈ F , which is a contradiction. So

a /∈ F1 or a /∈ F2. Now, if A is countable, then we may arrange all pairs (x, y) ∈ A2 into a sequence170

{(xn, yn) | n ∈ N}. Let F0 = {1} and having constructed Fn such that a /∈ Fn. We take Fn+1 ⊇ Fn

such that a /∈ Fn+1. If possible we take Fn+1 such that (νxn → νyn) ∈ Fn+1. If not, we take that

with (νyn → νxn) ∈ Fn+1. So ∪nFn is IVRL-extended prime filter. If A is uncountable, then one

has to use the axiom of choice and work similarly with a transfinite sequence of IVRL-filters.

Remark 2.1. [21] Let A be an MTL-triangle algebra. Then F is an IVRL-extended prime filter175

of A iff νx ∨ νy ∈ F implies νx ∈ F or νy ∈ F , for all x, y ∈ A.

Lemma 2.3. An MTL-triangle algebra is linear iff any proper IVRL-filter of A is IVRL-extended

prime filter of A.

Proof. If A is linear and F is proper IVRL-filter of A, then for all x, y ∈ A, x∨ y = x or x∨ y = y.

Thus x ∨ y ∈ F iff ν(x ∨ y) ∈ F iff νx ∨ νy ∈ F iff νx ∈ F or νy ∈ F .180

Conversely, let assume, any proper IVRL-filter of A is IVRL-extended prime filter of A. Then

in particular {1} is an IVRL-extended prime filter. Since for any x, y ∈ A, (x → y)∨(y → x) ∈ {1},

we get (x → y) ∈ {1} or (y → x) ∈ {1}, so y ≤ x or x ≤ y.

Lemma 2.4. Each triangle algebra is a subalgebra of the direct product on a set of linearly ordered

triangle algebras.185

Proof. Let S be the set of all IVRL-extended prime filters on A. For F ∈ S, let AF = A/F and

A∗ =
∏

F∈S AF . Then A∗ is the direct product of linearly ordered triangle algebra {AF | F ∈ S}

of A∗. For x ∈ A, let i(x) be the element {[x]F | F ∈ S} of A∗. Clearly this map preserves

operations, it remain to show that it is one to one. If x, y ∈ A and x ̸= y, then x � y or y � x.

Assume νx → νy ̸= 1 in A. By Lemma 2.2 let F be an IVRL-extended prime filter on A not190

containing νx → νy. Then in A/F , [x]F � [y]F , hence [x]F ̸= [y]F , and so i(x) ̸= i(y).

Proposition 2.4. Let A1, ..., Ak be triangle algebras and A = A1 × ... × Ak. Then Fil(A) =

Fil(A1)× ...× Fil(Ak) (where Fil(A) is the set of all IVRL-filters of A).
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Proof. Fi ∈ Fil(Ai) for i = 1, ..., k, then F1 × ... × Fk is an IVRL-filter of A. Conversely, if F is

an IVRL-filter of A, then for i = 1, ..., k, Fi = πi(F ) is an IVRL-filter of Ai and F = F1 × ...×Fk.195

So the proof is complete.

3. Local triangle algebra

Definition 3.1. A triangle algebra A is said to be local iff has exactly one IVRL-extended maximal

filter.

Example 3.1. Let A = {0, u, 1}. We define operators ν, µ, ∗,→ as follows:200

x νx x µx ∗ 0 u 1 → 0 u 1

0 0 0 0 0 0 0 0 0 1 1 1

u 0 u 1 u 0 u u u 0 1 1

1 1 1 1 1 0 u 1 1 0 u 1

(A,∨,∧, ∗,→, ν, µ, 0, u, 1) is a triangle algebra. It is clear that, F = {1} is the only IVRL-extended

maximal filter of A. So A is local triangle algebra.

Example 3.2. Let X = {0, a, b, 1}, where 0 ≤ a ≤ 1, 0 ≤ b ≤ 1. Define ⊙ and ⇒ on X as follows:

⊙ 0 a b 1 ⇒ 0 a b 1

0 0 0 0 0 0 1 1 1 1

a 0 a 0 a a b 1 b 1

b 0 0 b b b a a 1 1

1 0 a b 1 1 0 a b 1

205

Then (X,⊙,⇒,∨,∧) is a residuated lattice. We have Int(X) = A = {[0, 0], [0, a], [0, b], [a, a], [b, b],

[0, 1], [a, 1], [b, 1], [1, 1]}, if we define ν, µ, ∗ and → on A as follows:

ν[x1, x2] = [x1, x1], µ[x1, x2] = [x2, x2], [x1, x2]∗ [y1, y2] = [x1⊙y1, x2⊙y2], [x1, x2] → [y1, y2] =

[(x1 ⇒ y1) ∧ (x2 ⇒ y2), x2 ⇒ y2].

Then (A,∨,∧, ∗,→, ν, µ, [0, 0], [0, 1], [1, 1]) is a triangle algebra with [0, 0] as the smallest and210

[1, 1] as the greatest element. Clearly, F1 = {[a, a], [a, 1], [1, 1]}, F2 = {[b, b], [b, 1], [1, 1]} are IVRL-

extended maximal filters of A. So A is not a local triangle algebra.
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[0, 0]

[0, b] [0, a]

[0, 1][b, b] [a, a]

[b, 1] [a, 1]

[1, 1]

Definition 3.2. Let A be a triangle algebra. Then we define

D(A) = {x ∈ A | νxn ̸= 0, for all n ∈ N}.215

Theorem 3.1. Let A be a triangle algebra. Then the following are equivalent:

(i) D(A) is an IVRL-filter,

(ii) [D(A)) is a proper IVRL-filter,

(iii) A is local,

(iv) the unique IVRL-extended maximal filter of A is D(A),220

(v) if νxn, νyn ̸= 0 for all n ≥ 1, then νxn ∗ νyn ̸= 0, where x, y ∈ A.

Proof. (i ⇒ ii) Let D(A) be an IVRL-filter. Then it is easy to see that [D(A)) = D(A) and this

IVRL-filter is proper since 0 /∈ D(A), so (ii) holds.

(ii ⇒ i) if (ii) hold and x, x → y ∈ D(A) ⊆ [D(A)), then for all n ≥ 1 νxn, ν(x → y)n ̸= 0

hence 0 ̸= νxn ∗ ν(x → y)n = ν[x ∗ (x → y)]n ≤ νyn, thus y ∈ D(A). If x ∈ D(A), then νxn ̸= 0225

and ννxn = νxn ̸= 0. So νx ∈ D(A). Therefore (i) and (ii) are equivalent.

(i ⇔ v) Since ν1n = 1, ννx = νx and ν(x ∗ y)n = νxn ∗ νyn ≤ νxn, νyn it is obvious that a

necessary and sufficient condition for (i) to hold is (v).

(iv ⇒ iii) It is trivial.

(i ⇒ iv) Let F ′ be an IVRL-filter such that x ∈ F ′, x /∈ D(A), for some x ∈ A. Then νxn = 0, for230

some n ∈ N. Hence F ′ is not proper. So D(A) contains all the proper IVRL-filters of A and so

(iv) holds.

(iii ⇒ iv, i) Let A be a local triangle algebra and M0 be the unique IVRL-extended maximal

filter of A. Then any element x ∈ D(A) generates a proper IVRL-filter Dx = {νxn | n ≥ 0},

which can be extended to an IVRL-extended maximal filter Mx. But Mx = M0. Thus for all235

10



x ∈ D(A), x ∈ M0 and so D(A) ⊆ M0. Since M0 is proper, M0 ⊆ D(A). Hence M0 = D(A),

therefore (iii) implies (iv) and (i).

By Proposition 2.2 and Theorem 3.1, we have:

Corollary 3.1. Let A be a local triangle algebra. If νxn, νyn ̸= 0 (and so µxn, µyn ̸= 0) for all

n ≥ 1, then µxn ∗ µyn ̸= 0, where x, y ∈ A.240

Proposition 3.1. A triangle algebra A is local iff ord(νx) < ∞ or ord(¬νx) < ∞, for all x ∈ A.

Proof. Let A be a local triangle algebra but νxn > 0 and (¬νx)n > 0, for some x ∈ A and for all

n ∈ N. Then ¬x, x ∈ [D(A)), so 0 = x ∗ ¬x ∈ [D(A)), which contradicts to Theorem 3.1, (ii).

Conversely, let 0 ∈ [D(A)). Then for some x1, ..., xn ∈ D(A), we have νx1 ∗ ... ∗ νxn ≤ 0, so

νx1 ∗ ...νxn−1 ≤ ¬νxn. Since ord(νxn) = ∞, ord(¬νxn) = kn < ∞. Thus245

νxkn
1 ∗ ... ∗ νxkn

n−1 ≤ (¬νxn)
kn = 0,

whence

νxkn
1 ∗ ... ∗ νxkn

n−2 ≤ ¬(νxkn
n−1).

Clearly, ord(νxkn
n−1) = ∞. Hence ord(¬(νxkn

n−1)) = kn−1 < ∞, and so

νx
knkn−1

1 ∗ ... ∗ νxknkn−1

n−2 ≤ (¬(νxkn
n−1))

kn−1 = 0.250

By continuing n times this procedure, we arrive into contradiction νxkn...k2
1 = 0. Therefore 0 /∈

[D(A)), so A is local.

Theorem 3.2. F is n-fold IVRL-extended integral filter iff A/F is local.

Proof. Assume that A/F is local and ¬(νx ∗ νy) = νy → ¬νx ∈ F . Then (νy)/F → (¬νx)/F =

(νy → ¬νx)/F = 1/F , so (νy)/F ≤ (¬νx)/F . Let ¬(νxn) /∈ F , for all n. Then ¬(νxn)/F ̸= 1/F ,255

thus (νxn)/F ̸= 0/F . Since A/F is local, (¬νx)k/F = 0/F , for some k. Also, (νyk)/F ≤

(¬νx)k/F = 0/F , whence ¬(νyk)/F = 1/F i.e ¬(νyk) ∈ F . And so F is n-fold IVRL-extended

integral filter.

Conversely, let F be an n-fold IVRL-extended integral filter. Since ¬(νx ∗ ¬νx) = 1 ∈ F ,

for all x ∈ A, we have ¬(νxn) ∈ F or ¬((¬νx)n) ∈ F for some n, i.e ¬(νxn)/F = 1/F or260
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¬((¬νx)n)/F = 1/F . Therefore (νxn)/F = 0/F or ((¬νx)n)/F = 0/F . Thus A/F is local

triangle algebra.

Proposition 3.2. Let F be an IVRL-extended maximal filter of A and ¬νx /∈ F , for all 0 ̸= x ∈ A.

Then A/F is a local triangle algebra.

Proof. If ¬νx /∈ F , for all 0 ̸= x ∈ A and F is an IVRL-extended maximal filter, then ¬¬νx ∈ F .265

Hence ¬νx/F = 0/F . Thus A/F is a local triangle algebra.

In the following example we show that the converse of the above proposition is not true in

general.

Example 3.3. Consider LI = [0, 1] and define ∗ and → on LI as follows:

x ∗ y = min(x, y) and x → y =

1 x ≤ y

y y < x

, then (LI ,∨,∧, ∗,→, 0, 1) is a residuated lattice.270

Now, we define

[x1, x2]⊙ [y1, y2] = [x1 ∗ y1, x2 ∗ y2],

[x1, x2] ⇒ [y1, y2] = [(x1 → y1) ∧ (x2 → y2), x2 → y2].

The structure (LI × LI ,∨,∧,⊙,⇒, [0, 0], [1, 1]) is a residuated lattice too. If we define

ν[x1, x2] = [x1, x1], µ[x1, x2] = [x2, x2], u = [0, 1].275

then (LI×LI ,∨,∧,⊙,⇒, ν, µ, [0, 0], [0, 1], [1, 1]) is a local triangle algebra. If F = {[1, 1]}, then F is

not an IVRL-extended maximal filter of LI ×LI . Clearly, LI ×LI/F = LI ×LI/{[1, 1]} ≡ LI ×LI

is a local triangle algebra.

Proposition 3.3. Every IVRL-extended prime filter of A is an n-fold IVRL-extended integral

filter.280

Proof. If F is an IVRL-extended prime filter of A, then νx → νy ∈ F or νy → νx ∈ F , for all

x, y ∈ A. Let νx → νy ∈ F , ¬(νx ∗ νy) ∈ F . Then

(νx → νy) ∗ ¬(νx ∗ νy) = (νx → νy) ∗ (νy → ¬νx) ≤ (νx → ¬νx) = ¬(νx2) ∈ F .

Similarly, if (νy → νx),¬(νx∗νy) ∈ F , then ¬(νy2) ∈ F . Therefore F is an n-fold IVRL-extended

integral filter of A.285
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Lemma 3.1. Let F be an IVRL-filter of A. Then A/F is linearly ordered iff F is an IVRL-

extended prime filter of A.

Proof. Let F be an IVRL-extended prime filter and x, y ∈ A. Then νx → νy ∈ F or νy → νx ∈ F .

So [x]F ≤ [y]F or [y]F ≤ [x]F . Thus A/F is linearly ordered.

Conversely, if A/F is linearly ordered and x, y ∈ A, then either [y]F ≤ [x]F and so νy → νx ∈ F290

or [x]F ≤ [y]F and so νx → νy ∈ F . Hence F is an IVRL-extended prime filter.

Proposition 3.4. A is a local triangle algebra iff every proper IVRL-filter of A is an n-fold

IVRL-extended integral filter.

Proof. Let A be a local triangle algebra and F be a proper IVRL-filter of A. Then D(A) is the

unique IVRL-extended maximal filter containing F , thus D(A)/F is the unique IVRL-extended295

maximal filter of triangle algebra A/F , i.e. A/F is local and F is n-fold IVRL-extended integral

filter by Theorem 3.2.

Conversely, if any proper IVRL-filter of A is n-fold IVRL-extended integral filter, then in

particular, {1} is n-fold IVRL-extended integral filter. Hence A ≡ A/{1} is local by Theorem

3.2.300

Theorem 3.3. Every MTL-triangle algebra is a subdirect product of local triangle algebras.

Proof. Trivially every linear triangle algebra is local. By Lemma 2.4, the proof is complete.

If ν(x → y) = νx → νy and x∗ (x → y) = x∧y, for all x, y ∈ A, then by Theorem 3.1, we have:

Proposition 3.5. (i) Let A be a local triangle algebra. Then Ds(A) ⊆ D(A).

(ii) If Ds(A) = A \ {0}, then A is a local triangle algebra.305

Proof. (i) Clearly, 1 ∈ Ds(A). If x, x → y ∈ Ds(A), then 0 = ¬νx = νx → 0 = νx → ¬ν(x →

y) = νx → ¬(νx → νy) = ¬(νx ∗ (νx → νy)). Since (νx ∗ (νx → νy)) ≤ νy, we have ¬νy ≤

¬((νx ∗ (νx → νy))) = 0. Hence y ∈ Ds(A). Since ¬ννx = ¬νx = 0, then νx ∈ Ds(A). Therefore

Ds(A) is an IVRL-filter. Clearly 0 /∈ Ds(A), so Ds(A) is proper. Whence Ds(A) can be extended

to D(A).310

(ii) Since Ds(A) is an IVRL-filter, Ds(A) is the unique IVRL-extended maximal filter of A.
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It is worth to note that the converse of (ii) in above proposition does not hold, in general. For

this we give the following example.

Example 3.4. [19] Consider LI = [0, 1] and define ∗,→ on LI as follows:

x ∗ y = max(0, x+ y − 1), x → y = min(1, 1− x+ y).315

Then (LI ,∨,∧, ∗,→, 0, 1) is a residuated lattice. Now we define

[x1, x2]⊙ [y1, y2] = [x1 ∗ y1, x2 ∗ y2],

[x1, x2] ⇒ [y1, y2] = [(x1 → y1) ∧ (x2 → y2), x2 → y2].

The structure (LI × LI ,∨,∧,⊙,⇒, [0, 0], [1, 1]) is a residuated lattice too. If we define

ν[x1, x2] = [x1, x1], µ[x1, x2] = [x2, x2], u = [0, 1].320

then (LI × LI ,∨,∧,⊙,⇒, ν, µ, [0, 0], [0, 1], [1, 1]) is a triangle algebra. It is clear that LI × LI is a

local triangle algebra, but x = [0.5, 0.7] /∈ Ds(L
I × LI). So Ds(L

I × LI) ̸= LI × LI \ {0}.

Proposition 3.6. The following conditions are equivalent:

(i) ¬ν(y → x) = ¬ν(x → y), for all 0 ̸= x, y ∈ A

(ii) Ds(A) = A \ {0}.325

Proof. Let ¬ν(y → x) = ¬ν(x → y), for all 0 ̸= x, y ∈ A. For y = 1, we have ¬νx = 0, for all

0 ̸= x ∈ A. Hence Ds(A) = A \ {0}.

Conversely, assume (ii) holds and let x, y ̸= 0, Then x, y ∈ Ds(A). Since x ≤ y → x, also

y → x ∈ Ds(A), so ¬(ν(y → x)) = 0. Similarly ¬(ν(x → y)) = 0, and so (i).

330

Under the conditions Proposition 2.1 and by Proposition 3.6, we have (in this case the negation

is assumed to be involutive):

Proposition 3.7. The following conditions are equivalent:

(i) µ¬(y → x) = µ¬(x → y), for all 0 ̸= x, y ∈ A

(ii) Ds(A) = A \ {0}.335

Corollary 3.2. Let ¬ν(y → x) = ¬ν(x → y), for all 0 ̸= x, y ∈ A. Then A is a local triangle

algebra.
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Theorem 3.4. Let Ds(A) = A \ {0}. Then

(i) A/F is local triangle algebra, for every IVRL-filter of A,

(ii) A/Ds(A) is local triangle algebra.340

Proof. (i) Let F be a proper IVRL-filter of A. For all 0/F ̸= x/F, y/F ∈ A/F ,

¬(νx/F → νy/F ) = ¬((νx → νy)/F )

= ¬(νx → νy)/F

= ¬(νy → νx)/F

= ¬(νy/F → νx/F ).

Thus A/F is local triangle algebra.

(ii) Since Ds(A) is an IVRL-filter of A, by (i), A/Ds(A) is local triangle algebra.

In the following example we show that the converse of above theorem is not true, in general.

Example 3.5. In Example 3.1, we have Ds(A) = {1} ̸= A \ {0}. Let F = {1}. Then A/F =

{1} = A/Ds(A) = A is local triangle algebra.345

4. Semilocal triangle algebras

Definition 4.1. Local triangle algebra A is called locally finite if ord(x) < ∞, for all x ∈ A \ {1}.

Definition 4.2. A triangle algebra A whose only proper IVRL-filter is the set {1}, is called

semisimple triangle algebra.

Let L,K be two locally finite triangle algebras. Then a product triangle algebra L×K contains350

two disjoint descending chains of IVRL-filters (unless element 1, since 1 ∈ F , for any IVRL-filter F

of triangle algebra K), namely L×K ⊇ L×{1} ⊇ {(1, 1)} and L×K ⊇ L×{1}. Clearly, L×K is

a semisimple triangle algebra and the two IVRL-extended maximal filters {1}×K and L×{1} are

disjoint. Also, n locally finite triangle algebras L1, L2, ..., Ln, a product triangle algebra
∏n

i=1 Li

is semisimple, contains 2n − 1 proper IVRL-filters and n disjoint IVRL-extended maximal filters355

Mi = L1 × ...× {1} × ...× Ln, i = 1, ..., n and any strict descending chain of IVRL-filters is finite.

In particular, we have
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Proposition 4.1. Let A be a triangle algebra and M1, ...,Mn, n IVRL-extended maximal filters of

A. Then the product triangle algebra
∏n

i=1 A/Mi is semisimple, contains 2n−1 proper IVRL-filters

and n disjoint IVRL-extended maximal filters. Also, every strict descending chain of IVRL-filters360

of
∏n

i=1 A/Mi is finite.

Definition 4.3. Let F,G be two proper IVRL-filters of A. Then we call F and G relatively prime

if [F ∪G) = A.

Example 4.1. In Example 3.2, F1 = {[a, a], [a, 1], [1, 1]} and F2 = {[b, b], [b, 1], [1, 1]} are relatively

prime.365

Proposition 4.2. Let F and G be two relatively prime IVRL-filters of A. Then there is an element

x ∈ A such that x ≡F 1 and x ≡G 0.

Proof. Since 0 ∈ A = [F
∪
G), there are x ∈ F , y ∈ G such that x ∗ y = 0. Clearly, x ≡F 1. Since

y ≤ ¬x,¬x ∈ G. So x ≡G 0.

Proposition 4.3. Let F1, ..., Fm be IVRL-filters of A such that Fi, Fj are relatively prime IVRL-370

filters of A, for all i, j = 1, ...,m and i ̸= j. Then there is x ∈ A such that x ≡Fi xi for i = 1, ...,m.

Proof. First, let m = 2. Since [F1∪F2) = A, By Proposition 4.2, there exist f12 ∈ F1 and f21 ∈ F2

such that f12 ∗f21 = 0. By Lemma 2.1, we have f12 ≤ ¬f21. Then ¬f21 ∈ F1, and hence f21 ≡F1 0.

Since f12 ≤ ¬f21, we get ¬¬f21 ≤ ¬f12, also we have, f21 ≤ ¬¬f21. Thus f21 ≤ ¬f12 and so

¬f12 ∈ F2. Hence f12 ≡F2 0. Let x = (f12 ∗ x1) ∨ (f21 ∗ x2), where x1, x2 ∈ A. By Lemma 2.1, we

have

x/F1 = (f12/F1 ∗ x1/F1) ∨ (f21/F1 ∗ x2/F1)

= (1/F1 ∗ x1/F1) ∨ (0/F1 ∗ x2/F1)

= x1/F1.

So x ≡F1 x1. Similarly, x ≡F2 x2. Now let m be arbitrary, for i, j = 1, ...,m and i ̸= j, there exist

fij ∈ Fi and fji ∈ Fj such that fij∗fji = 0. Considering x = ∨m
i=1(fi1∗...∗fi,i−1∗fi,i+1∗...∗fi,m∗xi)

and reasoning as above we see that x ≡Fi xi, for i = 1, ...,m.

Theorem 4.1. Let A be a triangle algebra and F1, ..., Fn be n disjoint IVRL-extended maximal375

filters of A. Then a mapping g : A −→ A =
∏n

i=1 A/Fi defined by g(a) = (a/F1, ..., a/Fn), for all

a ∈ A, is a surjective triangle homomorphism such that g(a) = 1A iff a ≡Fi 1, for all i = 1, ..., n.

Hence A/ ∩n
i=1 Fi is isomorphic to

∏n
i=1 A/Fi.
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Proof. Since g is a product of the natural triangle homomorphisms gi : A −→ A/Fi such that

g(a) = a/Fi, i = 1, ..., n, g is a triangle homomorphism. Now, we prove that g is surjective. Let380

a′ = (a1/F1, ..., an/Fn) ∈ A, for all ai ∈ a/Fi, i = 1, ..., n are representatives of the corresponding

equivalence classes. Then ai ∈ Fi i.e. ai ≡Fi 1. We construct an element a′′ such that g(a′′) = a′.

By Proposition 4.2, for all i, j ∈ {1, ..., n}, i ̸= j, there exists an element xij ∈ A such that

xij ≡Fi
1, xij ≡Fj

0. Set

r1 = x12 ∗ ... ∗ x1n385

r2 = x21 ∗ ... ∗ x2n

.

.

rn = xn1 ∗ ... ∗ xn,n−1.

Then for all i = 1, ..., n, i ̸= j, ri ∈ Fi and ri ≤ xij . Thus ¬xij ≤ ¬ri, for all ¬xij ∈ Fj . So390

¬ri ∈ Fj . Hence ri ≡Fi 1, ri ≡Fj 0. We set, a′′ = ¬[¬(a1 ∗ r1) ∗ ... ∗ ¬(an ∗ rn)] and show

that g(a′′) = a′. First we show (ai → a′′) ∗ (a′′ → ai) ∈ Fi, for all i ∈ {1, ..., n}. Indeed, we have

ai∗ri ≤ ai → a′′ = (ai∗[¬(a1∗r1)∗...∗¬(an∗rn)]) → 0 iff (ai∗ri)∗([ai∗(¬(a1∗r1)∗...∗¬(an∗rn))]) ≤ 0.

Since (ai ∗ ri) ∗ ([ai ∗ (¬(a1 ∗ r1) ∗ ... ∗ ¬(an ∗ rn))] ≤ (ai ∗ ri) ∗ ¬(ai ∗ ri) = 0, (ai → a′′) ∈ Fi.

Since ai ≤ a′′ → ai and ai ∈ Fi, a′′ → ai ∈ Fi. So (ai → a′′) ∗ (a′′ → ai) ∈ Fi. Clearly,395

g(a) = (1/F1, ..., 1/Fn) = 1A iff a ≡Fi 1, for all i = 1, ..., n. Thus a ∈ ∩n
i=1Fi.

Definition 4.4. A triangle algebra A is said to be semilocal if it contain only finite IVRL-extended

maximal filter.

Remark 4.1. Clearly, every local triangle algebra is semilocal.

In the following example we show that the converse of above remark is not true, in general.400

Example 4.2. In Example 3.2, Clearly A has two IVRL-extended maximal filters. So A is semilo-

cal triangle algebra but A is not local triangle algebra.

By Theorem 3.2 and Remark 4.1 we have:

Corollary 4.1. If F is an n-fold IVRL-extended integral filter of A, then A/F is a semilocal

triangle algebras.405

In the following example we show that the converse of above corollary is not true.
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Example 4.3. In Example 3.2, let F = {[1, 1]}. Then A/{[1, 1]} ≡ A, so A/{[1, 1]} is semilocal

triangle algebras. But F is not an n-fold IVRL-extended integral filter of A, since ¬(ν[a, 1]∗ν[b, b]) ∈

F but ¬(ν[a, 1]) = [b, b] /∈ F and ¬(ν[b, b]) = [a, a] /∈ F .

Theorem 4.2. A is a semilocal triangle algebra iff any proper descending chain of IVRL-filters410

in A/F (A) is finite, where F (A) = ∩{F | F is an IVRL-extended maximal filter of A}.

Proof. Let F1, ..., Fn be the n disjoint IVRL-extended maximal filters of A. Then F (A) = ∩n
i=1Fi

and by Proposition 4.1, A/F (A) is isomorphic to
∏n

i=1 A/Fi. By Proposition 4.1, in
∏n

i=1 A/Fi any

properly descending chain of IVRL-filters is finite. If A contains infinitely many IVRL-extended

maximal filters F1, F2, ..., then F1 ⊇ F1

∩
F2 ⊇ ... is an infinite properly descending chain of415

IVRL-filters generating an infinite properly descending chain of IVRL-filters generating an infinite

properly descending chain F1/F (A) ⊇ (F1

∩
F2)/F (A) ⊇ ... of IVRL-filters into A/F (A). The

proof is complete.

Theorem 4.3. Let A be a triangle algebra. The following is equivalent:

(i) A is a semilocal triangle algebra,420

(ii) A/Rad(A) is isomorphic to a direct product of finitely many semisimple linear triangle

algebra,

(iii) A/Rad(A) has finitely many IVRL-filters.

Proof. (i ⇒ ii) Let A be a semilocal triangle algebra and {M1, ...Mk} be the set of all IVRL-

extended maximal filters of A. Then Rad(A) = M1 ∩ ... ∩ Mk. So each A/Mi is semisim-425

ple linear triangle algebra. We define the map φ : A/Rad(A) −→ A/M1 × ... × A/Mk by

φ(x/Rad(A)) = (x/M1, ..., x/Mk). Then φ is clearly a homomorphism. We show that φ is an

isomorphism. Let (x/M1, ..., x/Mk) ∈ A/M1 × ...× A/Mk. Since [Mi ∪Mj) = A for i, j = 1, ..., k

and i ̸= j by Proposition 4.3, there exists x ∈ A such that x/Mi = xi/Mi, for all i = 1, ..., k. Thus

(x1/M1, ...xk/Mk) = (x/M1, ...x/Mk) = φ(x/Rad(A)) and so φ is surjective. Now, we have to show430

φ is injective. Suppose that φ(x/Rad(A)) = φ(y/Rad(A)), for all x, y ∈ A. Hence x/Mi = y/Mi

for all i = 1, ..., k. Thus x → y ∈ Mi and y → x ∈ Mi, for i = 1, ..., k, that is, x → y ∈ Rad(A)

and y → x ∈ Rad(A). So x/Rad(A) = y/Rad(A). It is proved that φ is an isomorphism.

(ii ⇒ iii) Let A/Rad(A) ≡ A1 × ... × Ak, where Ai are semisimple linear triangle algebra for

i = 1, ..., k. By Lemma 2.4, | Fil(A/Rad(A)) |=| Fil(A1)× ...× Fil(Ak) |. Since Fil(Ai) has two435
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elements for every i = 1, ..., k, we have Fil(A/Rad(A)) = 2k. Thus A/Rad(A) has finite many

IVRL-filters.

(iii ⇒ i) Let A have infinitely many IVRL-extended maximal filters Fn, n ∈ N. Obviously, all

Fn/Rad(A) are IVRL-filters of A/Rad(A). So we have

F/Rad(A) = F ′/Rad(A) ⇒ F = F ′, (1)

where F, F ′ are IVRL-extended maximal filters of A. Let F/Rad(A) = F ′/Rad(A) and let x ∈ F .

Then x/Rad(A) ∈ F ′/Rad(A) and so x/Rad(A) = y/Rad(A) for some y ∈ F ′. So y → x ∈

Rad(A) ⊆ F ′. Therefore (y → x) ∗ y ∈ F ′. Thus x ∈ F ′ and so F ⊆ F ′. Similarly, F ′ ⊆ F , and we440

obtain F = F ′. Hence 1 holds. From 1 it follows that A/Rad(A) has infinitely many IVRL-filters

Fn/Rad(A), which is impossible.

Conclusion and future work

The notions of triangle algebras and interval valued residuated lattices have been defined by

Van Gasse et al., who proved that there is a one-to-one correspondence between the classes of445

IVRLs and triangle algebras [17]. The same authors defined filters in triangle algebras, suggesting

two different ways to define the specific types of these filters, proposing remarkable findings [16].

In this study, we investigated several important properties of local and semilocal triangle al-

gebras. The special set D(A) was defined, and the correlation between the set and local triangle

algebras was determined, while their key properties were also summarized. Furthermore, the cor-450

relations between these algebras and some IVRL-filters were assessed. Finally, semilocal triangle

algebras were introduced and studied in detail, and the important properties of these structures

were presented.

In our future work, we will continue our study of algebraic properties of this special sets on

triangle algebras, with the view to identify a classification for these structures.455
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