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Abstract
This paper presents a combined viscoplasticity-embedded discontinuity model for 3D analyses of rock failure processes 
under dynamic loading. Capabilities of a rate-dependent embedded discontinuity model, implemented with the linear tet-
rahedral element, for mode I (tension) loading induced fractures is extended to compressive (shear) failure description by 
viscoplastic softening model with the Drucker–Prager yield criterion. The return mapping update formulas are derived for 
the corner plasticity case exploiting the consistency conditions for both models simultaneously. The model performance 
is demonstrated in 3D numerical simulations of uniaxial tension and compression test on a heterogeneous rock at various 
loading rates. These simulations corroborate the conception that the rate sensitivity of rock is a genuine material property 
in tension while structural (inertia) effects play the major role in compression at high loading rates (up to 1000 s−1). Finally, 
the model is validated with predicting the experiments of dynamic Brazilian disc test on granite.

Keywords Rock fracture · Rate sensitivity · Embedded discontinuity FEM · Drucker–Prager viscoplasticity · Dynamic 
Brazilian disc test
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1 Introduction

Numerical modelling of the failure of rock is an integral 
part of modern computational rock mechanics. Rock is 
particularly challenging engineering material due to its 
heterogeneity, which consists of different material proper-
ties of constituent minerals as well as the inherent micro-
faults, such as microcracks and voids (Jaeger and Cook 
1971; Mahabadi 2012; Liu et al. 2004a, b; Tang 1997; Xia 
et al. 2008; Wei and Anand 2008; Krajcinovic 1996; Tang 
and Hudson 2010). Another factor making the rock con-
stitutive modelling even more challenging is the strain rate 
sensitivity (Forquin 2017; Li et al. 2017, 2018; Qian et al. 
2009). The rate sensitivity realizes under dynamic load-
ing as an apparent increase in both tensile and compres-
sive strengths accompanied with a transition from single 
crack-to-multiple crack/fragmentation failure mode (Den-
oual and Hild 2000; Xia and Yao 2015; Zhang and Zhao 
2014; Zhang et al. 1999). Therefore, ideally a numerical 
approach for modelling rock should include heterogeneity 
description and accommodate the strain rate sensitivity.

The modelling approaches to rock fracture can be 
divided into two basic categories, which are the contin-
uum-based methods, such as the finite-element method 
(FEM) and the discontinuous or particle-based methods, 
such as the discrete/distinct-element method (DEM). In 
the FEM-based methods, the rock failure processes are 
described only in the smeared sense by damage and/or 
plasticity models (see e.g. Mardalizad et al. 2020; Saksala 
2010; Saksala et al. 2013; Saksala and Ibrahimbegovic 
2014; Shao et al. 1999; Shao and Rudnicki 2000; Tang 
and Yang 2011). On the one hand, the advantages of the 
continuum models are the computational efficiency and 
relative simplicity of calibration and, in most cases, the 
physical meaning of material and model parameters. On 
the other hand, their most obvious shortcoming is the poor 
numerical description of fracture and fragmentation.

For this reason, the discontinuum approach based on 
particle or discrete-element methods has become popular 
today (see e.g. Ma et al. 2011; Yoon et al. 2012; Lisjak 
and Grasselli 2014; Ghazvinian et al. 2014; Kazerani and 
Zhao 2011), as the present computers allow more realistic 
problems to be tackled (see the examples, e.g. at Itasca 
and Geomechanica websites). Particle methods in general 
are superior in rock fracture description but their calibra-
tion is more involved because the laboratory sample level 
properties are emerging from the particle level interaction 
laws (this is, however, the case in reality as well). Com-
plex fracture processes that the particle methods can real-
istically mimic include, e.g. the fracture of echelon rock 
joints (Sarfarazi et al. 2014; Cheng et al. 2019) and the 
rupture of veined rocks under triaxial compression (Shang 

2020). The most critical drawback of particle methods is 
the computational labour required to keep track and update 
the particle contacts configurations and neighbours dur-
ing simulations. Further details on the recent advances on 
computational rock mechanics can be found in the review 
Mohammednejad et al. (2018).

There is also the class of hybrid methods combining the 
advantages of discontinuum and continuum approaches in 
a single code (see e.g. Klerck et al. 2004; Mahabadi et al. 
2010; Mahabadi 2012; Mardalizad et al. 2020; Fukuda 
et al. 2020). Although the hybrid methods capture the frac-
ture processes very well and are easier to calibrate than 
pure particle methods, they still inherit the computational 
labour of the particle methods, which render them often 
unattractive.

For this reason, intensive research has been devoted dur-
ing the last couple of decades to extend the ability of FEM, 
which is computationally cheap as compared to DEM, to 
better describe discontinuities. This effort has resulted in two 
classes of enrichment methods, i.e. the embedded disconti-
nuity FEM (Simo et al. 1993; Simo and Oliver 1994) and the 
extended FEM (Belytschko and Black 1999). In the first ver-
sion and this contrasts with the second, the enrichment of the 
displacement field is such that the extra degrees of freedom, 
representing the crack opening vector, can be eliminated by 
static condensation. The embedded discontinuity FEM has 
been applied in modelling dynamic rock fracture analyses by 
Saksala (2015, 2016) in 2D simulations and by Saksala et al. 
(2016) in 3D simulations. However, the 3D version of the 
model suffers from a serious drawback in that it can describe 
only cracks initiating in tensile (mode I) mode (however, 
once a crack has initiated it can open in mode II). Therefore, 
it cannot be applied in 3D problems involving intensive com-
pressive (shear) failure, such as uniaxial compression test.

In 2D setting, the embedded discontinuity approach with 
a Rankine criterion as a fracture initiation criterion can 
capture the axial splitting failure mode, originating from 
tensile microcracks, of rock under uniaxial compression 
without imposing the crack path continuity over adjacent 
element boundaries, as demonstrated by Saksala (2015, 
2016). However, in 3D this is not possible, at least with the 
linear tetrahedron, due to locking problems stemming from 
the discontinuous fracture planes over adjacent elements. 
Notwithstanding, compressive failure can be captured by 
the linear tetrahedron when using plasticity models since 
pressure sensitive plastic deformation does not suffer from 
locking in this case.

Thereby, this paper presents a 3D constitutive model for 
rock capable of describing both mode I fracture and com-
pressive (shear) failure, represented in the smeared sense as 
plastic deformation, by combining a Drucker–Prager vis-
coplastic softening model with the rate-dependent embed-
ded discontinuity model. The model is tested and validated 



Combined Viscoplasticity-Embedded Discontinuity Model for 3D Description of Rock Failure…

1 3

in representative numerical simulations involving dynamic 
loading.

2  Theoretical Formulation of the Proposed 
Model

2.1  Finite Element with a Discontinuity Plane

Let a body Ω ∈ ℝ
3 be discretized with 4-node tetrahedral 

elements. Despite the low order kinematics interpolation, 
this element is well suited for explicit analyses involving 
transient loads and stress wave propagation (Saksala et al. 
2016). Assume now that the discretized body is split into 
two disjoint parts by a displacement discontinuity, i.e. a 
crack. Figure 1a illustrates an element with the displace-
ment discontinuity Γd defined by the normal nd and tangent 
vectors m1, m2. As this element results in constant strain, 
the displacement jump over the discontinuity plane is also 
assumed elementwise constant, which considerably simpli-
fies the finite-element implementation of the embedded dis-
continuity kinematics.

Assuming infinitesimal deformation kinematics justified 
by brittle nature of rock fracture, the displacement and the 
strain fields can be written as:

where �d denotes the displacement jump and Ni and �e
i
 are 

the standard interpolation functions for the linear tetrahe-
dron and nodal displacements (i = 1,..,4 with summation 
on repeated indices), respectively. Moreover, HΓd

 and �Γd
 

denote, respectively, the Heaviside function and its gradi-
ent, the Dirac delta function. As the displacement jump is 

(1)
�(�) = Ni(�)�

e
i
+MΓd

(�)�d with MΓd
(�) = HΓd

(�) − �Γd
(�)

(2)
�(�) =

(
∇Ni ⊗ �e

i

)sym
−
(
∇𝜑Γd

(�)⊗ �d

)sym
+ 𝛿Γd

(
�⊗ �d

)sym
,

assumed element wise constant, ∇�d ≡ 0 and thus (2) fol-
lows from taking gradient of (1). It should be noted that the 
term containing the Dirac’s delta function, 𝛿Γd

(
�⊗ �d

)sym , 
in (2), is non-zero only when � ∈ Γd . This term is zero out-
side the discontinuity, i.e. for all � ∈ Ω±

e
 and can thus be 

neglected at the global level when solving the discretized 
equations of motion.

Function MΓd
 in (1) restricts the effect of �d inside the 

corresponding finite element, i.e. �d ≡ 0 outside that ele-
ment. This is a considerable facilitation from the implemen-
tation point of view, as there is no need for special treatment 
of the essential boundary conditions. Function �Γd

 appearing 
in MΓd

 is chosen from among the possible combinations of 
the nodal interpolation functions, as illustrated in Fig. 1b, 
so that its gradient is as parallel as possible to the crack 
normal �d:

Following Mosler (2005), the finite-element formula-
tion of the embedded discontinuity theory is based on the 
enhanced assumed strains concept (EAS). Accordingly, the 
variation of the enhanced part of the strain in (2), i.e. the 
second and the third terms, is constructed in the strain space 
orthogonal to the stress field. Applying the L2-orthogonality 
condition with a special Petrov–Galerkin formulation gives 
the following expression for the weak form of the traction 
balance (Mosler 2005; Radulovic et al. 2011):

(3)∇�Γd
= arg

⎛⎜⎜⎝
max
k=1,2,3

���
∑k

i=1
∇Ni ⋅ �d

���
���
∑k

i=1
∇Ni

���

⎞⎟⎟⎠
.

(4)

∫
Ωe

𝛿� ∶ �dΩ = 0, 𝛿� = −
1

Ve

(�d ⊗ �d)
sym +

1

Ad

(�d ⊗ �d)
sym𝛿Γd

⇒
1

Ve
∫

Ωe⧵Γd

� ⋅ �ddΩ −
1

Ad
∫
Γd

�Γd
dΓd = 0,

Fig. 1  4-Node tetrahedron with a discontinuity plane (a) and the possible positions (with the same normal vector n) of a discontinuity that deter-
mine the value of function φ (Radulovic et al. 2011) (b)
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where �d is an arbitrary variation of the displacement jump, 
� is the stress tensor, �Γd

 is the traction vector, Ve is the vol-
ume of the element and Ad is the area of the discontinuity 
Γd . As the integrands in (4) are constants for the linear tet-
rahedron, the weak traction continuity reduces to the strong 
(local) form of traction continuity. The final FE discretized 
form of the problem can be written as follows (Saksala 2015; 
Mosler 2005):

where �̈�j is the acceleration vector, Nnodes is the number of 
nodes in the mesh, J is the set of elements with an embed-
ded discontinuity and Ni is the interpolation function of 
node i. In addition, �̂ is the traction defined on boundary Γ� . 
Equation (5) is the discretized form of the balance of linear 
momentum and Eq. (6), with �d being the loading function, 
defines the elastic zone of stresses. This EAS based formula-
tion results in a simple implementation without the need to 
know explicitly neither the exact position of the discontinu-
ity within the element nor its area. Only its relative position 
with respect to the element nodes is required for the calcula-
tion of the ramp function �Γd

.

2.2  Plasticity Inspired Traction–Separation Model 
For Tensile Fracture

The formal similarity of Eqs. (5) and (6) to the plasticity 
theory allows the problem of solving the irreversible crack 
opening increment and the evolution equations to be recast 
in the computational plasticity format (Mosler 2005). This 
means that the classical elastic predictor–plastic corrector 
split is employed here. The relevant model components, i.e. 
the loading function, softening rules and evolution laws are 
defined as

(5)

∫
Ωe

𝜌NiNj�̈�jdΩ + ∫
Ωe

𝛔 ⋅ ∇NidΩ − ∫
Γ𝜎

Ni�̂�dΓ = 0, i, j = 1…Nnodes

(6)�d

(
�Γd

)
= 0, �Γd

= � ⋅ �d,

(7)

𝜙d

(
�Γd

, 𝜅d, �̇�d
)
= �d ⋅ �Γd

+
((

�1 ⋅ �Γd

)2
+
(
�2 ⋅ �Γd

)2)1∕2

−
(
𝜎t + qd

(
𝜅d, �̇�d

))

(8)

qd = hd𝜅d + sd�̇�d, hd = −gd𝜎t exp
(
−gd𝜅d

)
, gd =

𝜎t

GIc

(9)�̇Γd
= −� ∶

(
∇𝜑⊗ �̇d

)
⋅ �d

(10)�̇d = �̇�d
𝜕𝜙d

𝜕�Γd

, �̇�d = −�̇�d
𝜕𝜙d

𝜕qd

where E is the elasticity tensor, 𝜅d, �̇�d are the internal varia-
ble and its rate related to the softening law qd for the discon-
tinuity and σt is the tensile strength while sd is the viscosity 
modulus in tension. Parameter hd is the softening modulus 
of the exponential softening law while parameter gd controls 
the initial slope of the softening curve and it is calibrated by 
the mode I fracture energy GIc. Moreover, �̇�d is crack open-
ing increment. The evolution laws (10) have their equivalent 
counterparts in the plasticity theory. It should also be noticed 
that the loading function (7) has a shear term multiplied with 
the shear parameter β. The Eq. (11) are the Kuhn–Tucker 
conditions imposing the consistency, meaning thus that this 
is the viscoplastic consistency formulation by Wang et al. 
(1997).

A discontinuity (crack) is introduced in an element with 
the first principal stress exceeding the tensile strength of the 
material. The crack normal is parallel to the first principal 
direction and once introduced, the crack orientation is kept 
fixed.

2.3  Drucker–Prager Viscoplasticity Model 
for Compressive (Shear) Failure

The linear Drucker–Prager (DP) yield criterion with linear 
softening and viscosity model is chosen for rock failure 
description in compression (shear). The model components, 
given in consistency format, are as follows:

where I1 and J2 are the first and the second invariants of the 
stress tensor, respectively, αDP and kDP are the DP parameters 
and c0 is the intact cohesion. Moreover, 𝜅c, �̇�c are the internal 
variable and its rate related to the softening law qc , where hc 
are sc are the constant softening and viscosity modulus in com-
pression. The softening modulus is calibrated with the mode II 
fracture energy and defined so that, irrespective of the element 
size dele, the same amount of energy dissipates in each element. 
The DP parameters are expressed in terms of the friction angle 
φ: αDP = 2sinφ/(3 − sinφ) and kDP = 6cosφ/(3 − sinφ), which 

(11)�̇�d ≥ 0, 𝜙d ≤ 0, �̇�d𝜙d = 0,

(12)𝜙DP

�
�, 𝜅c, �̇�c

�
=
√
J2 + 𝛼DPI1 − kDP

�
c0 + qc

�
𝜅c, �̇�c

��

(13)gDP
�
�, 𝜅c, �̇�c

�
=
√
J2 + 𝛽DPI1 − kDP

�
c0 + qc

�

(14)qc = hc𝜅c + sc�̇�c, hc = −𝜎2
c
dele∕2GIIc

(15)�̇ = −� ∶ �̇vp, �̇vp = �̇�c
𝜕gDP

𝜕�
, �̇�c = −�̇�c

𝜕gDP

𝜕qc

(16)�̇�c ≥ 0, 𝜙DP ≤ 0, �̇�c𝜙DP = 0,



Combined Viscoplasticity-Embedded Discontinuity Model for 3D Description of Rock Failure…

1 3

enables to match the uniaxial compressive strength of rock 
when the cohesion is expressed as c0 = σc (1 − sinφ)/2cosφ with 
σc being the uniaxial compressive strength. It should be noted 
that these relations are assumed here to be valid enough for the 
present purpose to capture the compressive (shear) failure of 
rock. Moreover, a plastic potential, gDP , of the same form as 
ϕDP in (12), but with a dilatation angle ψ (≤ φ) is employed to 
account for correct dilatancy of rock.

2.4  Combination of the Models: Corner Plasticity

The solution, i.e. the stress return mapping, of the models 
described in Eqs. (7)–(11) and (12)–(16) separately is quite 
standard (Wang et al. 1997; Saksala 2016; Mosler 2005). 
However, when both of the criteria (7) and (12) are violated 
simultaneously, the stress integration is not trivial due to the 
different nature of the primary variables in the models, i.e. 
the crack opening vector and the traction vector in the embed-
ded discontinuity model and the viscoplastic strain and the 
stress tensor in the viscoplasticity model. Notwithstanding, 
the plasticity inspired formulation allows the simultaneous 
stress integration since there are relations between these 
primary variables, namely Eq. (6) and the additive split of 
the total strain to include also the viscoplastic strain, i.e. 
� = �e −

(
∇𝜑Γd

⊗ �d

)sym
+ �vp where �e is the elastic strain.

The update formulae are next developed in detail for the 
corner plasticity case exploiting the standard elastic predic-
tor–plastic corrector split and assuming that a crack (dis-
placement discontinuity) with a normal nd exists in an ele-
ment. Moreover, the trial stress violates both criteria, i.e. 
𝜙trial
d

> 0&𝜙trial
DP

> 0 , where 𝜙trial
d

= 𝜙d

(
� trial
Γd,n+1

, 𝜅d,n, �̇�d,n

)
 , 

𝜙trial
DP

= 𝜙DP

(
�trial
n+1

, 𝜅c,n, �̇�c,n
)
 with

where �̂n+1 is the new ordinary strain (the first term in the 
r.h.s of Eq. 2) and �vp,n is the old viscoplastic strain. Now, 
the task is to derive update formulas for the crack opening 
and viscoplastic increments �̇�d, �̇�c . The starting point is the 
consistency conditions (11) and (16), which state that at t 
end of the time step the yield criteria must be zero:

where �̂�d and �̂�c are homogeneous functions of degree one 
( �̂�(�) = 𝜕�̂�(�)∕𝜕� ∶ � ) by their obvious definitions in (7) 
and (12). Next, the elastic predictor–plastic corrector split 
and the algorithmic counterparts of the evolution Eqs. (9), 
(10) and (15), allow the traction and stress at end of the time 
step to be expressed as:

(17)
�trial
n+1

= � ∶
(
�̂n+1 −

(
∇𝜑Γd

⊗ �d,n

)sym
− �vp,n

)
, � trial

Γd,n+1
= �trial

n+1
⋅ �d,

(18)

⎧⎪⎨⎪⎩

𝜙d

�
�Γd,n+1

, 𝜅d,n+1, �̇�d,n+1

�
= �̂�d

�
�Γd,n+1

�
−
�
𝜎t + hd𝜅d,n+1 + sd�̇�d,n+1

�
= 0

𝜙DP

�
�
n+1, 𝜅c,n+1, �̇�c,n+1

�
= �̂�c

�
�
n+1

�
−
�
𝜎c + hc𝜅c,n+1 + sc�̇�c,n+1

�
= 0

,

The rates of the internal variables need to be replaced 
by their algorithmic counterparts, which, by noting that 
according to (10) and (15) �d ≡ �d and �c ≡ kDP�c , gives 
�̇�d,n+1 = �̇�d,n + Δ𝜆d∕Δt and �̇�c,n+1 = kDP

(
�̇�c,n + Δ𝜆c∕Δt

)
 . 

With these results in hand, Eq. (18) can be further devel-
oped. For the tensile loading function, this gives

Similarly, for the DP yield function:

These two equations yield the iterative scheme for solving 
for the crack opening and viscoplastic increments. The final 
update scheme is summarized below:

Although 𝜙DP

(
�
k+1, 𝜆c,k+1, �̇�c,k+1

)
> TOL&𝜙d

(
�Γd,k+1

,

𝜆d,k+1, �̇�d,k+1
)
> TOL> TOL Do.

1. Solve for ��c,k and ��d,k from Eq. (20)

2. 

3. ��d,k = ��d,k
��d

��Γd
, ��vp,k = ��c,k

�gvp

��

4. �d,k+1 = �d,k + ��d,k, �vp,k+1 = �vp,k + ��vp,k
5. �

k+1 = �
k
− � ∶

(
(∇𝜑Γd

⊗ 𝛿�d,k)
sym + 𝛿�vp,k

)
, �Γd,k+1

= �
k+1 ⋅ �d

(19)

�
n+1 = �trial

n+1
+ Δ�

= �trial
n+1

− � ∶

(
Δ𝜆c

𝜕gvp

𝜕�
+ Δ𝜆d

(
∇𝜑Γd

⊗
𝜕𝜙d

𝜕�Γd

)sym)

(20)�Γd,n+1
= � trial

Γd,n+1
+ Δ�Γd

= �n+1 ⋅ �d.

𝜙d

(
�Γd,n+1

, 𝜆d,n+1
)

= �̂�d

(
�Γd,n+1

)
���������

𝜕�̂�d

𝜕�Γd

∶�Γd ,n+1

−

(
𝜎t + hd(𝜆d,n + Δ𝜆d) + sd

(
�̇�d,n +

Δ𝜆d

Δt

))

= 𝜙trial
d

+
𝜕�̂�d

(
�Γd

)

𝜕�Γd

∶ Δ� ⋅ �d − hdΔ𝜆d − sd
Δ𝜆d

Δt

= 𝜙trial
d

−
𝜕�̂�d

𝜕�Γd

∶ � ∶

(
Δ𝜆c

𝜕gvp

𝜕�
+ Δ𝜆t

(
∇𝜑Γd

⊗
𝜕𝜙d

𝜕�Γd

)sym)
⋅ �d

− hdΔ𝜆d − sd
Δ𝜆d

Δt
.

𝜙DP

(
�n+1, 𝜆c,n+1

)
= 𝜙trial

DP
−

𝜕�̂�DP

𝜕�
∶ � ∶

(
Δ𝜆c

𝜕gvp

𝜕�

+Δ𝜆t

(
∇𝜑Γd

⊗
𝜕𝜙d

𝜕�Γd

)sym)

− kDP

(
hcΔ𝜆c + sc

Δ𝜆c

Δt

)
.

Δ𝜆c,k+1 = Δ𝜆c,k + 𝛿𝜆c,k, �̇�c,k+1 =
Δ𝜆c,k+1

Δt
, 𝜆c,k+1 = 𝜆c,k + 𝛿𝜆c,k

Δ𝜆d,k+1 = Δ𝜆d,k + 𝛿𝜆d,k , �̇�d,k+1 =
Δ𝜆d,k+1

Δt
, 𝜆d,k+1 = 𝜆d,k + 𝛿𝜆d,k
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(��c��d)
T = �−1�  where

The material tangent stiffness can be derived in a 
straightforward manner having Eq. (21) in hand. However, 
it is not used in the present case since the equations of 
motion are solved with explicit time marching. Finally, 
the overall flow of the solution process is presented in 
“Appendix”.

3  Numerical Examples

This section presents the numerical simulations that dem-
onstrate and validate the model performance. First, the 
model behaviour is tested at the material point level in 
cyclic loading using a single element mesh. Then, uniaxial 
compression and tension tests are carried on numerical 
rock at the laboratory sample level. Third, the dynamic 
Brazilian test is simulated as a further validation test.

3.1  Material Properties and Model Parameters

The material properties and model parameters used in some 
of the simulations are given in Table 1. The numerical 
rock consists of Quartz (33%), Feldspars (60%) and Biotite 
(7%) minerals and most of their properties are taken from 
Mahabadi (2012) with some slight modifications [the tensile 

(21)� =

⎛⎜⎜⎜⎝

𝜕�̂�d

𝜕�Γd
∶ � ∶

�
∇𝜑Γd

⊗
𝜕𝜙d

𝜕�Γd

�sym

⋅ �d + hd +
sd

Δt

𝜕�̂�d

𝜕�Γd
∶ � ∶

𝜕gvp

𝜕�
⋅ �d

𝜕�̂�DP

𝜕�
∶ � ∶

�
∇𝜑⊗

𝜕𝜙d

𝜕�Γd

�sym
𝜕�̂�DP

𝜕�
∶ � ∶

𝜕gvp

𝜕�
+ kDP(hc +

sc

Δt
)

⎞⎟⎟⎟⎠
, � =

�
𝜙d

𝜙DP

�
.

strength of feldspar is lowered from 10 MPa in Mahabadi 

(2012) to 8 MPa here]. The shear fracture energies are 
obtained by multiplying the mode I energies by 30. It should 
be noted that in the present model these energies represent 
the amount energy dissipated in a finite element during the 
uniaxial compression and tensile tests. Therefore, the com-
putational mode II fracture energy, GIIc, must be substantially 
larger than that in mode I since the ratio of the compressive to 
tensile strength is ~ 15 in the present case. The shear control 
parameter is set to 1 for simplicity, but its effect is tested in 
numerical examples. The dilation angle is set to a low value 
of 5° to decrease the volumetric component of plastic flow 
and thus reduce the dilation effect. However, the effect of 
associated flow rule (ψ = φ) is also tested in simulations.

The rock heterogeneity is described by random clusters 
of finite elements assigned with the material properties of 
the constituent minerals (see Fig. 3). However, the dynamic 
Brazilian disc test simulation is carried out using homog-
enized properties because the experimental results available 
report only the rock aggregate properties, not the mineral 
properties. The homogenized properties in Table 1 are cal-
culated by simple rule of mixtures, i.e. they are the weighted 
average values.

It is assumed here that the compressive strengths for the 
minerals can be calculated similarly as for the aggregate 
rock, i.e. by the relation between the compressive strength, 
cohesion and the friction angle: σc = c02cosφ/(1 − sinφ). It 
should be noted that the analysis behind this relation con-
siders rock as homogenous, i.e. made of a single mineral. 
Therefore, it can be used to calculate the strength of the 
constituent minerals as well. Moreover, the viscosity values 
in Table 1 are small enough so as not to cause notable strain 
rate hardening effect in low rate simulations and also high 
enough to secure robust solution of Eq. (21). More precisely, 
the diagonal entries of matrix G should be positive in order 
to have a meaningful solution, i.e. fulfilling the consistency 
conditions. However, if the element size is relatively large 
and, consequently, softening modulus hc very large, the 
diagonal entry may be negative in the inviscid case (sc = 0). 
Nevertheless, in the viscid case with explicit time marching, 
the term sc/Δt is large enough to guarantee positivity of the 
diagonal entry and hence the robust solution of (21).

Table 1  Material properties and model parameter values

Parameter/mineral Quartz Feldspars Biotite Homog

E [GPa] 80 70 20 63.4
σt [MPa] 10 8 7 8.58
c0 [MPa] 25 25 25 25
σc [MPa] 137 137 137 137
ν 0.17 0.29 0.2 0.243
ρ [kg/m3] 2600 2600 2600 2600
GIc [J/m2] 40 40 28 39
GIIc [J/m2] 30 GIc 30 GIc 30 GIc 30 GIc

φ [°] 50 50 50 50
ψ [°] 5 5 5 5
sd [MPa s/m] 0.005 0.005 0.005 0.005
sc [MPa s] 0.005 0.005 0.005 0.005
β 1 1 1 1
f [%] 33 60 7 100
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3.2  Material Point Level Simulation

The first simulation demonstrates the model prediction in a 
cyclic uniaxial (low rate) loading at the material point level 
with the single tetrahedron mesh shown Fig. 2d. The homog-
enized material properties and model parameters in Table 1 are 
used. The simulation results are presented in Fig. 2.

The loading program starts with a tension cycle, which 
leads to tensile failure accompanied with the introduction 
and opening of a crack with normal nd = [0 0  1]T. This is 
realized as softening in Fig. 2. The loading then switches 
to compression, where viscoplastic flow related softening 
starts upon violation of the DP criterion at the compressive 
strength of 137 MPa. Then, the loading turns once again to 
tension and the crack opening and the related softening start 
at the present tensile strength ( �t + qd ). It should be noted 
that the loading and off-loading takes place with the intact 
elasticity modulus, i.e. there is no stiffness degradation or 
damage component in the model presently.

3.3  Uniaxial Tension and Compression Tests 
at the Laboratory Sample Scale

Uniaxial tension and compression tests are the most basic 
problems any rock material model should be able to repli-
cate. The performance of the present model is demonstrated 
in simulation of these tests with the mineral properties in 
Table 1 at different loading rates. The tests are carried out on 
the three numerical rock specimens shown in Fig. 3a. Theses 
numerical rocks are generated as follows. First, a 1D array 
with a length of the total number of elements is filled with 
integers 1, 2 and 3, corresponding to the color code in Fig. 3, 
so that the number of ones, twos and threes in the array cor-
respond to the percentage of each mineral in the rock. This 
array is then randomly permutated. As the element number-
ing in the mesh is kept fixed, this scheme generates simple 
representations of spatial heterogeneity.

The mesh is the same for each specimen consisting of 
206,617 linear tetrahedrons with the average element size of 
1 mm. The specimen dimensions are D = 25 mm and H = is 

Fig. 2  Model response in uniaxial cyclic loading at the material point level: the loading program (a), the stress–strain response (b), magnified 
detail (c) and the single element mesh (d)
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50 mm. Figure 4 shows the uniaxial tension test results 
with a constant velocity boundary condition v0 = 0.005 m/s 
( �̇� = 0.1 s−1). In passing, it is noted that lower strain rates 
are impractical due to the conditional stability of explicit 
time marching (time step is ~ 4E−8 s). In order to avoid pre-
mature fracture, the tension test at higher velocity must be 
conducted with a special arrangement shown in Fig. 3b. A 
linear initial velocity field of form vz (z) = 2v0z/H with v0 = �̇� 
H/2 is imposed at each node in z-direction in order to prevent 
the stress wave oscillations at the top and bottom edges and 
premature failures close to the edges.

The failure modes of the numerical rock samples attest the 
experimental transverse splitting mode with a single or dou-
ble macrocrack (RML 2016). The resulting tensile strength 
is ~ 8 MPa for each specimen (Fig. 4c). The pre-peak part of 
the response is virtually identical for each specimen while 
deviations occur during the post-peak crack opening related 
softening process. Furthermore, the pre-peak part shows 
some ductile behaviour, i.e. a short hardening stage, before 
the peak stress. This feature is caused by the heterogeneous 
material properties leading to failure at weak elements in the 
mesh before the average response reaches the peak stress. 
However, the experimental results on quasi-static uniaxial 
tension test do not usually display this pre-peak ductility 
but a sharp peak response instead (see Shang et al. 2016 for 
example). Notwithstanding, the ductile behaviour attested in 
Fig. 4c is quite negligible in the practical engineering sense.

Figure 4 also shows the effect of the shear parameter 
value for β = 0.25 (loading function (7)). With this value, a 
smooth post-peak softening response and a slightly aligned 

and slightly thicker macrofailure plane is realized. Finally, 
Fig. 4b shows the spatial structure of the double crack sys-
tem realized with NumRock1. The corresponding crack nor-
mal distribution, with every 5th crack shown for clarity, is 
presented in Fig. 4d. Most of the crack normals are parallel 
to the loading axis (z-axis).

Next, higher loading rates and the effect of viscosity are 
tested. Figure 5 shows the results for loading rates 10 s−1 
and 100 s−1. As the loading rate increases, more macroc-
racks appear in the samples, which is reflected in the average 
stress–strain responses as a more ductile response due to a 
larger amount of energy dissipated. This is the experimental 
rate-dependent brittle-to-ductile transition (Zhang and Zhao 
2014).

However, no significant increase in tensile strength is 
predicted even at 100 s−1 while the experiments attest the 
dynamic increase factor (DIF) of about 2 at this level of 
strain rate (Zhang and Zhao 2014). The significance of this 
results is that in tension the rock strain rate sensitivity is not 
a structural effect but, at least primarily, a material property 
(see also Saksala 2019).

This inability of predicting the strain rate harden-
ing can be mended by increasing the viscosity modulus. 
Indeed, Fig. 5d shows that the DIF of 2 is predicted when 
sd = 0.1 MPa s/m. However, the corresponding failure mode 
(Fig. 5c) displays rather weird pattern with the whole speci-
men having undergone cracking.

Uniaxial compression tests are simulated next. Figure 6 
shows the failure modes for the numerical rock speci-
mens at v0 = − 0.005 m/s ( �̇� = 0.1 s−1). The failure modes 

Fig. 3  Numerical rock samples for uniaxial tension and compression test simulations (206,617 elements, color code: 1 = Quartz, 2 = Feldspar, 
3 = Biotite) (a) and boundary condition for high strain-rate simulations (b)
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Fig. 4  Uniaxial numerical tension test (v0 = 0.005 m/s): Final failure modes in terms of crack opening magnitude for numerical rock samples (a), 
the crack planes for NumRock1 (b), the average stress–strain responses (c) and the crack normals for NumRock1 with every 5th crack plotted (d)

Fig. 5  Uniaxial tension test on NumRock1: Final failure modes in terms of crack opening magnitude at v0 = 0.5  m/s (10  s−1) (a), v0 = 5  m/s 
(100 s−1) (b), v0 = 5 m/s (100 s−1) with sd = 0.1 MPa s/m (c), corresponding average stress–strain responses (d)
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predicted with the present DP viscoplastic softening 
model using the nonassociated flow (ψ = 5°) represent the 
experimentally documented double shearing and multiple 
fracture modes (Basu et al. 2013). However, the corre-
sponding average stress–strain responses, with a maximum 
of 120 MPa, are virtually identical despite the different 
spatial configuration of the failure planes and the hetero-
geneous material properties. Another notable feature is 
that the pre-peak parts of the curves show a decline in the 
stiffness at around 70 MPa of stress. This realistic feature, 
which represent microcracking events in real rocks, is due 
to heterogeneous material properties, which causes fail-
ures (tensile and compressive) in weak elements at which 
the failure criteria is met before the final failure. It should 
be reminded that the constitutive model does not have a 
pre-peak nonlinearity description.

Interestingly, the associated flow rule predicts the par-
tial axial splitting mode and the corresponding stress–strain 

response does not exhibit notable (upon eye inspection) 
decline in the pre-peak stiffness. Figure 6c shows the inter-
nal structure of the failure mode for the first numerical rock 
specimen (NumRock1). Despite being compressive test, sub-
stantial number of tensile cracks are induced, as attested in 
Fig. 6d showing tensile crack normal distribution for Num-
Rock1 with every 20th crack normal plotted for clarity.

Figure 7 presents the simulations results on compressive 
test on NumRock1 at elevated loading rates. As the load-
ing rate rises, the numerical specimen becomes more frag-
mented, being totally demolished at 1000 s−1. This is, again, 
the experimentally observed single-to-multiple fracture/
fragmentation transition. In the experiments performed by 
Hokka et al. (2016), a granite sample was fully disintegrated 
under uniaxial compression at 600 s−1. The compressive 
strength predicted here at 1000 s−1 is 202 MPa, meaning that 
the DIF, compared to 120 MPa at 0.1 s−1, is 1.7, which is 
within the experimental range (Zhang and Zhao 2014). The 

Fig. 6  Uniaxial numerical compression test (v0 = − 0.005 m/s): Final 
failure modes in terms of viscoplastic multiplier for numerical rock 
samples (a), corresponding average stress–strain responses (b), fail-

ure plane structure (c) and tensile crack normal distribution (every 
20th crack normal plotted) (d) for NumRock1
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simulations in Fig. 7 were carried out with a low viscosity 
value (viscosity was lowered to 0.0001 MPa·s at 1000 s−1), 
which does not introduce notable strain rate hardening effect. 
Therefore, these 3D results corroborate the view (see the 2D 
simulations by Saksala 2019) that in uniaxial compression 
the rate sensitivity is mostly a structural property, caused by 
lateral inertia effects at extremely high rates.

3.4  Dynamic Brazilian Disc Test

The dynamic Brazilian disc test is widely used to determine 
the indirect dynamic tensile strength of brittle materials 
such as rock and concrete. The experimental results on Kuru 
granite by Saksala et al. (2013) are exploited here as a vali-
dation case for the present model. The test is performed with 
the Split Hopkinson pressure bar apparatus. The schematics 
of the computational model and the finite-element mesh are 
shown in Fig. 8.

The principle of the computational procedure is as fol-
lows. The compressive stress wave induced by the impact 
of the striker bar is simulated as an external stress pulse, 
σi (t), obtained from the experiments. The incident and 

transmitted bars are modelled with two-node standard 
bar elements and the Brazilian disc is discretized with 
the linear tetrahedral elements. Finally, the contacts 
between the bars and the numerical rock sample are mod-
elled by imposing kinematic (impenetrability) constraints 
between the bar end nodes and the rock mesh nodes in 
form ubar − un = bn, where ubar and un are the degrees of 
freedom in axial direction (horizontal in Fig. 8) of the bar 
node and a rock contact node n, respectively, and bn is the 
distance between the bar end and rock boundary node. 
The contact constraints are imposed using the Lagrange 
multipliers, corresponding to contact forces P1 and P2, 
which are solved using the forward increment Lagrange 
multiplier method (see Saksala 2010).

The indirect dynamic tensile strength is calculated based 
on the exact elasticity solution of the problem of a cylindri-
cal disc under diametral compression. At the center of the 
disc this solution reads

Fig. 7  Uniaxial compression test on NumRock1: Failure modes in terms of viscoplastic multiplier at v0 = − 0.5 m/s (10 s−1) (a), v0 = − 5 m/s 
(100 s−1) (b), v0 = 50 m/s (1000 s−1) (c) and average stress–strain responses (d)

Fig. 8  Schematic model for dynamic Brazilian disc test (a) and the finite-element mesh with 163,177 tetrahedrons (b)
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where F is the force acting on the sample with length (thick-
ness) L and diameter D. In the present case, these dimen-
sions were L = 16 mm and D = 40 mm. The force F can be 
calculated from strains measured by strain gages from either 
of the bars or taken, as in (22), as the average of the forces 
P1 and P2. These forces are calculated, respectively, by the 
incident and reflected strain signals (P1) or by the trans-
ferred strain signal (P2) using the bas cross section (Ab) and 
the Young’s modulus (Eb) of bar material. When the test is 
properly designed and conducted, P1 ≈ P2.

Following homogenous properties are used for Kuru 
granite (Saksala et  al. 2013): E = 60  GPa; ν = 0.26; 
σc = 230 MPa; σt = 11.4 MPa; GIc = 100 J/m2; GIIc = 50GIc; 
sd = 0.15 MPa s/m; sc = 0.1 MPa s. The values of viscosity 

(22)
�T =

2F

�LD
,F =

1

2

(
P1 + P2

)
,P1 = AbEb

(
�i + �r

)
,P2 = AbEb�t,

moduli are found by trial and error to match the experimen-
tal results. The rest of the parameters are those in Table 1. 
The simulation results are shown in Fig. 9.

Before commenting on the results, it is noted that a rigor-
ous calibration method for the viscosity parameters is not 
trivial for the present problem due to its indirect nature: Bra-
zilian disc test is compressive in its primary nature while the 
lateral tensile stress field is indirectly caused by the geom-
etry. That being the case, the viscosity moduli in compres-
sion and tension must be adjusted simultaneously since they 
both affect the contact forces with which the indirect tensile 
strength is computed by Eq. (22). However, further elabora-
tion on this topic is beyond the scope of the present paper.

The predicted failure mode is the experimental axial 
splitting (Saksala et al. 2013) with considerable shearing 
close to the contact areas, as can be observed in Fig. 9b 
showing the distribution of the cumulative viscoplastic 

Fig. 9  Dynamic Brazilian disc test on numerical rock: Final fail-
ure mode in terms of (mode I) crack opening magnitude (a), shear 
failures in terms of viscoplastic multiplier (b), tensile stress vs time 

at the disc center (c) and the contact forces at the end of the bars as 
function of time (e) (experimental results after Saksala et al. 2013)
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multiplier at the end of simulation. In the experiments, 
this is represented as shear fractures and crushing at the 
contact areas (Saksala et al. 2013; Zhang and Zhao 2014). 
The experimental indirect tensile strength, 34 MPa as 
calculated by Eq. (22), is well matched by the simula-
tion when calculated from the simulated bar strains using 
formula (22). Moreover, the “true” tensile strength, being 
the average of the stresses recorded in a patch of elements 
at the center of the top face of the disc, is in good agree-
ment with the one calculated from Eq. (22). This is an 
important aspect signalling a successful selection of the 
viscosity moduli values and the validity of the dynamic 
Brazilian disc test assumptions. Furthermore, the experi-
mental and simulated contact forces plotted as a function 
of time (shifted to the arrival of the incident stress wave 
at the contact area) in Fig. 9e are in a good agreement. 
The “dynamic equilibrium”, i.e. P1 ≈ P2, was fulfilled to a 
degree that could have been better, both in the experiments 
and simulation. However, this issue is not related to the 
predictive capabilities of the present model.

Crack normal plot in Fig. 10 shows that there are cracks 
almost everywhere in the numerical specimen, 152,294 
cracks in total, but only a part of them open significantly 
to form the localization zone or macrocrack (the one in 
Fig. 9a). This is the present modelling approach represen-
tation of the microcrack initiation and coalescence into a 
macrocrack taking place in the experiments. Moreover, the 
crack orientations along the edge of the specimen indicate 
that, given a higher amplitude of the loading pulse, second-
ary radial cracking would appear.

It is finally remarked here that the DIF in this test, both 
in the simulation and the experiment, was about 3. Given 
that the strain rate was only ~ 18 s−1, this DIF, while con-
sistent with other experiments (Zhang and Zhao 2014), 
reflects the discrepancy between the direct and indirect test 
methods for dynamic tensile strength. Indeed, in the direct 
tension test simulations above, a strain rate of 100 s−1 was 
required to achieve DIF of 2. Although this discrepancy is 
an experimentally established fact (Zhang and Zhao 2014), 
more research work is still needed to fully understand its ori-
gins. This topic is, however, beyond the scope of the present 
model development paper.

4  Discussion

The applicability and limitations of the presented model are 
addressed here. First, the presented failure model, based on 
a combination of a rate-dependent embedded discontinuity 
model for tensile fracture and a Drucker–Prager viscoplastic-
ity softening model for compressive (shear) failure, cannot 
account for stiffness degradation. This is a regrettable short-
coming of the present model, shared with the class of pure 
plasticity models, that should be mended in future develop-
ments by adding a damage model.

Second, as the loading rate dependency is accommodated 
both in tension and compression by linear viscosity terms 
with constant viscosity moduli, the model is valid only for 
a fairly narrow range of loading rates. Therefore, it must be 
recalibrated for each application depending on its loading. 
Moreover, no calibration method for the viscosity moduli 

Fig. 10  Crack normal distribution at the end of simulation (every 40th normal plotted for clarity)
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was presented in this work. This nontrivial task should be 
addressed in future. Moreover, as the model has no equation 
of state accounting for the shock conditions, it is suitable 
only for problems involving moderate loading rates.

Third, the model suffers from the inherent weakness of the 
viscoplasticity models to describe failure planes at elevated 
loading rates. In was seen in the numerical simulations that 
as the viscosity moduli is increases, or as the loading rate 
increases, the predicted failure plane becomes excessively 
wide. The original viscodamage-embedded discontinuity 
model by Saksala et al. (2016) does not suffer from this draw-
back, at least to the same extent, since the rate-dependence is 
included in the pre-peak viscodamage model governing the 
fracture process zone development. This component could, 
in principle, be included in the present model.

Fourth, as the embedded discontinuity part of the pre-
sent model adopts the fixed crack concept with only a single 
crack per finite element, it suffers from crack shielding lead-
ing to linear elastic response in highly rotated stress states. 
This drawback could be mended by multiple intersecting dis-
continuity (in a single element) concept—a possible future 
development topic for present model. Notwithstanding, this 
would make the return mapping inconveniently complex in 
case of corner plasticity when three or more criteria are vio-
lated simultaneously.

Finally, the ideal class of problems for the present model 
(in its present state) is the one involving mixed compres-
sive–tensile loadings at moderate loading rates and the one 
where cracking induced anisotropy is an important aspect. 

The dynamic Brazilian disc test successfully simulated here 
is one such problem. Another problem that could, judging 
a priori, be addressed is the dynamic indentation, which is 
the basic problem in percussive drilling.

5  Conclusions

The presented rock failure model has some advantages 
over the plain plasticity models. First, it can describe 
damage-induced anisotropy by introduction of the crack 
orientation. Second, the very introduction of crack ori-
entation gives information about rock fracture processes 
that plasticity models cannot provide. The present model 
has also the computational efficiency of continuum meth-
ods, which is an advantage over the discontinuum (DEM) 
approach. It must, however, be immediately admitted that 
compared to DEM the present model is inferior in multiple 
fracture and fragmentation description.

The numerical simulations demonstrated that the pre-
sent model capture the salient features of rock under 
uniaxial tension and compression at wide range of 
strain rates. Moreover, the simulations corroborate the 
conception established earlier (e.g. the 2D simulations 
by Saksala 2019) that in tension the rock rate sensitiv-
ity is a genuine material property while in compression 
the structural, mainly lateral inertia, effects explain the 
apparent hardening effects, at least at high rates. The 
simulations also highlighted the discrepancy of the DIF 

Fig. 11  The flow of the solution process (without contact boundary conditions)
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observed in direct and indirect methods for dynamic ten-
sile strength. More research work is needed in this topic 
to reveal the ultimate sources of these differences. As the 
present model has predictive capabilities in simulations 
of dynamic rock fracture, it could serve as a tool in this 
field of research.
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Appendix

The solution process is presented here as a flowchart in 
Fig. 11 for the convenience of the reader.

This chart represents the decision-making process 
while the actual details of the stress return mapping are 
presented in Sect. 2.4 above. Moreover, the treatment of 
boundary conditions is not shown Fig. 11. Finally, the 
asterisk * means that the stress state is elastic and no plas-
tic correction is needed.
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