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Abstract: A fullerene is a cubic three-connected graph whose faces are entirely composed of pentagons
and hexagons. Entropy applied to graphs is one of the significant approaches to measuring the
complexity of relational structures. Recently, the research on complex networks has received great
attention, because many complex systems can be modelled as networks consisting of components
as well as relations among these components. Information—theoretic measures have been used
to analyze chemical structures possessing bond types and hetero-atoms. In the present article,
we reviewed various entropy-based measures on fullerene graphs. In particular, we surveyed results
on the topological information content of a graph, namely the orbit-entropy Ia(G), the symmetry index,
a degree-based entropy measure Iλ(G), the eccentric-entropy Ifσ(G) and the Hosoya entropy H(G).

Keywords: fullerene; graph entropy; automorphism group; eigenvalue; eccentricity

1. Introduction

In recent years, research on complex networks has been essential since many complex systems
are modelled as networks consisting of components as well as relations among these components.
Some studies focused on finding properties of real networks, such as degree distribution [1,2],
degree correlation [3–5], and degree-based structure entropies [6,7]. Many significant properties of
systems such as heterogeneity [1], assortative mixing [8,9], and self-similarity [10–12] are based on
these statistics.

Entropy applied to graphs is one of two major approaches to measuring the complexity of
relational structures. The origin of such measures goes back to Rashevsky who introduced the concept
of topological information content; see [13]. Studies of graph complexity have been performed in
many areas [8,11,14,15], such as chemistry to labeled chemical structures possessing bond types and
hetero-atoms; see [16]. The aim of this paper was to review some selected entropy-based measures.

2. Definitions and Preliminaries

Here, we recall the definition of the automorphism group of a graph. It is a well-known fact that
in a regular polyhedral graph such as a fullerene, the symmetry group and the automorphism group
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are the same; see [17]. A permutation π on the set of vertices of graph G, which preserves the adjacency
of vertices of G, is called an automorphism. In other words, the permutation π is an automorphism if

uv ∈ E(G)⇔ π(u)π(v) ∈ E(G).

The set of all automorphisms of G, denoted by Aut(G), forms a group under the composition of
mappings called an automorphism group. Let the automorphism group Aut (G) act on vertex set V.
This action yields an automorphism partition P = {V1, V2,..., Vk} in the which two vertices x and y are
equivalent if and only if there exists g in Aut (G) such that xg = y. Each member of P is an orbit of Aut
(G). The set of orbits of a graph enables us to investigate the heterogeneity of networks.

We say that Aut (G) acts transitively on the set of vertices, if for u, v ∈ V(G), there is an
automorphism β ∈ Aut(G), such that β(u) = v. In this case, we say that G is vertex-transitive. It is not
difficult to see that every vertex-transitive graph has only one orbit whose size is equal to the number
of vertices. For example, consider the rotation ρ = (360/n)◦ of cycle graph Cn; then, the corresponding
permutation is ρ = (1, 2, . . . , n) which yields that Cn is vertex-transitive.

Measuring the heterogeneity of complex networks has been important in studies of the behaviour
of complex networks. For example, existing heterogeneity measures [6,7] of complex networks are
based on degree. Specifically, entropies in [6,7] are based on degree distribution [8,9]. As is shown in
Figure 1, in a network, vertices with the same degree can be distinguished by measurement on some
structural properties of particular vertex such as the number of triangles that a vertex lie on or the
shortest path passing through a vertex; see Figure 1.
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Figure 1. Illustration of two cubic graphs: (a) Cuneane; (b) cube.

The molecular graph of cuneane is depicted in Figure 1a. This graph is not vertex-transitive.
The 2-D graph of the cube graph Q3, as depicted in Figure 1b, indicates an example of a vertex-transitive
graph. One can easily verify that the vertex partition P = {{1, 8}, {4, 5}, {2, 3, 6, 7}} in the cuneane graph is
finer than the degree partition. Furthermore, we can validate that partition P is an orbit decomposition
of cuneane.

For most of networks, the orbit-partition of a graph is much finer than the degree partition.
The number of automorphism partitions or the number of orbits can interpret the structure of a network.
For example, a graph with n vertices has exactly n orbits if and only if it is asymmetric.

3. Fullerene Graphs

In addition to the two popular forms of carbon, namely diamond and graphite, a third form of
carbon called fullerene was discovered in 1985; see [18,19]. One of the most well-known members
of this class of molecular graphs, the buckminster fullerene C60 which contains 60 carbon atoms,
12 pentagons and 20 hexagons, is vertex-transitive.

In general, a fullerene is a cubic three-connected graph on n vertices which has n/2 − 10 hexagons
and 12 pentagons.

The non-classical fullerenes are formed by a combination of triangles, quadrangles, pentagons,
hexagons, etc. There are many problems concerning fullerene graphs, and many properties of them
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were studied by mathematicians, see [20–64] as well as [65–75]. Fullerenes are individual cases of a
larger class of graphs, namely polyhedral graphs. In general, a polyhedral graph is a three-connected
simple planar graph and the polyhedral graphs considered in this paper are cubic. In chemistry,
a fullerene is a molecule composed of carbon atoms in the form of many shapes such as a hollow
sphere, ellipsoid, tube, etc. [51]. The non-classical fullerenes may contain hexagons and other rings.

In [76], a method is described to obtain a fullerene graph from a zig-zag or armchair nanotubes.
Here, by continuing that method, we construct some infinite classes of fullerenes. Denoted by
TZ[m,n] means a zig-zag nanotube with m rows and n columns of hexagons, see Figure 2. Combine a
nanotube TZ[5,n − 4] with two copies of caps B (Figure 3), to construct a fullerene graph as shown in
Figure 4. Two caps have together 40 vertices and thus, the number of vertices of the fullerene graph is
10(n − 4) + 40 = 10n. This is why we did it by A10n.
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4. Entropy Measure

The concepts of entropies have been investigated extensively in [77–84] to characterize and
quantify the structure of networks. Several types of them are discussed in [1], and mathematically
explored. Therefore, we omit an extensive review on graph entropies here. Studying the entropy of
dendrimers, a graph class with a long-standing history in chemistry and related disciplines, is done
in some references such as [82–84] in which authors considered the individual eccentricity-based
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information functionals. As graph entropies, we use a specific definition due to Dehmer [85–92] as
follows. Consider a probability vector p = (p1, . . . ,pn) that satisfies in two conditions 0 ≤ pi ≤ 1 and∑n

i=1 pi = 1. The Shannon’s entropy is I(p) = −
∑n

i=1 pi log pi, where the symbol “log” is the logarithm
on the basis 2. Let

pi = λi/
n∑

j=1

λ j, (i = 1, 2, . . . , n),

where (λ1,λ2, . . . ,λn) is a tuple of none-negative integers, λi ∈ N, see [90]. The entropy of tuple
(λ1,λ2, . . . ,λn) is given by

I(λ1,λ2, . . . ,λn) = log

 n∑
i=1

λi

− n∑
i=1

(λi/
n∑

j=1

λ j) logλi.

There are many ways to obtain the tuple (λ1,λ2, . . . ,λn).
For a vertex vi of graph G, if we put

p(vi) := f (vi)/
|V|∑
j=1

f (v j), (1)

Then clearly,
∑|V|

j=1 p(v j) = 1 and the entropy measure of G based on f is thus

I f (G) = −

|V|∑
i=1

f (vi)

|V|∑
j=1

f (v j)

log

 f (vi)/
|V|∑
j=1

f (v j)

 = log

 |V|∑
i=1

f (vi)

− |V|∑
i=1

( f (vi)/
|V|∑
j=1

f (v j)) log f (vi).

In the literature, there are various ways to obtain the tuple (p1, . . . ,pn) like the
so-called magnitude-based information measures introduced by Bonchev and Trinajstić [82],
or partition—independent graph entropies, introduced by Dehmer based on information functionals;
see [91–96] as well as [97–106].

A function d : G×G→ R+ in which for any pair of vertices of graph G such as x and y, d(x,y) is
defined as the length of shortest path connecting them, indicates the distance between these vertices.

A topological index of graph G is a numerical quantity, which is invariant under its automorphism
group. The Wiener index is the first reported distance based topological index, and it defined as half
sum of the distances between all the pairs of vertices in a molecular graph; see [107]. In other words,

W(G) =
1
2

∑
x,y∈V(G)

d(x, y). (2)

The Wiener (or Hosoya) polynomial of a graph [108] is defined as

H(G, x) =
∑

uv∈E(G)

xd(u,v). (3)

It is clear that H(G,1) = W(G). For a given vertex v, the function

Hv(G, x) =
∑

u∈V(G),u,v

xd(u,v)

is called the partial Hosoya polynomial of G at vertex v.
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Hence,
H(G, x) =

∑
v∈V(G)

Hv(G, x) (4)

Graph entropy measures represent information—theoretic measures for characterizing networks
quantitatively. The first concepts in this framework was developed in the 1950s for investigating
biological and chemical systems. Seminal work on this problem was done by Rashevsky, Trucco,
and Mowshowitz, [100–104,109–112] who studied entropy measures for determining the structural
information content of a graph. Graph entropies have been applied to various problems such as
biology, computational biology, mathematical chemistry, Web mining, and knowledge engineering.

4.1. Eccentric Entropy Measure

The eccentricity of vertex v is an information functional defined by σ(v) = maxu∈Vd(u, v),
see [113–115]. Now, for a vertex vi ∈ V f (vi):= ciσ(vi), where ci > 0 for 1 ≤ i ≤ n. Then

I fσ(G) = log

 n∑
i=1

ciσ(vi)

− n∑
i=1

ciσ(vi)
n∑

j=1
c jσ(v j)

log(ciσ(vi)).

Moreover, if cis are equal, then

I fσ(G) = log

 n∑
i=1

σ(vi)

− n∑
i=1

σ(vi)
n∑

j=1
σ(v j)

log(σ(vi)).

Theorem 1 ([25]). In a vertex-transitive graph, all vertices have the same eccentricity.

Theorem 2. If G is a regular graph on n vertices, then

I fσ(G) = log(
n∑

i=1

ci) −
n∑

i=1

ci
n∑

j=1
c j

log(ci). (5)

In particular, if ci = cj for all, i , j then Ifσ(G) = log(n).

Proof. By Theorem 1, for all x, y ∈ V(G), we have σ(x) = σ(y) which proves the first claim.
If ci = cj for all i , j then we have

I fσ(G) = log(nc1) −
1

nc1

n∑
i=1

c1 log(c1) = log(nc1) − log(c1) = log(n).

�

Theorem 3. The polyhex nanotori T (Figure 5) is vertex-transitive.
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Proof. Suppose p and q are even. Consider two vertices uij and urs in which both integers i,r are
either odd, or even, and suppose σ, π are two permutations that σ(uit) = urt, 1 ≤ t ≤ p and π(utj) = uts,
1 ≤ t ≤ q. Then, σ and π are automorphisms of T in which πσ maps uij to urs and so, they are in the
same orbit. Suppose now i is odd and r is even or i is even and r is odd. Then, the permutation θ which
maps uij to u(p+1−i)j is a graph automorphism which implies that uij and urs are in the same orbit of
Aut(G) and we are done. �

Example 1. Consider the 2-dimensional graph of zig-zag polyhex nanotori T[p,q], as depicted in Figure 6.
It can be easily seen that |V(T[p,q])|=pq. By Theorem 3, T[p,q] is vertex-transitive and if for all i,j, ci=cj then,
by Theorem 2, we have I fσ(T[p, q]) = log(n) = log(p) + log(q).
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Let G be an edge-transitive graph but not vertex-transitive, and e = xy be an arbitrary edge
in G. For an arbitrary edge e = uv, there exists an automorphism σ such that σ(e) = f. Hence,{
σ(u), σ(v)

}
=

{
σ(x), σ(y)

}
. Let σ(vi) = σ(x) for 1 ≤ i ≤ r and σ(v j) = σ(y) for r + 1 ≤ j ≤ n. As a

particular case, we consider ci = cj for all i,j. By some elementary calculations, we obtain

I fσ(G) = log(rσ(x) + (n− r)σ(y)) −
rσ(x) log(σ(x)) + (n− r)σ(y) log(σ(y))

rσ(x) + (n− r)σ(y)
.

Hence, we proved the following theorem.

Theorem 4. Let G be edge-transitive but not vertex-transitive and let ci = cj for all i,j. Then,

I fσ(G) = log(rσ(x) + (n− r)σ(y)) −
rσ(x) log(σ(x)) + (n− r)σ(y) log(σ(y))

rσ(x) + (n− r)σ(y)
.
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Example 2. As usual, suppose that Sn indicates an star graph on n + 1 vertices. Suppose x is the central vertex
and denotes the other vertices by u1, u2, . . . , un. Then d(x,u1) = 1 and d(ui,uj) = 2 (1 ≤ i,j ≤ n). If ci = cj for all
i,j, then, by using Theorem 4, we infer that

I fσ(Sn) = log(2(n− 1) + 1) −
2(n− 1) log 2 + log 1

2n− 1
= log(2n− 1) +

1
2n− 1

− 1.

Theorem 5. Suppose G is a graph and V1, . . . , Vk are all orbits of Aut(G) on V(G). Then,

I fσ(G) = log

 k∑
i=1

σ(xi)

|Vi |∑
j=1

c j

− k∑
i=1

σ(xi)

|Vi |∑
j=1

c j

k∑
t=1

σ(xt)
|Vi |∑
l=1

cl

log
(
c jσ(xi)

)
.

Proof. For all xi, x j ∈ Vi, we have σ(xi) = σ(x j) and, the proof is complete. �

Suppose for the vertex v of graph G, d(v) shows the degree of vertex v. If f (v) ∈{
σ(v), d(v), d(v)σ(v), σ(v)d(v) , d(v)

σ(v)

}
, and we put f (v) in Equation (1), then we achieve four new

entropy-based measures as follows:

Ideg(G) = log

 n∑
i=1

d(vi)

− n∑
i=1

d(vi)
n∑

j=1
d(v j)

log(
d(vi)

n∑
j=1

d(v j)

).

Iξ(G) = log

 n∑
i=1

d(vi)σ(vi)

− n∑
i=1

d(vi)σ(vi)
n∑

j=1
d(v j)σ(v j)

log(
d(vi)σ(vi)

n∑
j=1

d(v j)σ(v j)

).

IξD(G) = log

 n∑
i=1

d(vi)

σ(vi)

− n∑
i=1

d(vi)/σ(vi)
n∑

j=1
d(v j)/σ(v j)

log(
d(vi)/σ(vi)

n∑
j=1

d(v j)/σ(v j)

).

IξD(G) = log

 n∑
i=1

σ(vi)

d(vi)

− n∑
i=1

σ(vi)/d(vi)
n∑

j=1
σ(v j)/d(v j)

log(
σ(vi)/d(vi)

n∑
j=1

σ(v j)/d(v j)

).

It is clear that since a fullerene is 3-regular, then m = 3n/2 (the number of edges) and

Ideg(G) = log(2m) − 1
2m

n∑
i=1

d(vi) log(d(vi)),

= log(3n) − 1
3n

n∑
i=1

d(vi) log(d(vi)).

Moreover, the entropies of graphs based on the eccentricities of vertices are studied in [22–30].

4.2. Ecc-Entropy of Fullerene Graphs

In this section, similarly to the definition of the fullerene A10n in the last section, we present two
infinite families of fullerenes namely C24n+12 and C12n+2 with respectively 24n + 12 and 12n + 2 vertices
as depicted, respectively, in Figures 7 and 8. For more details about the construction of these classes of
fullerenes, see references [25,27].
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Theorem 6. If ci’s are equal, then Equation (5) yields that for n ≥ 7

I fσ(C24n+12) = 2 + log 3 + log(3n2 + 12n + 5)

−
1

3n2+12n+5

(
(n + 5) log(n + 5) + 2

n+5∑
i=6

(n + i) log(n + i)
)
.

Proof. Consider the vertices of the central hexagon and other vertices of C24n+12 as shown in Figure 7.
Consider the eccentric contribution of each vertex as reported in Table 1. As shown in this table,
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there are two types of vertices. The vertices of the central and outer hexagons and the other vertices.
By Equation (2) we have

I fσ(C24n+12) = log
(
12(n + 5) + 24

n+5∑
i=6

(n + i)
)

−
1

12(n+5)+24
n+5∑
i=6

(n+i)

(
12(n + 5) log(n + 5) + 24

n+5∑
i=6

(n + i) log(n + i)
)

= 2 + log 3 + log(3n2 + 12n + 5)

−
1

3n2+12n+5

(
(n + 5) log(n + 5) + 2

n+5∑
i=6

(n + i) log(n + i)
)

�

Table 1. The eccentricity of vertices of C24n+12, n ≥ 7.

Vertices σ (x) No

Vertices of type 1 n + 5 12
Vertices of type 2 n + i (6 ≤ i ≤ n + 5) 24

The exceptional cases are given in Table 2.

Table 2. Some exceptional cases of C24n+12 fullerenes.

Fullerenes Ifσ(F)

C60 log 60
C84 log 84
C108 log 1320− 1008 log 12+312 log 13

1320
C132 log 1728−

(
720 log 12+312 log 13+336 log 14+360 log 15

1728

)
C156

log 2232−(
432 log 12+312 log 13+336 log 14+360 log 15+384 log 16+408 log 17

2232

)

Theorem 7. If ci’s are equal, then the entropy of fullerene C12n+2, n ≥ 10 (see Figure 8) is

I fσ(C12n+2) = 1 + log(n) + log(9n + 14)

−
1

n(9n+14)

(
8n + 11n log(n) + 6

n∑
i=1

(n + i) log(n + i)
)

Proof. Similarly, to the proof of Theorem 6 and by using the eccentricity of vertices as reported in
Table 3 and by Equation (5), we obtain

I fσ(C12n+2) = log
(
22n + 12

n∑
i=1

(n + i)
)

−
1

22n+12
n∑

i=1
(n+i)

(
16n log(2n) + 6n log(n) + 12

n∑
i=1

(n + i) log(n + i)
)

= 1 + log
(
9n2 + 14n

)
−

1
n(9n+14)

(
8n + 11n log(n) + 6

n∑
i=1

(n + i) log(n + i)
)
.

�
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Table 3. The eccentricity of vertices of C12n+2, n ≥ 10.

Vertices σ(x) No.

Vertices of type 1 2n 8
Vertices of type 2 n 6

Other Vertices n + i (1 ≤ i ≤ n) 12

The exceptional cases are given in Table 4.

Table 4. Some exceptional cases of C12n+2 fullerenes.

F Ifσ(F)

C26 log 132− 120 log 5+12 log 6
132

C38 log 266− log 7 = log 38
C50 log 392− 84 log 7+272 log 8+36 log 9

392
C62 log 548− 192 log 8+216 log 9+140 log 10

548
C74 log 720− 96 log 8+216 log 9+180 log 10+132 log 11+96 log 12

720
C86 log 940− 216 log 9+180 log 10+132 log 11+144 log 12+156 log 13+112 log 14

940
C98 log 1088− 108 log 9+180 log 10+132 log 11+144 log 12+156 log 13+168 log 14+180 log 15+128 log 16

1088
C110 log 1500− 180 log 10+132 log 11+144 log 12+156 log 13+168 log 14+180 log 15+128 log 16+204 log 17+144 log 18

1088

4.3. Eigen—Entropy of Fullerenes

The adjacency matrix A(G) of graph G with vertex set V(G) = {v1, v2,..., vn} is the n × n symmetric
matrix [aij ] such that aij = 1 if vi and vj are adjacent and 0, otherwise. The characteristic polynomial of
graph G is defined as [116]

φ(G,x) = det(A(G) - xI)

The roots of the characteristic polynomial are named the eigenvalues of graph G, which form the
spectrum of this graph. If α is an eigenvalue of matrix A, then there exists a vector such as V, in which
A.V = αV.

Let λ1,..., λn be the eigenvalues of A(G); then, the energy of G is defined [117,118] as

ε(G) =
n∑

i=1

|λi|

In theoretical chemistry, the energy is a graph parameter stemming from the Hückel molecular
orbital approximation for the totalπ-electron energy. Thus, the graph energy has some specific chemical
interests and has been extensively studied [119,120].

One information functional is based on absolute value of eigenvalues; see [121,122].
The eigen-entropy based on non-zero eigenvalues denoted by Ifλ(G) is defined as follows:

I fλ(G) = log

 n∑
i=1

ci|λi|

− n∑
i=1

ci|λi|
n∑

j=1
c j|λ j|

log(ci|λi|)

where λi , 0 (i = 1, . . . , n− 1). If cis are equal, then

I fλ(G) = log
(

n∑
i=1
|λi|

)
−

n∑
i=1

|λi |
n∑

j=1
|λ j |

log(|λi|)

= log(ε(G)) − 1
ε(G)

n∑
i=1
|λi| log(|λi|).

(6)
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Theorem 8. Let G be a connected graph with non-zero eigenvaluesλi , 0 (i = 1, . . . , n− 1). Then

log(2
√

m)) −
2m
ε(G)

≤ Iλ(G) ≤ log(2m)) −
α2s
ε(G)

,

where α = min{|λi| : i = 1, . . . , s} and where s is the number of distinct eigenvalues.

Proof. It is a well-known fact that ε(G) ≤ 2m. By using Equation (6), we have

Iλ(G) ≤ log(2m) −
1

2m
(

s∑
i=1

|λi| log(|λi|)).

Since logarithm is an increasing function, we have log |λi| ≤ |λi|. On the other hand,∑s
i=1 λ

2
i = 2m yields

log(2
√

m)) −
2m
ε(G)

≤ Iλ(G) ≤ log(2m)) −
α2s
ε(G)

Now, 2
√

m ≤ ε(G) ≤ 2m implies that

log(2
√

m)) −
2m
ε(G)

≤ Iλ(G) ≤ log(2m)) −

∑s
i=1 (log |λi|)

2

ε(G)
(7)

Let α = min{|λi| : i = 1, . . . , s}. The nullity of G is 1. By reformulating Equation (7), one can
see that

log(2
√

m)) −
2m
ε(G)

≤ Iλ(G) ≤ log(2m)) −
α2s
ε(G)

.

�

Theorem 9. Let G be a graph whose eigenvalues are in the interval [−1, 1]. Then

Iλ(G) ≥ ε(G)

Proof. Clearly, we obtain

Iλ(G) = log(ε(G)) − 1
ε(G)

n∑
i=1,λ,0

|λi| log |λi|

= log(ε(G)) − 1
ε(G)

n∑
i=1,λ,0

log |λi|
|λi |

= log(ε(G)) − 1
ε(G)

log(Π|λi|
|λi |).

On the other hand, Π|λi|
|λi | ≤ Πλ1

|λi | = λ1
ε(G). So

Iλ(G) ≥ log(ε(G)) − log(λ1) = log(
ε(G)

λ1
),

Since λi ∈ [−1, 1], thus Iλ(G) ≥ ε(G). �

Theorem 10. Let G be a graph and m∆(G) be the ∆-th spectral moment of G. Then

Iλ(G) ≥ ε(G) −
m∆(G)

ε(G)
.
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Proof. We have
n∑

i=1
|λi| log |λi| ≤

n∑
i=1

log |λi|
|λi |

≤

n∑
i=1

log |λi|
∆
≤

n∑
i=1
|λi|

∆ = m∆(G).

Thus

Iλ(G) ≥ ε(G) −
m∆(G)

ε(G)
.�

4.4. The Hosoya Entropy of Fullerenes

Here, we introduce the Hosoya entropy based on the distance between vertices of a graph,
see [123–125]. Given a graph G and two vertices u and v, the distance between them is defined as the
length of the shortest path connecting them. Let si(u) be the number of vertices at distance i from
vertex u. Then the sequence dds(v) = (s0(v), s1(v), . . . , sd(v)) is called the distance degree sequence of v.

Two vertices u and v are H-equivalent if dds(u) = dds(v) see [126] and the class of H-equivalent
vertices constitutes the H-partitions of a graph.

Suppose G has h H-equivalent classes and the cardinality of ith H-equivalent class is ni (1 ≤ i ≤ h).
Then, H-entropy of G [127] is

H(G) = −
h∑

i=1

hi log(hi)

where hi = ni/|V|.
Let also O1, . . . , Ol be all the orbits of Aut(G) in the set of vertices. If li is the cardinality of the i-th

orbit for 1 ≤ i ≤ l, then the orbit entropy of G [116–119] is given by

Ia(G) = −
l∑

i=1

µi log(µi)

where µi = |ni|/|V|.
The value of H(G) for a graph G with n vertices is between zero and log(n). The minimum is

achieved when all the vertices are H-equivalent; the maximum is reached when a non-pair of vertices
are H-equivalent. Complete graphs and cycles have a H-entropy of 0.

Remark 1. In a vertex-transitive graph, all the vertices are H-equivalent and the H-entropy is zero. The converse
of this fact is not true. In other words, there are many examples of non-vertex-transitive graphs with zero
H-entropy.

Theorem 11. Two vertices in the same orbit are H-equivalent. In addition, the H-entropy of a vertex-transitive
graph is zero [128].

Although two similar vertices are H-equivalent, the converse is not true. For example, in Figure 9,
u and v are H-equivalent, and thus D(u) = D(v), while they are in different orbits. Moreover, two vertices
u and v in Figure 10 are not H-equivalent but D(u) = D(v).
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Theorem 12 ([128]). If G is a regular graph with diameter ρ = 2, then H(G) = 0.

Theorem 13. If G is a regular graph with non-zero H-entropy, then its diameter is greater than 2.

Theorem 14 ([128]). If G is a connected graph on n vertices, then H(G) = n if and only if Aut(G) is trivial.

Theorem 15 ([128]). The H-entropy of a regular graph of degree greater than n/2 is zero.

Theorem 16 ([128]). The H-entropy of a regular graph of degree greater than or equal with n/2 is zero, if the
number of vertices is an even number and G is edge-transitive.

Theorem 17 ([128]). If G is a graph on at least five vertices which is edge-transitive but not bipartite, and each
vertex has odd degree. Then, H-entropy is zero.

In continuing, we compute the H-entropy of graphs with at most two orbits.

Definition 1. A graph G is called co-distance, if for each pair of vertices (u,v) their total distances are the same,
namely D(u) = D(v).

Each vertex-transitive graph is co-distance, but there are examples of co-distance non-transitive
graphs. The graph G in Figure 11 has two orbits V1 = {1, 2, 5, 6, 8, 12} and V2 = {3, 10, 4, 7, 11, 9}. It is
not difficult to see that d(G) = 4 and D(1) = D(3) while the H-entropy is not zero.
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Theorem 18 ([128]). Up to isomorphism there are exactly 14 co-distance regular graphs of order at most 14
with two orbits and diameter greater than or equal with 3. Among them, only the graph G depicted in Figure 11
has non-zero H-entropy.

Theorem 19 ([128]). Suppose the H-entropy of graph G is zero. Then nor G is a tree or a regular graph.

Theorem 20 ([128]). Suppose G is a graph with two orbits V1 and V2 and non-zero H-entropy. Then H(G) = 1
if and only if n is even and |V1| = |V2| = n/2.
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Theorem 21 ([128]). Let G be a regular graph with two orbits and diameter less than four. If G is co-distance,
then its H-entropy is zero.

In the final part of this section, we compute the H-entropy of some infinite classes of
fullerene graphs.

Theorem 22. The fullerene graph A12n + 4 where n ≥ 4 satisfies

H(A12n+4) = log(12n + 4) −
1

12n + 4
((12n + 3) log 3 + 6(2n− 4)).

Proof. In Figure 12, the vertices of ith (i = 1, 2, 3, 4, 5) layer are in the same orbit. The vertices of the
layers 6, 7, . . . , n constitute three orbits labeled by the numbers 1, 2, and 3. Vertices with labels 2, 3 are
in the same H-equivalent partition and the other vertices compose the H-equivalent partition. Finally,
the vertices of the outer pentagon are H-equivalent. In other words, there are an equivalence class of
size 1, nine equivalence classes of size 3, and 2n − 4 equivalence classes of size 6 which yield

H(A12n+4) = 1
12n+4 log(12n + 4) + 27

12n+4 log
(

12n+4
3

)
+

6(2n−4)
12n+4 log

(
12n+4

6

)
= log(12n + 4) −

(
27

12n+4 log 3 + 6(2n−4)
12n+4 (1 + log 3)

)
= log(12n + 4) − 1

12n+4 ((12n− 24) + (12n + 3) log 3).

�
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Similarly to the structure of A10n in last section, the fullerene graph A12n+4 is composed of a
nanotube Tz[6, n − 10] together with two caps B1 and B2, see Figures 13–16. Thus, the vertices of A12n+4

are labeled as given in Figure 17. The H-partitions and the eccentricity of vertices of caps B1 and B2 are
given in Table 5.
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Table 5. The H-partition and eccentricity of fullerene graph.

Partitions Elements ecc

V1 1 2n + 1
V2n + 6 12n − 1, 12n, 12n + 1, 12n + 2, 12n + 3, 12n + 4

V2 2, 5, 8 2n
V2n + 5 12n − 13, 12n − 11, 12n – 9, 12n − 7, 12n − 5, 12n − 3

V3 3, 4, 6, 7, 9, 10 2n − 1
V2n + 4 12n − 12, 12n − 10, 12n – 8, 12n − 6, 12n − 4, 12n − 2

V4 12, 14, 16, 18, 20, 22 2n − 2
V2n + 3 12n − 25, 12n − 23, 12n − 21, 12n − 19, 12n − 17, 12n − 15

V5 11, 15, 19 2n − 3
V6 13, 17, 21

V2n + 2 12n − 24, 12n − 22, 12n − 20, 12n − 18, 12n − 16, 12n − 14
V7 23, 27, 31 2n − 4
V8 25, 29, 33

V2n + 1 12n − 36, 12n − 34, 12n − 32, 12n − 30, 12n − 28, 12n − 26
V9 24, 26, 28, 30, 32, 34 2n − 5
V2n 12n − 37, 12n − 35, 12n − 33, 12n − 31, 12n − 29, 12n − 27
V10 36, 38, 40, 42, 44, 46 2n − 6

V2n−1 12n − 49, 12n − 47, 12n − 45, 12n − 43, 12n − 41, 12n − 39
V11 35, 39, 43 2n − 7
V12 37, 41, 45

V2n − 2 12n − 48, 12n − 46, 12n − 44, 12n − 42, 12n − 40, 12n − 38
V13 47, 51, 55 2n − 8
V14 49, 53, 57

V2n − 3 12n − 60, 12n − 58, 12n − 56, 12n − 54, 12n − 52, 12n − 50
V15 48, 50, 52, 54, 56, 58 2n − 9

V2n − 4 12n − 61, 12n − 59, 12n − 57, 12n − 55, 12n − 55, 12n − 53, 12n − 51

4.5. Radial Entropy and Orbit Measures

In a network, knowing, for example, the degree of vertices gives us essential information about
the number of interconnections of each component. These data provide a narrow understanding of
complex networks, because the vertex partition [12] based on degree is coarser than automorphism
partition. Hence, it is important to know if we substitute the degree partitions instead of orbit partitions;
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then, the study of complex network in the view of symmetry leads us to understand more about the
structure of the regarding graph. The orbit entropy is defined as

Ia(G) = −
k∑

i=1

|Oi|

|V|
log(
|Oi|

|V|
)

where Oi’s (1 ≤ i ≤ k) are orbits of G. Regarding the orbit polynomial, the symmetry index S(G) is
defined [127] as follows:

S(G) = log(n) − Ia(G) + log(|Aut(G)|).

Suppose Ni j , 1 ≤ j ≤ k is the collection of all vertices with eccentricity ij. Then, the radial entropy is
defined by

Hecc(G) = −
k∑

i=1

|Ni|

|V|
log

(
|Ni|

|V|

)
. (8)

Let p1,..., pn−10 be the H-equivalent classes of Tz[6,n − 10] which contains the vertices with label i.
Then ecc(pi) = 2n − i − 9. Thus, the eccentricity sequence of fullerene graph A12n+4 is{

(2n− i)12(1 ≤ i ≤ n− 1), (2n)9, (2n + 1)7
}
. (9)

Theorem 23 ([129]). Consider the fullerene graph A12n+4, where n ≥ 4. If n is even, then

Ia(A12n+4) = log (12n + 4) −
1

12n + 4
((12n + 3) log 3 + 6n).

If n is odd, then

Ia(A12n+4) = log(12n + 4) −
1

12n + 4
((12n + 3) log 3 + 6n + 6).

Theorem 24 ([129]). The radial entropy of fullerene A12n + 4 (n ≥ 4) is

Hecc(A12n+4) = log(12n + 4)
−

1
12n+4 (24(n− 1) + (12n + 6) log 3 + 7 log 7).

Theorem 25 ([129]). If the ci’s are equal, the entropy of fullerene A12n + 4 (n ≥ 11) is given by

I fσ(A12n+4) = log(18n2 + 14n + 7) − 1
18n2+14n+7 ((14n + 7) log(2n + 1))

+18n log (2n) + 12A,

where A =
n−1∑
i=1

(2n− i) log(2n− i).

Theorem 26 ([129]). The degree-based entropy of fullerene graph A12n + 4 is

D(A12n+4) = log(36n + 12) −
(36n + 12) log 3

36n + 12
= log(12n + 4).
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5. Correlation Analysis

The Pearson correlations between all entropies introduced in this paper are given in Equation (1),
for fullerene graph A12n+4.

I fσ H D Ia Hecc

I fσ
H
D
Ia

Hecc


0.999871662 1 0.99999826 0.999988517

0.999872017 0.999899809 0.999936954
0.999998301 0.999988624

0.999995717


(10)

Moreover, the exact values of energy and five entropies for fullerene graph A12n+4 (11 ≤ n ≤ 20)
is reported in Table 6. These results show that the correlation between energy and each entropy
measure of A12n+4 is greater than 0.99 (see Table 7). It can be found that they release the same structural
information about regarding fullerene. In [129], the authors found a similar result for a different class
of fullerenes.

Table 6. The graph energy and five types of entropies applied to A12n+4.

n E D Ifσ Ia H Hecc

11 212.87 7.08 7.06 5.02 4.72 3.57
12 231.73 7.2 7.18 5.14 4.82 3.68
13 250.59 7.32 7.29 5.25 4.92 3.79
14 269.46 7.42 7.39 5.36 5.01 3.89
15 288.32 7.52 7.49 5.45 5.09 3.98
16 307.19 7.61 7.58 5.54 5.18 4.07
17 326.05 7.7 7.67 5.63 5.25 4.15
18 344.91 7.78 7.75 5.71 5.33 4.23
19 363.78 7.85 7.85 5.78 5.4 4.31
20 382.64 7.93 7.9 5.86 5.46 4.38

Table 7. The correlation between graph energy and entropies applied to A12n+4.

E,D E, Ifσ E,Ia E,H E,Hecc

Cor 0.9964006 0.9972326 0.99673 0.9975728 0.9974525
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