
Received April 26, 2020, accepted May 15, 2020, date of publication May 22, 2020, date of current version June 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2996660

Flexible Software-Defined Packet Processing
Using Low-Area Hardware
HESAM ZOLFAGHARI 1, (Graduate Student Member, IEEE),
DAVIDE ROSSI 2, (Member, IEEE), WALTER CERRONI 2, (Senior Member, IEEE),
HAYATE OKUHARA 2, (Member, IEEE), CARLA RAFFAELLI 2, (Senior Member, IEEE),
AND JARI NURMI 1, (Senior Member, IEEE)
1Electrical Engineering Unit, Tampere University, 33720 Tampere, Finland
2Department of Electrical, Electronic, and Information Engineering, University of Bologna, 40126 Bologna, Italy

Corresponding author: Hesam Zolfaghari (hesam.zolfaghari@tuni.fi)

This work was supported in part by the 5G-FORCE Project, Finnish DELTA Doctoral Training Network, the Grant awarded by the Nokia
Foundation, and the collaboration grant provided by HiPEAC network.

ABSTRACT Computer networks are in the Software Defined Networking (SDN) and Network Function
Virtualization (NFV) era. SDN brings a whole new set of flexibility and possibilities into the network. The
data plane of forwarding devices can be programmed to provide functionality for any protocol, and to perform
novel network testing, diagnostics, and troubleshooting. One of themost dominant hardware architectures for
implementing the programmable data plane is the Reconfigurable Match Tables (RMT) architecture. RMT’s
innovative programmable architecture enables support of novel networking protocols. However, there are
certain shortcomings associated with its architecture that limit its scalability and lead to an unnecessarily
complex architecture. In this paper, we present the details of an alternative packet parser and Match-
Action pipeline. The parser sustains tenfold throughput at an area increase of only 32 percent. The pipeline
supports unlimited combination of tables at minimum possible cost and provides a new level of flexibility
to programmable Match-Action packet processing by allowing custom depth for actions. In addition, it has
more advanced field-referencing mechanisms. Despite these architectural enhancements, it has 31 percent
less area compared to RMT architecture.

INDEX TERMS Software defined networking, programmable packet processing, low-area hardware,
programmable data plane.

I. INTRODUCTION
Computer and communication networks have been subjected
to a significant paradigm change in the last decade, leading
to the emergence and subsequent consolidation of network
programmability solutions and technologies, such as Soft-
ware Defined Networking (SDN) [1] and programmable data
plane [2]. In particular, the innovation introduced by SDN
is represented by the separation of the control plane from
the data plane, which have been traditionally co-existent and
tightly coupled within network forwarding devices, such as
switches and routers. Due to the increasing complexity of
modern networks and the high level of flexibility required
by newly emerging services, this tight coupling caused sig-
nificant complications in managing network infrastructures,

The associate editor coordinating the review of this manuscript and

approving it for publication was Yulei Wu .

forcing operators and service providers to adopt solutions that
were strictly dependent on the features offered by specific
equipment vendors [3].

With the separation between control and data planes, SDN-
enabled devices can specialize on how packet processing
and forwarding operations can be efficiently executed in the
data plane, whereas the decision on what kind of processing
must be performed and where to forward each packet (or
flow of packets) is left to a logically centralized component
located in the control plane, the so-called SDN controller.
This approach opens a completely new set of possibilities
to make the network truly programmable: once an open and
standard interface has been defined between control and
data planes, the SDN controller can be used as a means
to instruct network devices on how to act on the pack-
ets in the data plane, independently of any vendor-specific
implementation.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 98929

https://orcid.org/0000-0002-0002-0525
https://orcid.org/0000-0002-0651-5393
https://orcid.org/0000-0002-4629-031X
https://orcid.org/0000-0003-1582-0100
https://orcid.org/0000-0002-1250-2476
https://orcid.org/0000-0003-2169-4606
https://orcid.org/0000-0003-0801-8443


H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

The most noteworthy and widespread SDN control plane
solution is represented by the OpenFlow protocol [4], which
allows SDN applications to abstract the network infrastruc-
ture and program the behavior of the underlying set of for-
warding nodes in terms of Match-Action packet processing.
A set of matching rules (including wildcards) is applied to
layer-2 to layer-4 header fields in order to specify packet
flows with arbitrary levels of granularity. Then, each packet
of a given flow is treated according to the actions spec-
ified in the corresponding matching rule. This approach
simplifies internal switch operations and, at the same time,
allows unprecedented flexibility in traffic control and steering
capability.

However, the programmability features offered by Open-
Flow at the control plane are limited by the dependence on a
set of pre-defined protocol headers and on a static processing
pipeline inside the switches. Therefore, a step forward is
represented by the inception of programmable data plane
approaches, such as protocol-oblivious forwarding [5] and
the P4 language [6]. More specifically, the latter allows to
dynamically reconfigure the data plane processing system at
deployment time, making it protocol independent as well as
target independent, thus giving programmers the possibility
to describe the packet-processing pipeline in an abstract way
independent of the specific hardware solution adopted.

In this scenario, the SDN concept has become a key
enabler also for 5G networks where radio, transport and cloud
domains cooperate to offer ubiquitous connectivity services
to people and objects [7]. To meet the performance require-
ments of an unpredictable amount of different applications,
flexible and scalable architectures and functionalities are
introduced in 5G deployments. In addition, the trend is to
consider commercially available packet-based solutions in
the transport network, e.g., the Ethernet standard. Recently,
the new concept of flexible Radio Access Network (RAN)
has been considered that, coupled with Network Function
Virtualization (NFV) and SDN control capability, allows
to configure the network with different functional splits in
transport network nodes [8]. This solution is expected to be
dynamic enough to face with virtual resource instantiation
needs, the so-called network slices, and can require different
packet formats as specified by the relevant standards [9]–
[11]. In this context, the possibility to have a programmable
packet processing pipeline is crucial to implement high speed
flexible forwarding. Reconfigurations may be needed when a
different functional split is required to meet changing slice
requirements.

As a result of these efforts to make the network truly
programmable, both in the control and the data plane,
there is a clear need for flexible and protocol-independent
hardware-based packet processing systems. One of the ref-
erence architectures based on the Match-Action principle is
represented by the ReconfigurableMatch Tables (RMT) [12],
also adopted by commercial switch chips such as Barefoot
Tofino [13]. However, as we will see in section 2, there are
a number of limitations associated with this architecture. As

a result of these limitations, the architecture is unnecessarily
complex.

From the perspective of hardware architecture, the pro-
grammable data plane is still in its infancy. In this paper,
we present a programmable packet parser and a flexible
packet processing pipeline. The parser sustains aggregate
throughput of 6.4 Tbps which is 10 times that of the parser
in RMT architecture, but the area increase is only 32%. The
packet processing pipeline allows unlimited combination of
lookup table resources with the minimum possible hardware
costs. As a result of this support for unlimited table combi-
nations, the resources are more efficiently used. In addition,
it allows the action depth to be freely determined by the
programmer. We achieve area reduction of up to 44% with
respect to the latest Match-Action architectures.

The remainder of the paper is organized as follows.
In section 2, we discuss related work and main motivations
behind our approach. The main contributions of this work,
a new packet parser and a flexible packet processing pipeline,
are discussed in sections 3 and 4 respectively. The contribu-
tions are evaluated in section 5, followed by a conclusion on
this work.

II. RELATED WORK AND MOTIVATIONS
A. RELATED WORK
The first attempt to separate IP control and forwarding func-
tions was made within the Internet Engineering Task Force
(IETF) Network Working Group and resulted in the For-
warding and Control Element Separation (ForCES) archi-
tecture [14], [15]. These documents define the framework,
including the primary functions of a forwarding element and
the communication requirements between forwarding and
control elements. Then, the Ethane network architecture was
introduced, in which the traffic flow management is handled
by a centralized controller [16]. An Ethane-capable switch
establishes a connection with the controller that contains the
overall image of the network. The switches do not need to dis-
cover and locally store the network topology, which greatly
reduces the state that must be maintained by the switches.

The next major breakthrough toward the SDN approach
as we know it today was the introduction of OpenFlow as a
standard protocol for communication between the data plane
and the control plane [4]. The early motivation of running
experimental protocols on real network infrastructures led
to the availability of commercial Ethernet switches enabled
to OpenFlow and implementing the Match-Action packet
processing dictated by that control plane protocol. More
specifically, all OpenFlow switch operations are based on
a set of tables against which cross-layer packet headers are
matched, and each table entry specifies a given action or set
of actions to be applied to each matching packet. Typical
actions include forwarding the packet to one or multiple out-
put ports, dropping the packet, rewriting some of the header
fields, or sending the packet to the OpenFlow controller for
further analysis and decision making.

98930 VOLUME 8, 2020



H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

The idea of a logically centralized controller, which is the
pivotal concept in SDN, simplifies the internal operations to
be performed by network nodes. It also encourages the idea of
making them protocol-independent, so that by installing any
set of rules in the tables inside the switches, their behavior can
be programmed accordingly. The term Protocol-Oblivious
Forwarding was coined, and a generic high-level instruction
set was presented in [5]. In a similar attempt, but with a
lower layer of abstraction, an instruction set was presented
in [17] in order to act as an intermediate layer between many
packet processing hardware architectures and packet process-
ing software. In other words, it acts as a target-independent
machine model.

On the programmable data plane level, the P4 language
was introduced in [6]. In P4, the problem of process-
ing packets is formulated in the form of Match-Action
processing. However, unlike OpenFlow, P4 abstracts the
switch as a programmable parser followed by a protocol-
independent Match-Action pipeline. Contrary to the primi-
tive and protocol-specific actions defined in OpenFlow, the
actions in P4 are not tied to any specific protocol. P4 also
allows definition of compound actions by combining the
primitive actions. It should be noted that OpenFlow and
P4 are meant for different purposes, namely communicat-
ing with the central controller and programming the data
plane respectively, but since both define actions and a similar
abstraction of the switch, we made a comparison of the two
here.

Custom architectures with varying levels of programma-
bility for processing of network packets gained popularity
both in research and industry in late 1990s and early 2000s.
In those days, these devices were called protocol processors
and later on network processors. The major hurdle for the
widespread adoption of these devices was the complex pro-
cedure for programming of some of these devices as some
of them required microcode-style programming. In addition,
each vendor had its proprietary means of programming their
devices. For this reason, network processors failed to gain
widespread popularity.

As a result of research efforts on separation of for-
warding and control plane of networking devices that later
on led to introduction of Software Defined Networking
(SDN), the need for hardware-based packet processing sys-
tems re-emerged. However, this time with special focus on
protocol-independence and programmability. The new term
was programmable data plane. Since the debut of the concept,
there have not been many architectures for this purpose.

Themost dominant architecturewas first introduced in [12]
and [18]. It is based on the Match-Action principle, meaning
that programmer-specified header fields are used to form a
search key which is provided to a match table. The outcome
of the match determines the action, which is the required pro-
cessing on the packet. In [19], high-speed packet processing
is addressed in both software and hardware domains. On the
software side, it provides guidelines for arranging packet
processing programs for high-throughput execution. On the

hardware side, it provides alternative architectures for action
units of Match-Action switches. The work in [20] decouples
the sets of match tables from action stages and replaces
the action stages of RMT with packet processors. Due to
this disaggregation, the architecture is called Disaggregated
RMT (dRMT). Each dRMT processor operates in run-to-
completion mode. Once a packet is sent to a dRMT processor,
it remains there until the entire program is executed. There-
fore, a single dRMT processor is comparable to the entire
RMT pipeline in terms of functionality.

Commercial programmable switch chips have replaced
fixed-function chips. Examples of these devices includeBare-
foot Tofino [21] and Tofino 2 [22], Broadcom Trident 3 [23],
Tomahawk 3 [24], Tomahawk 4 [25], and Innovium Teralynx
[26]. An interesting observation is that most of these architec-
tures are similar in that they contain a programmable packet
parser followed by a flexible pipeline with a number of stages
and tables. The difference is in the supported throughput,
supported workloads, size of tables, programmability, and
flexibility.

In the meantime, numerous solutions based on Field Pro-
grammable Gate Array (FPGA) have appeared. FPGAs run at
considerably lower frequencies compared to ASICs. In order
to sustain high throughputs, the FPGA is configured to imple-
ment protocol-dependent hardware for the workload that
is to be run on the device. This means that the architec-
ture contains protocol-specific state. This is in contrast to
architectures such as RMT that contain no protocol-specific
state and achieve functionality for different protocols via
purely software means. Another issue with using FPGAs
for packet processing is that Ternary Content Addressable
Memory (TCAM) has to be emulated through the embedded
memory blocks.With protocol-specific hardware architecture
and ultrawide datapath, FPGAs achieve raw throughput in the
range of a few hundred Gbps for packet parsing as in [27]. For
packet processing, the achievable throughput is in the range
of 100 Gbps [28], [29]. For Terabit-level throughput, ASICs
are the only solution. Therefore, FPGA-based solutions are
not within the scope of this paper.

1) A CLOSER LOOK AT MATCH-ACTION ARCHITECTURES
The Protocol Independent Switch Architecture (PISA) has its
roots in the RMT architecture that first appeared in [12]. It is
currently the underlying basis of commercial products such
as Barefoot Tofino and Tofino 2. According to [30], Barefoot
Tofino contains 4 pipelines, each of which is based on RMT.
In this paper we refer to RMT and PISA interchangeably
despite potential differences. The two main components of
PISA are the parser instances and the pipeline. The parsers
extract a part of the arrived header and append a tag to it to
form a search key which is presented to a TCAM. The out-
come of this matching determines the action to be performed.
The main action for the parser is to write the header fields
to a 4-Kb register called Packet Header Vector (PHV). The
pipeline consists of 32 Match-Action stages through which
the PHV traverses. Each stage starts by generating a search

VOLUME 8, 2020 98931



H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

FIGURE 1. Delaying Match and Action as a result of dependencies.

key and providing it to the exact and ternary match tables.
The outcome of the match then determines the instructions
that must be executed by the action engines.

Depending on the dependency in the packet processing
program running on the architecture, it is possible that match-
ing in the next stage begins while action execution in the
current stage is still ongoing, or alternatively, the next stage
has to wait until the current action execution is entirely over
until matching in the next stage begins. Match dependencies
occur when a field under modification in a stage must be
used for forming the search key in the subsequent stage.
Action dependencies occur when field being modified in an
action stage needs to be used as input for action in subsequent
action stage. Fig. 1 illustrates the timing of Match-Action
operations in two consecutive Match-Action stages in case of
dependencies. It should be noted that both match and action
operations take a number of cycles each.

Each of the Match-Action stages contains 16 TCAM
blocks for ternary matching. In addition, there are 106 SRAM
blocks that can be configured for exact match, action, and
statistics purposes. The dimensions of TCAMs and SRAMs
are 2K × 40 and 1K × 112 bits respectively. The action
subunit contains 224 action engines, one for each PHV entry.
Each Match-Action stage is referred to as a physical stage
because it directly corresponds to its physical implemen-
tation. Sometimes, the match capacity of a physical stage
is not sufficient for the required use case. In these cases,
the capacity from multiple physical stage can be combined.
The combined stages are referred to as a logical stage. For
instance, it is possible to combine all 32 Match-Action stages
into one logical stage in order to store 1 million IPv4 prefixes
in all the TCAMs available on the chip.

dRMT [20] is also a Match-Action architecture but instead
of being a pipeline, it is a processor or in other words, a
run-to-completion architecture. As a result, each processor
must have the entire packet processing program in its instruc-
tion memory. The overall dRMT architecture consists of 32
Match-Action processors each of which contains 32 action
engines. As opposed to the RMT architecture in which a
set of lookup tables are assigned to stages, in dRMT, sets
of tables called clusters can be selected to be assigned to
a given processor by means of crossbars. As such dRMT
has disaggregated the packet processing units and the lookup
tables.

One of the major design choices for hardware-based packet
processing systems is that of pipeline versus processor.

We believe that a pipelined architecture such as that of RMT
is more suited to packet processing for a number of reasons:

Packets arrive at high speeds and must each undergo a set
of steps. A pipeline achieves this inherently. If a pipeline is
deep enough, the extra processing required by a packet can
be accommodated without hurting throughput. In a run-to-
completion processor, if a packet requires extra processing,
the processor cannot accept a new packet at the designated
interval unless it supports a large number of independent
threads to avoid falling behind. The high-end commercial
products we referred to earlier use pipelined architecture.

Second, the RMT architecture already has quite a lot of
crossbars. dRMT architecture goes even further by allowing
table clusters to be assigned to the processors. Crossbars
contribute to the area and power dissipation of the chip.

Last but not least, the run-to-completion nature of dRMT
limits the number of action engines and the depth of the
instruction memory attached to them. Because the packet
remains assigned to a dRMT processor until all required
processing is done, the instruction memory in each dRMT
processor contains the whole program, while in a pipelined
architecture, the program is divided into instruction memory
in each stage. In order to increase the supported throughput,
multiple dRMT processors are instantiated. The contents of
the instruction memory of different processor instances is
identical. Therefore, we must limit the number of Arithmetic
Logic Unit (ALU) instances to limit the overall memory size
across all processor instances.

B. MOTIVATION
Themotivation behind this work is overcoming the shortcom-
ings in the PISA architecture. These shortcomings result in
a high area overhead and inefficient use of resources such
as match tables and instruction memories. We explore these
shortcomings in this section.

1) SHORTCOMINGS OF CURRENT MATCH-ACTION
ARCHITECTURES
Based on the discussion above, we maintain our main focus
on the RMT architecture. These shortcomings are as follows:

Use of TCAMs for packet parsing: TCAMs are powerful
devices for matching. They can search all their entries in
parallel and provide the matching entries in one clock cycle.
The capability to store don’t care values and the availability
of a built-in priority encoder makes them perfect for wildcard
and longest prefix matching (LPM). However, wire-speed
packet parsing could be performed more area- and power-
efficiently without using TCAMs.

Lack of action depth: In the PISA architecture, there is only
one stage of action execution after each match stage. Actions
such as IPv4 checksum verification and calculation require a
number of action stages. In order to fulfill such criteria in the
PISA architecture, match tables in the next match stage must
be used for the same purpose, which is wasteful. An improved
PISA must have configurable action depth. In other words,
what is desired is Match +

∑
Action.

98932 VOLUME 8, 2020



H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

Match-based program control: PISA architecture strictly
uses matching for program control. For instance, in order to
check if the Hop Limit of an IPv6 packet is zero, it matches it
against the entries of a table. This strict use of lookup tables
for program control wastes match entries. As we will see,
there are alternative means for program control whereas for
address lookup there is no other alternative other than using
TCAM- or SRAM-based tables.

Limited field referencing: PISA architecture allows only
directly specified header fields to be used as source
operands or the destination. Some protocols require more
advanced means of addressing the header fields. For instance,
the field for reading or writing could be specified by another
header field. Using a header field that acts like a pointer as a
search key to obtain an instruction that directly specifies the
right field leads to inefficient filling of instruction memory
entries.

High cost of table combination: The PISA architecture
supports table combination for making wider and/or deeper
tables in each match stage. Hardware support for table com-
bination can be very complex. Due to the large number of
combinations and complexity of combining states, an area-
efficient way to provide hardware support for table com-
binations is allowing groups of 2n tables to be combined.
In such as system, if, for instance, a given logical table has the
width of 120 bits and depth of no more than 6144, the actual
table will be 160 bits wide and has depth of 8192. This
table is 1.7 times larger than the required table. Providing
hardware support for any combination is very expensive due
to the number of possible combinations. It is not clear to
what degree hardware support for combining tables has been
provided in PISA. In case of limited support, tables will be
assigned inefficiently, and capacity will be lost. Conversely,
if full support is provided, the hardware cost is very high.

In order to increase the utilization of tables, a tag can be
appended to the search key so that the table could be reused
for as many purposes as there are different combinations
of the tag value. If there are not enough tables remaining
for the lookup requirements of a packet, the packet must
be recirculated to access the tables that it had surpassed
in the first round of traversing the pipeline. Recirculation
cuts throughput of the pipeline by half. In addition, once a
packet is about to be recirculated, it has to compete with
other packets that try to enter the pipeline. However, if we
could assign no more than the required number of tables for
building a logical table, tables would be assigned in a far
more efficient manner. In addition, this gives the possibility
to provide narrower physical tables. This results in significant
savings in area.

2) SIGNIFICANCE OF LOW-AREA MATCH-ACTION PIPELINES
Low-area architectures enable lower fabrication costs and
increase production yield. When it comes to packet process-
ing architectures, low area becomes critical because these
architectures contain substantial amount of memory for exact
and ternary match tables. Savings in area allow integrating

more on-chip memories for match tables, thereby increasing
the match capacity, which is one of the metrics for evaluating
switch chips.

When it comes to Terabit-level packet processing, the issue
of low area becomes far more crucial because pipeline
instances must be replicated in order to sustain through-
put. For instance, Barefoot Tofino contains four independent
pipelines [30]. Each packet processing pipeline in a high-end
programmable switch contains hundreds of memory blocks.
Area optimizations ensure that physical constraints are met
and that the pipeline instances can fit into the chip. Therefore,
in the architecture presented in this paper, low-area design is
a key goal.

III. A NEW PROGRAMMABLE PACKET PARSER
A packet is made up of a number of headers. The parser
starts with the first header and finds its way into subsequent
headers. How deep the parser digs into the packet depends on
the number of headers present in the packet and functionality
of the parser. A network switch is concerned with layer-
2 headers, whereas a router or layer-3 switch uses the contents
of layer-3 headers as well. Therefore, the functionality of the
device in which the parser is deployed defines how deep the
headersmust be parsed. Layer-4 systems such as TCPOffload
Engines require the contents of the layer-4 header. The most
extreme case of parsing a packet is Deep Packet Inspection
(DPI) in which the payload of the packet is examined as well.
DPI ismore advanced than packet parsing as it has to be aware
of the patterns of application data in the subject application.
We are not concerned with DPI in this paper.

A packet parser operates in state machine manner for
traversing headers. Even the simplest parsers that only parse
one header need to maintain states to provide the required
functionality when dealing with the header and payload of
the packet. For correct operation, the parser requires precise
information regarding the following points:

• Current header under parsing
• Progress made so far in parsing the current header
• Next header
• Size of current header
• Whether current header is the last header
• When to switch to parsing the next header

Packet parsing is a straightforward problem. What makes
parsing of some headers more complex than that of others is
their variable length. With such headers, calculating the size
of the header in a real-time manner considering the line rate
could become challenging. For instance, in Generic Routing
Encapsulation (GRE) header, presence of four of the fields
are dependent on the value of three flag bits. The total size
of the GRE header varies depending on which flags are set.
As another example, in an Ethernet frame, if the value of
EtherType field is 0×8100, VLAN tag is present. This adds
4 bytes to the size of the header. Some headers have a field
indicating the size of the header. However, such indications
use different encodings. For instance, in IPv4 header, the size

VOLUME 8, 2020 98933



H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

FIGURE 2. Parsing of headers in a pipelined manner.

of the header in terms of the number of 32-bit words is indi-
cated by the IHL field. In IPv6 Extension Headers, the size
of the extension header in terms of number of bytes minus
the first 8 bytes is given. Therefore, the parser must interpret
these values correctly for correct operation.

The toughest workload for a packet processing sys-
tem including the parser is when a minimum-sized packet
arrives every clock cycle. This requires the toughest perfor-
mance guarantees because minimum-sized packets strain the
resources of the system. In other words, it is easier to achieve
higher throughputs when non-minimum-sized packets arrive
because the payload of the packet does not require processing.
Therefore, it relaxes the strain on the resources of the system.
However, for the throughput figure of a packet processing
system to be reliable, minimum-sized packets are the basis
for evaluation. In an 800 Gigabit/s link, a new Ethernet frame
arrives every 0.84 nanoseconds. This means that a system
operating at clock frequency of 1.19 GHz that reads an Ether-
net frame every clock cycle can sustain 800 Gbps throughput.
If each frame contains multiple headers that must be parsed,
they cannot be parsed in one clock cycle and the parser
lags behind. The solution is to have the packet go through
a number of header parsers, each in charge of parsing one
of the headers in the packet. Fig. 2 illustrates the stages that
four packets will go through with respect to time. P.Hn refers
to parsing of nth header within the packet. In this illustration,
it is assumed that each of the four packets has four headers
to be parsed and that parsing of each of the headers takes one
clock cycle.

These header parsers are equal in the generic parsing func-
tionality. However, each one of them is specialized for parsing
the headers of a specific layer. This means that the first header
parser is programmed to parse all possible headers that appear
first in the packet. The second header parser has the program
to parse all the headers that appear as second header in the
packet and so on. Fig. 3 is an illustration of a parse graph
with three levels.

Parse graph is a tree-like data structure with nodes corre-
sponding to headers. Nodes in level n of the tree represent
possible nth header of the packet. For instance, in Fig. 3,
the second header of the packet in this setting could be IPv4,
IPv6, VLAN, or MPLS. If the header parser discussed so far
is to be used for parsing packets based on this parse graph
pattern, the first header parser must have the program to
parse Ethernet header. The next header parser must have the
programs for parsing IPv4, IPv6, VLANandMPLS. The third
header parser must be able to program IPv4, IPv6, MPLS and

FIGURE 3. Parse graph with three levels.

FIGURE 4. A packet parser with four header parsers.

TCP. One important observation is that some headers appear
in more than one level. For instance, in the parse graph of
Fig. 3, IPv4 and IPv6 headers can appear both as second and
third headers. In order to sustain the throughput, second and
third header parsers must both have the program to parse
these headers. Another interesting observation is that two
distinct headers of a given layer can both have the same next
header. Referring back to the parse graph in Fig. 3, both
IPv4 and IPv6 can have MPLS as the next header. In the
implementation, both these cases must bemapped to the same
program.

Fig. 4 illustrates the packet parser that Fig. 2 is based on.
Each header parser provides the starting offset of the next
header to the subsequent header parser. Fig. 5 illustrates a
high-level view of the internals of the header parser. The
functional units within the header parser are used for finding
out the next header, calculating the size of the header, and
writing the header fields to PHV entries. These functional
units operate in a manner similar to the corresponding func-
tional units in [31].

Internally in our packet parser, each header is represented
by a 4-bit Header ID. This representation is only of signif-
icance for programming the parser and is independent of
encodings used in headers. This value is used to retrieve
the Parse Control Word (PaCW) which provides the control
signals for the functional units within the header parser.

Information in the PaCW is the minimum information
required for correctly parsing a header. The fields within the
PaCW and their descriptions are outlined in Table 1. In addi-
tion to the PaCW, there are some data associated with each
of the headers supported by a header parser. Table 2 outlines

98934 VOLUME 8, 2020



H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

FIGURE 5. High-level view of the header parser.

FIGURE 6. Internals of the header parser.

these data. Fig. 6 illustrates the internals of the packet parser
in more detail.

The fixed latency for parsing of headers by a header parser
is 5 cycles. Since a header parser is internally pipelined, it can
be thought of as having five single-cycle stages. Therefore, it
could accept a new packet on each clock cycle.

Each header parser can be programmed to parse up to
16 distinct headers. The internal stages of the header parser
are as follows:

• Retrieval of PaCW: The PaCW is fetched from the
PaCW Store based on the header ID provided by the
previous header parser. If this is the first header parser,
the correct header ID has already been configured.

• Next Header and Header Size field extraction: In this
stage, the fields that contain indication of the next header
and header size are extracted using field extractors (FE).
If such fields are not present, the PaCW instructs the
parser to use other means for calculating the next header
and header size.

• Comparison: The value of fields extracted in the previ-
ous cycle is compared with the data associated with the
header in question. Meanwhile the shifter is shifting the
value of the field containing the header size if the PaCW
instructs it to do so.

• Resolving: The highest-priority matching entry is used
as the basis for determining the next header and current
header size. At the same time, an ALU modifies the
original or shifted value of the header field containing
the header size.

• Header field extraction: In this stage, fields of the header
are extracted to be written into the PHV.

As we can see from Fig. 6 and the stages elaborated above,
neither finding out the next header nor calculating the header
size requires the use of TCAM in our architecture. For finding
out the next header, the value of the next header field is
extracted and compared in parallel with 16 values associated
with the current header. If there is no next header field, default
header associated with the current header is selected. For
calculating header size, the field containing header size is
extracted and passed through a shifter and an ALU. It is also
possible to assign the default size of the current header as
header size.

Asmentioned earlier, themain building block of our packet
parser is the header parser. When dealing with use cases and
packets that have more than one header for parsing, using
more than one header parser inside the packet parser allows
the flow of one minimum-sized packet per clock cycle to
progress without stall. Header parser n parses the nth header.
Otherwise the packet has to be recirculated in which case
throughput is degraded. Another benefit of having multiple
header parsers inside the packet parser is that if a header is
too complex to be parsed using the resources of one header
parser, it is parsed by more than one header parser. In this
case, each one of the header parsers involved partially parses
the header until it is fully parsed.

A. PARSING EXAMPLES
1) PARSING GRE HEADER
The GRE header starts with a nibble containing three flag
bits indicating presence of three 32-bit words in the header.
In the first parsing stage, the PaCW for parsing GRE header
is fetched. In the second stage, the Protocol Type field in the
GRE header is extracted using the byte offset information in
PaCW. The most efficient way of calculating the header size
is by extracting the flag bits and mapping each value to the
corresponding header size. Otherwise, the flag bits have to
be added one by one and the result must be multiplied by
4 to obtain the header size in bytes. Therefore, in this stage,

VOLUME 8, 2020 98935



H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

TABLE 1. Parse control word (PaCW) entries.

the flags are also extracted. In the third stage, the value of
the Protocol Type field is compared with the comparands.
In parallel, the value of flags is also compared with all the
possible values. In the fourth stage, the associated data of
highest-prioritymatching entry is selected for next header and
header size. In the final stage of parsing, all the header fields
present in the header are written to the PHV in parallel.

2) PARSING IPv6
IPv6 header is relatively straightforward to parse. In the first
stage of parsing, the PaCW corresponding to IPv6 header
is retrieved. In the second stage, based on the information
contained in the PaCW and the starting offset provided to
the header parser, the Next Header field is extracted. Since
the size of IPv6 header is fixed, the PaCW does not contain
any information regarding the location of a field specifying
the header size. Instead, it contains value of 40 as the default
header size. In the third stage of parsing, the value contained
in Next Header field is compared in parallel with 16 compara-
nds to find a match. In the fourth stage, the highest-priority

TABLE 2. Data associated with each header.

FIGURE 7. Internals of a packet processing stage.

matching comparand is used as the basis for determining
the next header. In the final stage, the ID of next header is
presented to the next header parser and all fields contained in
the IPv6 header are written to the PHV in parallel.

IV. A FLEXIBLE PACKET PROCESSING PIPELINE
The packet processing pipeline is made of packet processing
stages each of which performs part of the processing. Fig. 7 is
an illustration of a packet processing stage, which is the

98936 VOLUME 8, 2020



H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

fundamental building block of this pipeline. The number of
these stages is 512, indexed from 0 to 511. During these
stages, action execution as well as matching overlap. The set
of packet processing operations within a stage is determined
by the packet ID assigned by the parser. The packet ID can
be modified in the pipeline as a result of condition evalua-
tion or an earlier match operation.

Besides action execution in each stage, an exact match
operation is executed in which the hashed values of an exact
match search key is presented to a 4-way hash table to retrieve
the data associated with it. A ternary match operation is
also executed in which the table hosting the search keys is
a ternary table, meaning that it can store don’t care values as
well.

The main functional units within a packet processing stage
are as follows:

• Field extractors (FEs): Extract 8-, 16- and 32-bit fields
from the PHV for processing.

• Field- and state-modifiers: There are eight field- and
state-modifiers in each stage. They perform logical and
arithmetic operations on header fields and state. Field
modifiers are 32-bit units that take two inputs. The first
input is either a header field or state, and the second input
is either a header field or an immediate value. Each field
modifier can write to 16 designated locations within the
PHV.

• Search key generators: Construct a 40-bit search key by
selecting the constituent fields from the PHV.

• TCAM: Each packet processing stage contains one
2048-entry TCAM. It takes a search key as input and
provides match lines at the upcoming cycle. There are
as many match lines as the number of entries within the
TCAM. A value of 1 at a given position in the match
line indicates that the corresponding entry matched the
search key.

• Hash tables: Each stage contains four hash tables for 4-
way hashing. Each table is constructed using a 1K× 64-
bit SRAM block. Hash tables contain key-value entries.
Key is the search key and the value is a 10-bit tag, also
referred to as packet ID (PID).

Once an exact match search key is provided, it is hashed in
order to retrieve the position of the search key within the hash
table. All ways are accessed in parallel. The value associated
with the matching way is selected. The tag becomes the new
tag, which is the basis for instruction and data retrieval.

Both ternary and exact match tables have memories asso-
ciated with them. They contain packet processing parameters
such as header templates and header field values or statistical
state associated with a search key. The choice of whether to
use the TCAM or the hash tables depends on the kind of
search required. For instance, for looking up IPv4 addresses,
the TCAMs are great because they can perform single-cycle
LPM search. If, on the other hand, the Tag for processing an
IPv6 Extension Header is to be obtained, the hash tables must
be used.

A. PROGRAM CONTROL
The instructions to execute at each stage are determined by
the value of a 10-bit tag. This tag is first set by the parser.
This tag is used to retrieve the instructions at each stage.
It gives detailed information about the packet. For instance,
a given value could be used for an IPv6 packet whose Hop
Limit is zero. In this case, the instructions for making an
ICMPv6 Time Exceeded Message are fetched. When using
the same tag in a number of stages, part of the required
actions is executed in each of the stages involved and thereby
the requirement of custom action depth is achieved. What
makes this architecture flexible is that the 10-bit tag could be
changed as the packet traverses the pipeline. These features
allow implementation of actions that are far more complex
than OpenFlow v1.5.1 [32] actions. Each stage has the fol-
lowing functional units for program control:

• PID Map Table: This table maps the 10-bit ID of
the incoming packet to a 64-bit value which contains
instruction pointers for each of the functional units
within the packet processing stage. This means that each
functional unit has a separate instruction memory that
can be independently addressed. By using this tech-
nique, many distinct instruction combinations can be
achieved without using a deep instruction memory. The
mapping for each PID and each stage is decided by the
programmer. The PID map table is allocated from the
SRAM blocks available at each stage. Therefore, it does
not consume any additional area compared to SRAM
blocks in RMT and dRMT.

• Condition evaluator: This unit performs operations such
as bit extraction and magnitude comparison. The result
of this unit’s operation can be used to change the 10-bit
tag, which in turn changes the program flow.

In this architecture, there are condition flags to represent the
status of the latest lookup in ternary and exact match tables.
The evaluation of these flags can also be the basis for program
control.

B. COMBINING TABLES
A 512-stage pipeline is a deeply pipelined architecture. The
latency is directly associated with the number of stages.
Before reaching a verdict on the latency of this pipeline, let’s
review some of the latency figures of the original PISA archi-
tecture when it comes to dependencies. In the original PISA
architecture, there is a 12-cycle latency for match depen-
dencies and 3-cycle latency for action dependencies [33].
The reason for this is that if, under dependency conditions,
the operation of functional units of different match stages
is overlapped, the old header field values will be used for
search key generation or action execution. Therefore, delays
are configured to ensure that the succeeding match stage will
use the updated PHV.

In our architecture, accessing each table takes a cycle.
Two cycles after accessing the match table, the outcome of
whether a match was found or not is known. In case of

VOLUME 8, 2020 98937



H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

positive match, another two cycles are required to obtain the
corresponding value stored in the associated memory. The 4-
cycle latency after accessing tables is a fixed value, whether
one table has been accessed or multiple tables. The two
tables that are visited during the cycles required for retrieving
the associated data are simply ignored. No stalling or delay
configuration occurs in our architecture. The cost of losing
two tables is considerably less than that of losing 16 tables,
as is the case in RMT. The two ignored tables could be used
for speculative lookup. This way, possible wasting of lookup
resources is eliminated.

Any number of tables could be combined for making wider
and/or deeper tables. As the packet traverses the pipeline, one
table is visited at each stage. If a logical table wider than
a physical table is desired, at each stage part of the whole
search key is presented to the lookup table within the stage.
The resultingmatch lines are transferred from one stage to the
next stage and ANDed together until the whole search key
has been looked up. Then the final match line which is the
result of AND operation on all of the match lines is used to
retrieve the associated state. For making a logical table whose
depth is more than a single physical table, the entries of the
logical table could be arranged in such a way that physical
tables that are visited first have higher priority. The same
search key is presented to all the tables involved. Once a
match is found, the packet’s tag is changed to indicate that the
packet no longer requires the same lookup procedure.Making
wider and deeper tables is similar and contains both of the
procedures mentioned here.

Our flexible pipeline has the means to reduce the latency
when a considerable number of physical tables must be
combined for accommodating more entries. Each 16-stage
unit whose starting index is an integer multiple of 16 is
called a PIPE16. Therefore, there are 32 PIPE16 instances
in our pipeline, indexed from 0 to 31. The output of
a PIPE16 instance is the input to its successor PIPE16.
PIPE16 instances can be configured to run in parallel to
reduce the latency when 32, 64, 128, 256, or 512 tables
are to be combined for making deeper tables. For instance,
if the desired depth of a logical table is 64 times that of a
single physical table, four PIPE16 instances run in parallel
and latency is cut by a factor of four. In this scenario, all
the four PIPE16 instances receive the same PHV as input.
The pipeline stage that follows these four parallel PIPE16
instances takes the PHV output of the PIPE16 instances that
has had the highest priority. The input to the PIPE16 instances
can be configured. A 64-bit software-defined Pipeline Con-
figurationWord (PiCW) sets the desired configuration.When
running PIPE16 instances in parallel, 100% utilization of the
tables involved is achieved if the desired number of physical
tables is a power of two. If this is not the case and utilization
of tables is the most high-priority criterion, the pipeline can
be configured for its conventional configuration, in which
each stage receives the output of its immediately preceding
stage. Fig. 8 illustrates the pipeline and the components that
make the reconfiguration possible. For space-saving reasons,

FIGURE 8. Pipeline configuration components.

only the first four PIPE16 instances are shown. The illustrated
architecture is repeated for the rest of the PIPE16 instances
and the resulting binary tree has three more levels. The key
component that picks the higher-priority match outcome is
a priority-based 2-to-1 multiplexer. The select line for these
priority-based multiplexers are set by the match found flags
of the two PIPE16 instances that provide their output to the
priority MUX. They also multiplex the value of match found
flag so that the next-level multiplexers can function correctly.
By having a binary tree of these components, it is possible to
run selected PIPE16 instances in parallel. The other compo-
nent required for the configuration is the set of multiplexers
that provide the input to PIPE16 instances. PiCW is the set
of values for the select lines of these multiplexers. If the
pipeline is configured in its basic form in which the packets
have to traverse all the stages, the latency is 430 nanoseconds
because the operating frequency is 1.19 GHz. The terabit-
level switches of Nexus 9200 family from Cisco have latency
figures close to two microseconds [34]. Therefore, even the
worst-case latency of our architecture is in reasonable range.

What is meant by input to a PIPE16 instance is the input to
the first stage within the PIPE16 in question. For instance,
input to PIPE1630 means input to stage 480, which is the
first stage within PIPE1630. For all stages after the first stage
of a PIPE16 instance, the only input is the output of the
preceding stage. For instance, for stage 17 which is located
in PIPE161but is not its first stage, the only input option the
output of stage number 16.

C. INPUTS TO FIELD- AND STATE-MODIFIERS
Field extractors provide the input to the functional units
including field- and state-modifiers. The PHV contains 128
32-bit words. This translates to 384 16-bit and 512 8-bit units
as well. The reason why there are 384 16-bit units is that for
a given PHV word called wordi, wordi(31:16), wordi(23:8),
and wordi(15:0) are extracted as 16-bit units. Field extractors
are in fact multiplexers with 1024 inputs. Each of the field-
and state-modifying instructions have fields for specifying
the location of a field within the PHV. When 8- and 16-bit
fields are selected, they are zero-extended to 32 bits. Field
extractors are one of the major contributors to chip area due to

98938 VOLUME 8, 2020



H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

FIGURE 9. Instruction memory layout for pointer-based write.

the number of pipeline stages and the fact that each field- and
state-modifier requires two field extractors. Therefore, it is
desirable to evaluate the possibility of optimizations for sav-
ing area. In [35] different alternatives for field extractors are
compared. We consider two optimization strategies. In both
strategies, it is assumed that the PHV is logically divided into
eight equally sized groups.

Based on the observation that it is not necessary for all field
extractors to be able to read from the whole PHV, each field-
and state-modifier is allowed to access all of the fields within
its group but only some of the entries of other groups. In other
words, cross-group field retrieval is more limited. In the
second optimization strategy, full field extraction capability
is available for entries of a group. However, entries of other
groups are read only in 32-bit units in order to reduce the
number of inputs to the multiplexer and thus have a lighter
multiplexer. If an 8- or 16-bit field from the entries pertaining
to other groups is required, it must be extracted using the
field- and state-modifiers.

Both optimization strategies result in use of multiplexers
with 240 inputs as field extractors which occupy 36% of
the area of 1024-input multiplexers. The resulting saving is
not limited to the crossbars. The number of SRAM blocks
required to hold Very Long InstructionWord (VLIW) instruc-
tion slots will be reduced too because the instructions will
slightly shrink.

D. MORE ADVANCED MEANS OF HEADER FIELD
REFERENCING
As mentioned earlier, one of the limitations of the PISA
architecture is that its sole means of referencing header fields
is directly specifying them in the instruction. If one of the
header fields is a pointer specifying the header field for
reading or writing, the pointer field has to be used as a search
key. The outcome of this match points to the instruction that
reads from or writes to the correct field within the PHV. This
causes the instruction memory to be inefficiently filled by
instructions that are in principle the same. Fig. 9 illustrates
the layout of the instruction memory when one of the fields
in the header contains the index of the field to which a value
must be written. This writing is achieved by using the MOVE
instruction. There is an action engine for each PHV entry and
each VLIW instruction slot corresponds to an action engine.

As we can see, all these instructions are in principle the
same. The only difference is the location of theVLIW instruc-

tion slot containing the MOVE instruction. The PHV in RMT
architecture contains 224 fields of three different widths.
There is an action engine per PHV field. In the worst case,
as many as 224 instruction entries will be filled according to
the pattern in Fig. 9.

In our architecture, we do not need to use any form of
matching in such scenarios. Field modifiers have a specific
opcode for reading the content of a header field whose loca-
tion is specified by a pointer. The location of the pointer
within the PHV must be known in advance so that it could be
directly referenced. After reading the pointer and executing
this opcode, the field referenced by the pointer is provided at
the output of the field modifier. In addition to this, there is
an opcode for writing to a field specified by a pointer. When
this opcode is executed, the location pointed to by the pointer
is assigned the intended value even if the destination field
is beyond the range of locations to which the writing field
modifier can write. For this to be feasible, the writing field
modifier overrides all other field modifiers.

E. PACKET PROCESSING EXAMPLES
1) IPv6 SEGMENT ROUTING
Segment Routing (SR) is a type of source routing in which
the source determines the nodes that a packet must visit. SR
has been discussed in detail in [36]. SR can be implemented
using MPLS or IPv6. In the latter case, an IPv6 extension
header called Segment Routing Header (SRH) is required.
Here we consider SR using IPv6 SRH. In this packet pro-
cessing walkthrough, we assume that a router based on the
architecture proposed in this paper is the endpoint for the
arriving IPv6 packet. This means that Destination Address
(DA) is the same as the router’s address. We also assume that
Hop limit is greater than 1 and that SRH immediately follows
the fixed IPv6 header. Fig. 10 contains the pseudo-code that
must be executed on our architecture.

Since IPv6 extension headers are all independent headers,
the SRH has already been parsed by the parser and the cor-
responding 10-bit tag has been assigned. Each of the header
fields referred to in Fig. 10 have a determined place within
the PHV.

Fig. 11 illustrates the outline of PHV after parsing is com-
plete. The instructions executed in each stage are outlined
in Table 3. It is assumed that R124, R125, R126 and R127
contain the IPv6 address assigned to the device.

Processing in stage 0 begins by comparing DA with
the address assigned to the device. After each comparison
instruction there is a change label instruction to change the
program flow if necessary. Four comparisons are required
because IPv6 addresses are 128 bits wide. Selecting the cur-
rent segment from the list of segments requires pointer-based
read. Before pointer-based read can be done, the value of the
pointer must be manipulated so that it points to the correct
PHV entry.

Due to the width of IPv6 addresses, writing the segment
pointed to by the updated value of Segments Left takes four

VOLUME 8, 2020 98939



H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

FIGURE 10. Pseudo-code for IPv6 SRH processing.

FIGURE 11. Outline of PHV after the parsing is complete.

cycles (stages 8 to 11). As soon as the first word of the
new IPv6 DA is known, ternary lookup begins (stage 9).
An interesting observation is that Segments Left, which acts

TABLE 3. Instructions executed in each stage for IPv6 SRH Processing.

as a pointer, is already updated in stage 0, so that the process
of retrieving the segment to which it points can be started
although at this point it is not clear whether it contains a
positive value. This kind of execution is speculative. If at

98940 VOLUME 8, 2020



H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

TABLE 4. Tags used in processing of IPv6 SRH.

FIGURE 12. Outline of PHV after the parsing is complete.

any point the value of Segments Left turns out to be invalid,
the changes can be discarded.

As we can see, the label modification instruction has been
extensively used. Table 4 contains the designated labels and
their meaning. In this table, labels are referred to with letters
because their actual value is implementation-specific and is
not of significance in the discussion here. Each of these
labels is the basis for retrieving the instructions in each stage.
Change of label causes change in program flow.

2) 5G FRONTHAUL TRAFFIC
Common Public Radio Interface (CPRI) is an interface-
defining standard for communication between Radio Equip-
ment Control (REC) and Radio Equipment (RE) using the
fronthaul transport network. eCPRI is the enhanced CPRI.
It connects the eREC and eRE via transport network. eCPRI
messages can be encapsulated in Ethernet or IP packets. Here
we consider the encapsulation in Ethernet.

Fig. 12 illustrates outline of PHV after parsing is complete.
R0-R3 contain Ethernet header, R4 contains eCPRI common
header and R5-R7 contain eCPRI Generic Data Transfer
message.

The parser has already marked the packet as an eCPRI
message. The 1-byte field Message Type from the eCPRI
common header is selected as an exact match search key.
In this scenario, the value of this field indicates the presence
of Generic Data Transfer message after the common header.
eCPRImessages have an identifying field called PC_ID at the
beginning of the eCPRI message. Depending on the message
type, the width of this field is a byte, 2 bytes or 4 bytes.
We cannot know the width of this field until the outcome of
looking up Message Type is available. To reduce the latency,
we generate three exact match search keys, each correspond-
ing to the 3 different sizes of PC_ID field. This way, we don’t
have to wait until the outcome of matching Message Type is
available. It is also beneficial from the perspective of using

TABLE 5. Area and power of header parser components.

TABLE 6. Area and power dissipation of 6.4 Tbps packet parser.

the tables efficiently because by the time the outcome of
matchingMessage Type is available, two tables are traversed.
The outcome of matching PC_ID reveals how the data in the
eCPRI message must be handled.

V. EVALUATION AND DISCUSSION
The packet parser and the packet processing pipeline
have been implemented using VHDL. The implementation
has been synthesized using Synopsys Design Compiler J-
2014.09-SP4 on 28 nm FD-SOI technology. The results cor-
respond to supply voltage of 0.9 V and worst-case oper-
ating conditions (ss, 125◦C). The implementation meets
the timing constraints at operating frequency of 1.19 GHz.
Post-synthesis simulation has been performed using Mentor
Questa.

A. PACKET PARSER RESULTS
Table 5 presents the area and power dissipation of the main
constituent components of a single header parser instance.
The total area of a header parser instance is 47000 µm2

and the total power dissipation is 74.6 mW. Table 6 out-
lines the area and power dissipation of components of a
6.4 Tbps packet parser that can parse packets with depth of
eight headers. This packet parser is made of eight pipelines
of header parsers. Each such pipeline contains eight header
parser instances and can sustain throughput of 800 Gbps.
By having eight of these pipelines in parallel, aggregate
throughput of 6.4 Tbps can be supported.

The total area of all packet parser instances required for
6.4 Tbps throughput is 3.617 mm2 or 7.38 M gates. The total
area of packet parsers in [12] is 5.6 M gates for 640 Gbps
throughput. For reaching 6.4 Tbps throughput, the number
of parser instances must be increased by a factor of 10.
This causes the resulting total area to be 56 M gates. This
means that we have increased the throughput by a factor
of 10 whereas the increase in area has been only 32 %. The
area difference is equivalent to the area of 137 instances of
2048× 32 TCAM blocks.

VOLUME 8, 2020 98941



H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

TABLE 7. Area of the components in a packet processing stage.

B. PACKET PROCESSING PIPELINE RESULTS
Table 7 contains details on the area of themain components of
a single packet processing stage. The components in the table
are ordered according to their area. For components having
multiple instances in each stage, the total area of the instances
is given.

As we can see, the major contributor to the area is the
TCAM. The next major contributors to the area are field
selectors. In section 4 we discussed optimizations for field
selectors. The area of the proposed lightweight field selec-
tors is 36% of the original field selectors. In addition, using
these crossbars causes the width of field- and state-modifying
instructions to shrink. In this optimization, the first field
modifier and the condition evaluator still use the large input
selectors. The other field modifiers use the light-weight input
selectors. By using the lightweight field selectors, an area
equivalent to 37 mm2 can saved. This saving is equivalent
to the area of 214 TCAM blocks of 2K × 32 bits.
All the memories used for storing PIDs, instructions, and

search keys are industry-standard dual-ported memories. The
control plane can write to these memories while the device
is operating. It does so by communicating with the central-
ized controller using a protocol such as OpenFlow. The area
occupied by the memories comes not only from components
required for reading, writing, and storing data, but also from
built-in test components.

C. COMPARISON WITH OTHER MATCH-ACTION
ARCHITECTURES
In this section, we compare the area of our architecture with
that of RMT and dRMT. Table 8 compares the area of dif-
ferent components in each stage of the three architectures
under comparison. Since dRMT architecture is a processor,
the values correspond to one processor instance. For dRMT,
we have considered two variants each with a different value
for Inter-Packet Concurrency (IPC). It is assumed that all
these architectures have equal amount of memory to host both
ternary and exact match search keys as well as the data associ-
ated with them. The values for RMT and dRMT architectures
have been taken from [20] and converted into values that
would be obtained after synthesis using 28 nm technology.
We have, however, taken the value of match crossbars and

TABLE 8. Area per stage (mm2).

ALUs from [12]. According to [12], the total area of match
key crossbars in RMT architecture is 6 mm2, which means
that in each stage the area of match crossbars is 0.187 mm2.

From the values in the table we can see a noticeable
difference in the area of PHV when comparing the area of
PHV in our architecture with that of RMT or dRMT archi-
tecture variants. The key to understanding this difference is
understanding that a stage in RMT architecture is a logical
stage. In our architecture, on the other hand, all stages are
physical. Each of theMatch-Action units in RMT is internally
pipelined because there are quite many operations such as
search key generation, header field retrieval, match result
combination, memory access, etc. taking place in each logical
stage and since RMT operates at 1.0 GHz frequency, there is
no way that all these operations can take place in one cycle.
Therefore, the PHV must be propagated from one physical
stage to the next stage. The actual number of physical stages
in RMT can be estimated based on the match and action
latency values. As a result, the fact that our architecture
has 512 stages does not mean that the overall cost of PHV
instances in our architecture is more than that of RMT archi-
tecture. In fact, the total area of PHV instances in the two
architectures are on par with each other.

Table 8 has an entry called Match key configuration reg-
ister. In our architecture, we have a lookup instruction for
ternary matching and another instruction for exact matching.

In the decode stage of both these instructions the com-
ponents of the search key are selected in the decode stage.
Therefore, we do not have any register to hold match key
configuration. This indicates that our architecture is more
flexible in supporting diverse set of search keys.

One of the issues with the analysis in [20] is the way the
area of ALUs has been estimated. From [12], the authors
of [20] have used the 7.4% share of contribution of action
engines to overall area as the basis for calculating the area

98942 VOLUME 8, 2020



H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

of ALUs. In order to obtain the total area of RMT, they have
used the 200 mm2 value from [18]. This value represents a
lower bound on the area of a commercial 640 Gbps switch
chip. There is no evidence that this value represents the total
area of RMT. Besides that, the process technology associated
with this value has not been mentioned in [18]. Another issue
with the values calculated by [20] is that the ratio of the
area of ALUs in RMT and dRMT is inconsistent with the
number and width of ALUs used in the two architectures.
According to our experiments, the area of a 16-bit ALU is
half the area of the corresponding 32-bit ALU. Similarly,
the area of an 8-bit ALU is a quarter of the area of the 32-
bit ALU with same functionality. Instead of the estimation in
[20], we use the per-bit gate count provided in [12] because
it is based on results from implementation. According to
[12], each action engine requires less than 100 gates per bit.
Based on this assumption, the area of a 32-bit action engine is
around 1500 µm2. We assume that all action engines used in
the three architectures being compared are equal in internal
architecture.

As for action output selectors, each ALU in our architec-
ture writes to a fixed set of locations within the PHV. The
ALUs together cover the whole PHV. The area of action
output selectors in our architecture is almost zero in mm2

scale.
Based on the values of Table 8, Table 9 contains the area

for all stages of the two pipelined architectures and in the
case of dRMT architecture variants, the area for all proces-
sors. Furthermore, the area for table combination logic is
provided. In dRMT architecture, there is logic for both table
combination within a cluster and assignment of clusters to
processors. In our architecture, there is tiny logic for config-
uring the organization of pipeline. This area corresponds to
the multiplexers providing input to the PIPE16 instances and
the 2-to-1 priority-based multiplexers receiving the output of
certain PIPE16 instances.

According to Table 9, RMT architecture has 44 % more
area than our architecture. dRMT variants have 41 % and 79
%more area than our architecture despite lacking the features
of the architecture presented in this work. In order to be able
to interpret these numbers, we should compare them with the
latest area figures for commercial switch ASICs, which are
300-700 mm2 [20]. All the architectures under comparison
are within this range. However, our architecture is notably
ahead of others in area-efficiency. The savings in area can be
used for integrating more TCAMs and/or exact match tables
and thereby increasing the match capacity of the system.

VI. CONCLUSIONS
In this paper, we presented the architecture of a pro-
grammable packet parser and a flexible packet processing
pipeline. The parser supports 6.4 Tbps throughput without
relying on expensive TCAMs. As a result, its area is very
modest for its level of performance. The packet processing
pipeline allows fine-grained table assignment and unlimited
combination of tables at minimum possible cost. It also pro-

TABLE 9. Area for all processors plus interconnect (mm2).

vides more advanced features such as custom action depth,
alternative program control, and an addressing mode for
pointer-based read and write. All of this is achieved while
still being considerably more area efficient than the current
Match-Action architectures, namely the RMT and dRMT
architectures.

Chip area is a measure of complexity of the logic inside
a chip. For a given functionality and performance level,
a chip with lower area is more desirable. Digital ICs are
subject to various constraints. One such constraint is area.
The significance of low-area design is that the savings in area
could be used for providing more complex logic for enhanced
functionality. In packet processing architectures, this saving
can be exploited for more functional units. By doing so,
the functionality and/or supported throughput of the system
will be enhanced.

Performance comes not only from the hardware side, but
from the software side as well. One of the techniques used
in the packet processing examples presented in this paper
was software-based speculative execution. When a match is
in progress, the possible actions can be executed specula-
tively. When the match result is ready, the outcome of the
corresponding action is committed, and the other results are
discarded. By doing so, the overall latency of match and
action is reduced.

As for future work, we intend to work further on the
architecture for supporting higher throughputs and providing
further flexibility. The idea of breaking the pipeline into
PIPE16 instances with the aim of reducing latency when
deeper tables are required, can be expanded for having mul-
tiple independent pipelines, each of which processes packets
with the same packet processing requirements. This enhances
packet-level parallelism. Each packet is dispatched to the
corresponding pipeline depending on its needs. Different
pipelines deal with different packets. The architectural com-
ponents required are dispatch logic and independent deparser
at the end of each independent pipeline. We also plan to
develop a P4 compiler for this architecture.

REFERENCES
[1] N. Feamster, J. Rexford, and E. Zegura, ‘‘The road to SDN: An intellectual

history of programmable networks,’’ ACM SIGCOMM Comput. Commun.
Rev., vol. 44, no. 2, pp. 87–98, Apr. 2014.

[2] R. Bifulco and G. Rétvári, ‘‘A survey on the programmable data plane:
Abstractions, architectures, and open problems,’’ in Proc. IEEE 19th Int.
Conf. High Perform. Switching Routing (HPSR), Bucharest, Romania,
Jun. 2018, pp. 1–7.

VOLUME 8, 2020 98943



H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

[3] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, ‘‘A survey on software-
defined networking,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 1,
pp. 27–51, 1st Quart., 2015.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[5] H. Song, ‘‘Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane,’’ in Proc. 2nd ACM SIGCOMM
Workshop Hot Topics Softw. Defined Netw. (HotSDN), 2013, pp. 32–127.

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Chlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, ‘‘P4:
Programming protocol-independent packet processors,’’ SIGCOMMCom-
put. Commun. Rev., vol. 44, pp. 87–95, Jul. 2014.

[7] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras,
M. S. Berger, and L. Dittmann, ‘‘Cloud RAN for mobile networks—
A technology overview,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 1,
pp. 405–426, 1st Quart., 2015.

[8] L. M. P. Larsen, A. Checko, and H. L. Christiansen, ‘‘A survey of the func-
tional splits proposed for 5G mobile crosshaul networks,’’ IEEE Commun.
Surveys Tuts., vol. 21, no. 1, pp. 146–172, 1st Quart., 2019.

[9] eCPRI Interface Specification V1.2-Common Public Radio Interface, Eric-
sson AB, Huawei Technol., NEC Corp., CPRI, Nokia, Espoo, Finland,
Jun. 2018.

[10] IEEE Approved Draft Standard for Packet-Based Fronthaul Transport
Networks, IEEE Standard P1914.1/D5.3, Sep./Nov. 2019, pp. 1–92.

[11] IEEE Standard for Radio over Ethernet Encapsulations and
Mappings, IEEE Standard 1914.3-2018, Oct. 2018, pp. 1–77,
doi: 10.1109/IEEESTD.2018.8486937.

[12] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,
F. Mujica, and M. Horowitz, ‘‘Forwarding metamorphosis: Fast pro-
grammable match-action processing in hardware for SDN,’’ in Proc. ACM
SIGCOMM Conf., Hong Kong, Aug. 2013, pp. 99–110.

[13] Barefoot Networks. The World’s Fastest & Most Programmable
Networks. Accessed: Apr. 25, 2020. [Online]. Available: https://www.
barefootnetworks.com/resources/worlds-fastest-most-programmable-
networks/

[14] H. Khosravi and T. Anderson, Requirements for Separation of IP Control
and Forwarding, document RFC 3654, IETF, Nov. 2003.

[15] L. Yang, R. Dantu, T. Anderson, and R. Gopal, Forwarding and Control
Element Separation (ForCES) Framework, document RFC 3746, IETF,
Apr. 2004.

[16] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,
‘‘Ethane: Taking control of the enterprise,’’ in Proc. Conf. Appl., Tech-
nol., Archit., Protocols Comput. Commun. (SIGCOMM), Kyoto, Japan,
Aug. 2007, pp. 1–12.

[17] M. Shahbaz and N. Feamster, ‘‘The case for an intermediate representation
for programmable data planes,’’ in Proc. 1st ACM SIGCOMM Symp.
Softw. Defined Netw. Res. (SOSR), Santa Clara, CA, USA, Jun. 2015,
pp. 1–6.

[18] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown, ‘‘Design principles
for packet parsers,’’ in Proc. Archit. Netw. Commun. Syst., San Jose, CA,
USA, Oct. 2013, pp. 13–24.

[19] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh,
H. Balakrishnan, G. Varghese, N. McKeown, and S. Licking, ‘‘Packet
transactions: High-level programming for line-rate switches,’’ in Proc.
Conf. ACM SIGCOMM Conf. (SIGCOMM), Florianópolis, Brazil, 2016,
pp. 15–28.

[20] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda, and
T. Edsall, ‘‘DRMT: Disaggregated programmable switching,’’ in Proc.
Conf. ACMSpecial Interest GroupDataCommun., LosAngeles, CA,USA,
Aug. 2017, pp. 1–14.

[21] Barefoot Networks. World’s Fastest P4-Programmable Ethernet
Switch ASICs. Accessed: Apr. 25, 2020. [Online]. Available:
https://www.barefootnetworks.com/products/brief-tofino/

[22] Barefoot Networks. Second-Generation of World’s Fastest P4-
Programmable Ethernet Switch ASICs. Accessed: Apr. 25, 2020. [Online].
Available: https://www.barefootnetworks.com/products/brief-tofino-2/

[23] Broadcom. High-Capacity StrataXGS Trident 3 Ethernet
Switch Series. Accessed: Apr. 25, 2020. [Online]. Available:
https://www.broadcom.com/products/ethernet-connectivity/switching/
strataxgs/bcm56870-series

[24] Broadcom. 12.8 Tb/s StrataXGS Tomahawk 3 Ethernet Switch
Series. Accessed: Apr. 25, 2020. [Online]. Available: https://www.
broadcom.com/products/ethernet-connectivity/switching/strataxgs/
bcm56980-series

[25] Broadcom. 25.6 Tb/s StrataXGS Tomahawk 4 Ethernet Switch
Series. Accessed: Apr. 25, 2020. [Online]. Available: https://www.
broadcom.com/products/ethernet-connectivity/switching/strataxgs/
bcm56990-series

[26] Innovium. Teralynx: The World’s Most Scalable Switch Family-1.2 Tbps
Through 12.8 Tbps With Industry Leading Analytics, Lowest Latency
and Programmability. Accessed: Apr. 25, 2020. [Online]. Available:
https://www.innovium.com/teralynx/

[27] M. Attig and G. Brebner, ‘‘400 Gb/s programmable packet parsing on a
single FPGA,’’ inProc. ACM/IEEE 7th Symp. Archit. Netw. Commun. Syst.,
Brooklyn, NY, USA, Oct. 2011, pp. 12–23.

[28] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore, ‘‘NetF-
PGA SUME: Toward 100 Gbps as research commodity,’’ IEEE Micro,
vol. 34, no. 5, pp. 32–41, Sep. 2014.

[29] G. Brebner and W. Jiang, ‘‘High-speed packet processing using reconfig-
urable computing,’’ IEEE Micro, vol. 34, no. 1, pp. 8–18, Jan./Feb. 2014.

[30] P. Bosshart, ‘‘Programming forwarding planes at terabit/s speeds,’’ pre-
sented at the Hot Chips, Symp. High Perform. Chips, 2018. [Online].
Available: https://www.hotchips.org/archives/2010s/hc30/

[31] H. Zolfaghari, D. Rossi, and J. Nurmi, ‘‘A custom processor for protocol-
independent packet parsing,’’ Microprocessors Microsyst., vol. 72,
Feb. 2020, Art. no. 102910.

[32] Open Networking Foundation. (Mar. 26, 2015). OpenFlow Switch Speci-
fication Version 1.5.1. [Online]. Available: https://www.opennetworking.
org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf

[33] G. Gibb, ‘‘Reconfigurable hardware for software-defned networks,’’ Ph.D.
dissertation, Dept. Elect. Eng., Stanford Univ., Stanford, CA, USA, 2013.
[Online]. Available: https://stacks.stanford.edu/file/druid:ns046rz4288/
gibb-thesis-augmented.pdf

[34] CISCO. Nexus 9200 Compare Models. Accessed: Apr. 25, 2020. [Online].
Available: https://www.cisco.com/c/en/us/products/switches/nexus-9000-
series-switches/nexus-9200-models-comparison.html

[35] H. Zolfaghari, D. Rossi, and J. Nurmi, ‘‘Reducing crossbar costs in the
match-action pipeline,’’ in Proc. IEEE 20th Int. Conf. High Perform.
Switching Routing (HPSR), Xi’an, China, May 2019, pp. 1–6.

[36] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, Segment Routing Architecture, document RFC8402, IETF,
Jul. 2018.

HESAM ZOLFAGHARI (Graduate Student Mem-
ber, IEEE) is currently pursuing the Ph.D. degree
with Tampere University. His research interests are
design of programmable and protocol-independent
packet processors for software defined networking
with special focuses on low on-chip area, low-
power dissipation, and minimized packet process-
ing latency. This includes design of abstraction
layers starting from the instruction set all the way
down to the microarchitecture of both packet pars-

ing and packet processing subsystems within high-performance switches and
routers.

DAVIDE ROSSI (Member, IEEE) received the
Ph.D. degree from theUniversity of Bologna, Italy,
in 2012. He has been a Postdoctoral Researcher
with the Department of Electrical, Electronic and
Information Engineering ‘‘Guglielmo Marconi,’’
University of Bologna, since 2015, where he cur-
rently holds an assistant professor position. His
research interests focus on energy efficient digital
architectures in the domain of heterogeneous and
reconfigurable multi and many-core systems on

a chip. This includes architectures, design implementation strategies, and
runtime support to address performance, energy efficiency, and reliability
issues of both high end embedded platforms, and ultra-low-power computing
platforms targeting the Internet of Things (IoT) domain. In these fields he has
published more than 100 articles in international peer-reviewed conferences
and journals. He was a recipient of the Donald O. Pederson Best Paper
Award, in 2018.

98944 VOLUME 8, 2020

http://dx.doi.org/10.1109/IEEESTD.2018.8486937


H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

WALTER CERRONI (Senior Member, IEEE) is
currently an Assistant Professor of communication
networks with the University of Bologna, Italy.
His recent research interests include software-
defined networking, network function virtualiza-
tion, service function chaining in cloud computing
platforms, intent-based northbound interfaces for
multidomain/multitechnology virtualized infras-
tructure management, and modeling and design of
inter-data and intra-data center networks. He has

coauthored more than 120 articles published in well renowned international
journals, magazines, and conference proceedings. He serves/served as a
Series Editor for IEEE Communications Magazine, an Associate Editor for
the IEEE COMMUNICATIONS LETTERS, and a Technical Program Co-Chair of the
IEEE-sponsored international workshops and conferences.

HAYATE OKUHARA (Member, IEEE) received
the Ph.D. degree fromKeio University, Kanagawa,
Japan, in 2018. He is currently a Postdoc-
toral Researcher with the Department of Elec-
trical, Electronic and Information Engineering
‘‘Guglielmo Marconi,’’ University of Bologna,
Bologna, Italy. His research interest includes low-
power VLSI system design.

CARLA RAFFAELLI (Senior Member, IEEE)
received the M.Sc. and Ph.D. degrees in electronic
and computer engineering from the University of
Bologna, Italy, in 1985 and 1990, respectively. She
is currently an Associate Professor with the Uni-
versity of Bologna. She is the author or coauthor
of more than 150 conference papers and journal
articles mainly in the field of optical networking
and network performance evaluation. Her research
interests include performance analysis of telecom-

munication networks, switch architectures, optical networks, and 5G net-
works. She actively participated in many National and International research
projects, such as the EU funded ACTS-KEOPS, the IST-DAVID and the
e-photon/One and BONE networks of excellence. She has served as a Tech-
nical Program Committee Member in several Top International Conferences,
such as ICC and ONDM and the Technical Program Committee Co-Chair in
ONDM 2011. Since October 2013, she has been a member of the editorial
board of the journal Photonic Network Communications (Springer). She is
the Director of the International Telecommunications Engineering master’s
degree at the University of Bologna. She regularly acts as a Reviewer of top
international conferences and journals.

JARI NURMI (Senior Member, IEEE) has been
working as a Professor with the Electrical Engi-
neering Unit, Tampere University, TAU (formerly
Tampere University of Technology, TUT), Fin-
land, since 1999. He is currently working on
embedded computing systems, system-on-chip,
approximate computing, wireless localization,
positioning receiver prototyping, and software-
defined radio and -networks. He holds various
research, education, and management positions at

TUT, since 1987. He was the Vice President of the SME VLSI Solution Oy,
from 1995 to 1998. He has supervised 25 Ph.D. and over 140 M.Sc. theses.
He has edited five Springer books and has published over 350 international
conference papers and journal articles and book chapters. He is a member
of the Technical Committee on VLSI Systems and Applications at the IEEE
CASS. He is also an Associate Editor/Handling Editor of three international
journals.

VOLUME 8, 2020 98945


