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Article
All-Optical Electrophysiology Refines Populations
of In Silico Human iPSC-CMs for Drug Evaluation
Michelangelo Paci,1,* Elisa Passini,2 Aleksandra Klimas,3 Stefano Severi,4 Jari Hyttinen,1 Blanca Rodriguez,2

and Emilia Entcheva5
1BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; 2Department of Computer Science,
University of Oxford, Oxford, United Kingdom; 3Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania;
4Department of Electrical, Electronic and Information Engineering ‘‘Guglielmo Marconi,’’ University of Bologna, Cesena, Italy; and 5Department
of Biomedical Engineering, George Washington University, Washington, D.C.
ABSTRACT High-throughput in vitro drug assays have been impacted by recent advances in human induced pluripotent stem
cell-derived cardiomyocyte (hiPSC-CM) technology and by contact-free all-optical systems simultaneously measuring action po-
tentials (APs) and Ca2þ transients (CaTrs). Parallel computational advances have shown that in silico simulations can predict
drug effects with high accuracy. We combine these in vitro and in silico technologies and demonstrate the utility of high-
throughput experimental data to refine in silico hiPSC-CM populations and to predict and explain drug action mechanisms. Opti-
cally obtained hiPSC-CM APs and CaTrs were used from spontaneous activity and under optical pacing in control and drug con-
ditions at multiple doses. An updated version of the Paci2018 model was developed to refine the description of hiPSC-CM
spontaneous electrical activity; a population of in silico hiPSC-CMs was constructed and calibrated using simultaneously re-
corded APs and CaTrs. We tested in silico five drugs (astemizole, dofetilide, ibutilide, bepridil, and diltiazem) and compared
the outcomes to in vitro optical recordings. Our simulations showed that physiologically accurate population of models can
be obtained by integrating AP and CaTr control records. Thus, constructed population of models correctly predicted the drug
effects and occurrence of adverse episodes, even though the population was optimized only based on control data and
in vitro drug testing data were not deployed during its calibration. Furthermore, the in silico investigation yielded mechanistic
insights; e.g., through simulations, bepridil’s more proarrhythmic action in adult cardiomyocytes compared to hiPSC-CMs could
be traced to the different expression of ion currents in the two. Therefore, our work 1) supports the utility of all-optical electro-
physiology in providing high-content data to refine experimentally calibrated populations of in silico hiPSC-CMs, 2) offers insights
into certain limitations when translating results obtained in hiPSC-CMs to humans, and 3) shows the strength of combining high-
throughput in vitro and population in silico approaches.
SIGNIFICANCE We demonstrate the integration of human in silico drug trials and optically recorded simultaneous action
potential and calcium transient data from syncytia of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-
CMs) for prediction and mechanistic investigations of drug action. We propose a population of in silico models 1) based on
a new hiPSC-CM model recapitulating the mechanisms underlying hiPSC-CM automaticity and 2) calibrated with all-
optical measurements. We used our in silico population to predict and evaluate the effects of five drugs and the underlying
biophysical mechanisms, obtaining results in agreement with our experiments and one independent data set. This work
supports the combined use of high-content, high-quality all-optical electrophysiology data and in silico hiPSC-CM
simulations to conduct, augment, and interpret drug trials.
INTRODUCTION

Both new in silico methods and the use of human induced
pluripotent stem cell-derived cardiomyocytes (hiPSC-
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CMs) have become increasingly important in tackling the
challenge of assessment and prediction of drug effects and
their potential cardiotoxicity, as supported by the Compre-
hensive In Vitro Proarrhythmia Assay (CiPA) initiative
(1–3). Many in silico studies on this topic have been pub-
lished in recent years, showcasing a variety of methodolo-
gies, including electrophysiological models of cardiac
cells, machine learning algorithms, and a combination of
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Optically Calibrated hiPSC-CM Population
both (4–9). The potential of hiPSC-CMs for drug-induced
proarrhythmia predictions in vitro has been shown in exper-
imental studies (10,11) despite certain outstanding limita-
tions. Concerns lie with their high interlab and interbatch
variability and level of maturity compared to adult cardio-
myocytes (12), e.g., spontaneous beating, cell morphology,
disorganization of their contractile elements (13), and
different ion channel expression (14). Nevertheless,
hiPSC-CMs represent the best experimental platform to
date to study human cardiac electrophysiology and drug ac-
tion in a rigorous, scalable and high-throughput way. In sil-
ico models of hiPSC-CMs have emerged (15–18) as an
invaluable tool to better understand the distinct ionic mech-
anisms underlying hiPSC-CM drug response (19,20). The
robustness of in silico models depends on the amount and
the quality of the experimental data used in their calibration
and validation. Traditionally, such data have been acquired
from a limited number of isolated cells (outside of their
multicellular environment) through time-demanding and
tedious manual patch-clamp techniques.

Limited experimental data present the challenge of not
being able to capture the genotypical and phenotypical vari-
ability observed in a cell population, which is especially
relevant for the highly variable hiPSC-CMs. These chal-
lenges have been partially addressed through modeling
and data curation. In silico population of models approaches
have been developed to reflect the wider range of parameters
beyond the limited experimental data (21,22). Database
merging has also been used in the desire to expand the
experimental data needed to tune the model parameters;
e.g., in (20,23), we merged six in vitro data sets of action po-
tential (AP) biomarkers to generate a population of in silico
hiPSC-CMs. Using data from different laboratories widens
the data variability considerably.

On the technology side, the problem of limited in vitro
data has been tackled by new experimental techniques
with increased throughput and that are amenable to automa-
tion, e.g., automated patch-clamp platforms (24,25) or
microelectrode arrays (14). However, these techniques still
suffer the limitations of probe-sample physical contact,
which limits their performance with hiPSC-CMs (26). Con-
tact-free optical recordings overcome these limitations and
offer comprehensive characterization. Calcium and contrac-
tion-measurement systems have been leveraged for cardio-
toxicity testing (27). Ahola et al. (28,29) developed a
video-based contact-free method to quantify the biome-
chanics of beating hiPSC-CMs by processing simultaneous
recording of motion and Ca2þ transients (CaTrs) from fluo-
rescence videos. However, AP signals represent key aspects
of cardiotoxicity responses that may not be captured by field
potentials, CaTrs, or mechanical contractions. All-optical
electrophysiology (30,31) approaches offer contactless
interrogation and high-throughput records of voltage and
calcium in a multicellular context in an attempt to increase
information content. Application of these techniques to drug
screening with hiPSC-CMs has been successfully demon-
strated (32), including our OptoDyCE approach (26,33),
which combines optical pacing and simultaneous optical re-
cords of voltage and calcium or contractions. To date, such
high-throughput all-optical electrophysiological data (APs
and CaTrs) from syncytial samples have not been deployed
in building population of hiPSC-CMs models. Previous
work has performed model calibration using AP biomarkers
for limited samples (34) and least-square minimization (35),
multiobjective genetic algorithms (36,37), and regression
analysis (38).

The main goal of this work was to demonstrate the utility
of in silico simulation trials informed by high-throughput
all-optical cardiac electrophysiology, namely by optically
obtained AP and CaTr records from hiPSC-CM syncytia un-
der spontaneous and optically triggered conditions, for the
prediction and mechanistic understanding of drug action.
A self-contained experimental data set is used here to guide
and improve the design and calibration of a population of
in silico hiPSC-CMs. We then test the performance of
in silico simulation trials with the populations of models
against in vitro drug trials for five reference compounds,
both in terms of their consistency and to deepen the mech-
anistic insights unraveled. In detail, 1) we present an
improved version of the Paci2018 hiPSC-CM model (16),
providing improved simulation of the Naþ/Ca2þ exchanger
(INCX) role in sustaining the automaticity of AP. 2) We use
high-throughput optical measurements of APs and CaTrs
alone and both to calibrate an in silico population of
hiPSC-CMs models. 3) We challenge this population by
applying five reference compounds at multiple concentra-
tions and compare the results against in vitro data not
used for the calibration step. 4) We investigate the mecha-
nisms underlying the different response to bepridil in
hiPSC-CMs (both in vitro and in silico) compared to adult
cardiomyocytes.
MATERIALS AND METHODS

Experimental data set

The experimental data set consists of AP and CaTr recordings from hiPSC-

CM syncytia (CDI iCell2 cardiomyocytes) obtained with the all-optical

OptoDyCE system (26,33) in a 384-well plate format at room temperature

(21�C) and with extracellular concentrations Nao ¼ 135.0, Ko ¼ 5.4, and

Cao ¼ 1.33 mM, in both paced (0.5 Hz) and nonpaced conditions. Record-

ings were performed in control conditions (0.1% dimethyl sulfoxide) and

after application of five reference compounds: astemizole (antihistamine),

dofetilide (antiarrhythmic agent, class III), ibutilide (antiarrhythmic agent,

class III), bepridil (antiarrhythmic agent, class IV), and diltiazem (antiar-

rhythmic agent, class IV). Overall, the experimental data used here con-

sisted of 170 independent multicellular samples (wells), at least 200 cells

each, within a high-throughput 384-well plate format. These were part of

a larger experimental data set reported in an abstract form (39).

Control recordings were performed on 10 plates (50 samples total). The

following voltage and calcium-derived biomarkers were considered: AP

and CaTr cycle length (AP CL and CaTr CL); duration at 30, 50, and

90% of AP repolarization (APD30, APD50, and APD90) and of CaTr decay
Biophysical Journal 118, 2596–2611, May 19, 2020 2597



Paci et al.
(CTD30, CTD50, and CTD90); AP and CaTr triangulation (AP Tri90�30 ¼
APD90 � APD30 and CaTr Tri90�30 ¼ CTD90 � CTD30); and CaTr time

from CaTr onset to peak (CaTr tRise0,peak). Each measurement was charac-

terized by its mean value (mean) and its standard deviation (SD) over a var-

iable number of beats for each multicellular sample. Some acquisitions

failed and were discarded from the data set, leading to a total of 42

control nonpaced and 49 control paced multicellular samples (wells).

Minimal and maximal experimental ranges for each biomarker were

computed by defining lower and upper bounds (LB ¼ min(mean � 2 �
SD) and UB¼max(mean� 2� SD), respectively) for nonpaced and paced

measurements, as reported in Table 1.

Reference compounds were tested in five plates (one for each drug),

considering four increasing doses (D1, D2, D3, and D4) and six wells per

dose per drug (120 samples). After discarding failed recordings, we used

the same methods as in the control to compute the experimental biomarker

ranges.
Updated version of the Paci2018 hiPSC-CMmodel

A limitation of the Paci2018 hiPSC-CM model (16) was noted, namely

failure to reproduce the cessation of the spontaneous electrical activity af-

ter a strong block of the INCX, as shown by recent in vitro and in silico

experiments (17,40). A very large window current in Paci2018 for the

fast Naþ current (INa) was identified as the key to sustaining the automa-

ticity upon the INCX block. We improved the Paci2018 model to reproduce

this specific mechanism while preserving all its good features. We kept the

same structure of the Paci2018: the model includes two compartments,

namely cytosol and sarcoplasmic reticulum (SR), and it follows the clas-

sical Hodgkin & Huxley formulation, which describes the membrane po-

tential as

CdV=dt ¼ � �
INa þ INaL þ If þ ICaL þ Ito þ IKr þ IKs þ IK1

þ INCX þ INaK þ IpCa þ IbNa þ IbCa � Istim
�
;

where C is the membrane capacitance, V the membrane voltage, and Istim
the stimulus current. The ion current and pumps in the model are INa, the

late Naþ current (INaL), the funny current (If), the L-type Ca2þ current

(ICaL), the transient outward Kþ current (Ito), the rapid and slow delayed

rectifier Kþ currents (IKr and IKs), the inward rectifier Kþ current (IK1),

the Naþ/Ca2þ exchanger (INCX), the Na
þ/Kþ pump (INaK), the sarcolemmal

Ca2þ pump (IpCa), and the Naþ and Ca2þ background currents (IbNa and

IbCa). The SR compartment exchanges Ca2þ with cytosol through three

fluxes: RyR-sensitive release current (Irel), the Sarco-Endoplasmic Reticu-

lum Calcium ATPase (SERCA) pump (Iup), and the leakage current (Ileak).
TABLE 1 Experimental Ranges of the In Vitro Optical Recordings

Control Nonpaced

Lower Bound (LBNP) Upper Boun

AP CL (ms) 1310.2 12,79

APD90 (ms) 485.1 1393

APD50 (ms) 310.6 1059

APD30 (ms) 240.6 910.

AP Tri90�30 (ms) 132.0 741.

CaTr CL (ms) 1310.1 12,80

CTD90 (ms) 754.9 2897

CTD50 (ms) 463.8 1376

CTD30 (ms) 353.4 1065

CaTr tRise0,peak (ms) 112.9 622.

CaTr Tri90�30 (ms) 104.8 1872

LBNP, lower bound, nonpaced; LBP, lower bound, paced; N/A, not applicable; U

biomarker descriptions.
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To develop the Paci2020 model (details in the Supporting Materials and

Methods),

� we updated the formulations for INa and If with the ones proposed in (17);

� we optimized the model parameters to fit the same data set of in vitro AP

and CaTr biomarkers used for (16), which have been recorded at 37�C;
� we validated the model against the same experimental protocols used for

(16).

As a result, we obtained an improved version of our hiPSC-CM model

(Paci2020), in which the spontaneous electrical activity is triggered both

by If and Ca
2þ release from SR, which in turn depolarize the membrane po-

tential via INCX. Details on the optimization procedure are reported in the

Supporting Materials and Methods, together with the model parameter

values and equations.

We then matched the experimental conditions (solution concentrations

and temperature) used for the in vitro optical recordings. In the new

Paci2020 model, temperature difference was managed by setting the correct

temperature in the model parameter affecting the Nernst potentials and ion

currents such as INCX or INaK, rescaling the time constants of the other main

ionic currents by means of the Q10 factors reported in (41–44) and summa-

rized in Table S1.
hiPSC-CM in silico population calibrated with
optical AP and CaTr recordings

The new Paci2020 model, adapted to the temperature and extracellular

concentrations of the optical recordings, was used as the baseline to

construct a population of in silico hiPSC-CMs based on the population

of models methodology (20,21,45). We sampled a total of 22 parameters

in the [50–200]% range compared with their original values. Parameters

were chosen similarly as in (46) to include all the main ionic conduc-

tances, as well as key kinetics parameters known to impact both AP

and CaTr biomarkers: 1) the maximal conductances of INa, INaL, If,

ICaL, Ito, IKs, IKr, IK1, INCX, INaK, IpCa, Irel, and Iup; 2) the activation

and inactivation time constants of INa, ICaL, and Irel; 3) the adaptation

time constant and half-inactivation Ca2þ concentration of Irel; and 4)

the Iup half-saturation constant. An initial population of 30,000

hiPSC-CMs was generated and then calibrated based on the optical re-

cordings; i.e., only the models whose biomarkers were in agreement

with the in vitro data were maintained. Biomarkers were computed in

the steady state (after 800 s) as the average of the last 20 beats. The

lack of absolute amplitude values for APs in the optically recorded

data was handled by an additional biomarker to constrain the

amplitude of the nonpaced APs (AP peak between 17.0 and

57.7 mV), as in (20).
Control Paced

d (UBNP) Lower Bound (LBP) Upper Bound (UBP)

8.5 N/A N/A

.8 514.3 1397.6

.6 332.5 932.4

3 261.6 786.3

0 251.9 839.9

5.3 N/A N/A

.5 863.2 1803.0

.4 510.5 1167.8

.2 382.7 983.7

3 96.5 473.8

.5 438.6 1140.6

BNP, upper bound, nonpaced; UBP, upper bound, paced. See main text for



TABLE 2 AP and CaTr biomarkers Simulated by the Paci2020

hiPSC-CM Model at 37�C

Biomarker (Reference)

Experimental

Value (Mean 5 SD)

Simulated

Value

APA (mV) (50) 104 5 6 102

MDP (mV) (50) �75.6 5 6.6 �74.9

AP CL (ms) (50) 1700 5 548 1712

Optically Calibrated hiPSC-CM Population
Three different calibration options were performed considering both

optically paced (0.5 Hz) and nonpaced biomarkers, thus generating three

different experimentally calibrated populations: 1) all AP and CaTr bio-

markers (AP_CaTr population), 2) AP biomarkers only (AP_only popula-

tion), and 3) CaTr biomarkers only (CaTr_only population). The three

populations were compared to investigate how the choice of AP and

CaTr biomarkers affected the calibration process and the coverage of the

biomarker space compared to experimental ranges.

dV/dtmax (V/s) (50) 27.8 5 26.3 20.5

APD10 (ms) (50) 74.1 5 26.3 87.0

APD30 (ms) (50) 180 5 59 224

APD90 (ms) (50) 415 5 119 390

AP Tri (�) (50) 2.5 5 1.1 2.8

CaTr DURATION (ms) (16) 805 5 188 691

CaTr tRise10, 50 (ms) (16) 82.9 5 50.5 54.9

CaTr tRise10, 90 (ms) (16) 167 5 70 118

CaTr tRise10, peak (ms) (16) 270 5 108 184

CaTr tDecay90, 10 (ms) (16) 410 5 100 341

CaTr CL (ms) (16) 1654 5 630 1712

AP and CaTr biomarkers are from (16). Both AP and CaTr biomarkers were

recorded at 37�C. AP biomarkers (patch-clamp): APA, AP amplitude;

MDP, maximal diastolic potential; CL, cycle length; dV/dtmax, maximal up-

stroke velocity; APD10, APD30, APD90, AP duration at 10, 30, and 90% of

repolarization; AP triangulation (AP Tri) computed as the ratio between

APD30–APD40 and APD70–APD80; CaTr DURATION, CaTr rise time

from 10 to 50% (CaTr tRise10, 50), 90% (CaTr tRise10, 90), and to CaTr

peak (CaTr tRise10, peak), decay time from 90 to 10% (CaTr tDecay90, 10),

and CaTr rate (CaTr CL).
In silico drug trials

In silico drug trials were performed for five compounds (astemizole, dofe-

tilide, ibutilide, bepridil and diltiazem) considering the four concentrations

for each tested in vitro. Drug simulations were run for 400 s from steady-

state conditions. Models were not paced to also investigate drug-induced ef-

fects on the spontaneous beating frequency. We used a simple pore-block

drug model as in (4,20,45), consisting of IC50 and Hill’s coefficients from

literature and reported in Table S2. The experimental concentrations for

each drug are reported in Table S3, together with the corresponding percent-

age of residual currents after drug application and the maximal effective

free therapeutic concentration (EFTPCmax) for comparison.

Because of the discrepancy between hiPSC and adult CMs observed for

bepridil ((47) vs. (4,48)), we ran additional tests only for bepridil 10 mM,

reducing its ICaL blocking action to half (64% residual ICaL instead of

32%) and to zero (100% residual ICaL) while preserving its blocking action

on the other ion channels. This test was done on four models selected from

among the ones that showed a proarrhythmic behavior when administered

astemizole.

We assessed the drug-induced changes on AP and CaTr biomarkers, as

well as the occurrence of abnormalities. Single and multiple early afterde-

polarizations (EADs) were defined as extrapeaks greater than �55 mV in

between two consecutive AP upstrokes. Repolarization failure was identi-

fied when a stable (dV/dtmax < 0.1 V/s) membrane potential greater than

�40 mV was observed during the last 15 s of simulation. Irregular rhythm

was identified when the difference in cycle length between two consecutive

AP was greater than 150%.

We looked also for two additional phenotypes that we did not consider as

abnormalities: quiescence (47) and residual activity (49), mainly occurring

during diltiazem administration (see Results). If a model reacted to the drug

by producing APs whose peaks were greater than�40 mV but smaller than

0 mV, we labeled the model as residual activity. Conversely, we considered

the model quiescent, i.e., not producing spontaneous APs, if during the last

15 s, the average membrane potential was smaller than �40 mVor a poten-

tial residual activity had all the peaks smaller than �40 mV.
RESULTS

The new Paci2020 hiPSC-CMs model

The automated optimization process successfully identified
a new Paci2020 model in agreement with the in vitro AP and
CaTr biomarkers used in (16), as shown in Table 2. Fig. S1
shows a detailed comparison between the new model (in
black) and the Paci2018 model (in red) (16). Parameter
values are reported in the Supporting Materials and
Methods.

The main difference between the two models is the shape
of the INCX current. Before the upstroke, the new INCX pro-
vides an additional inward contribution (�0.5 A/F) that is
added to If (�0.25 A/F), supporting the membrane depolar-
ization and allowing the opening of the INa channels. Fig. 1
illustrates the contribution of INCX to the hiPSC-CM auto-
maticity, as reported in (17,40): blocking INCX reduces its
inward component, slowing down the rate of spontaneous
APs, up to suppression. In particular, an issue in the
Paci2018 model was that AP suppression did not happen,
in disagreement with in vitro data by Kim et al. (40) in
response to 2 mM SEA0400, an inhibitor of the forward
INCX in a cluster of hiPSC-CMs. The large INa window cur-
rent was identified as a key factor in supporting the automa-
ticity, thus making the Paci2018 model unable to capture the
aforementioned mechanism.

The new Paci2020 model can simulate spontaneous Ca2þ

release from the SR both with standard extracellular Ca2þ

concentration (Cao ¼ 1.8 mM; Fig. S2) and Ca2þ overload
(simulated by increasing the extracellular Ca2þ concentra-
tion to Cao ¼ 2.8, 2.9, and 3.0 mM; Fig. S3). Moreover, it
reproduces well the in vitro data by Ma et al. (50) with
ion channel blockers (Fig. S4), If block and hyperkalemia
experiments like (40) (see Supporting Materials and
Methods), and alternans in ischemia-like conditions as in
Fig. S5 and (16). Finally, the CaTr amplitude of 160 nM
is in agreement with data by Rast et al. (51), recorded ratio-
metrically from hiPSC-CM ensembles incubated at 37�C
and not used for model calibration.

After matching the extracellular ion concentrations and
temperature used in the experiments, the Paci2020 model’s
AP and CaTr biomarkers moved closer to the optical record-
ings reported in Table 1, e.g., spontaneous CL increased and
APD90 prolonged. Fig. 2 shows a comparison of the
Paci2020 model (green traces) versus the same model
adapted for extracellular concentrations and temperature
Biophysical Journal 118, 2596–2611, May 19, 2020 2599



FIGURE 1 Effects of different levels of INCX block on the spontaneous

AP simulated using the Paci2020 model in the control (blue line), with

50% INCX block (red line), and suppressed when considering high INCX
block (yellow line). (A) shows the membrane potential. (B) shows INCX.

To see this figure in color, go online.

Paci et al.
(blue traces). Fig. S6 shows the model-generated restitution
curve obtained in these experimental conditions.

Of note, Paci2020 is a model of a ventricular-like hiPSC-
CM; the prior single-cell-derived biomarkers (50) used here
were also based on ventricular-like cells. The choice to
consider only ventricular-like hiPSC-CM models in this
study was motivated by our in vitro observations from dense
syncytia of commercially available (iCell2) cells, where
atrial-like or sinoatrial node-like APs are very rarely seen.
The spontaneous rates of these syncytial structures
(at room temperature) are very low (�0.2 Hz) again
consistent with ventricular-like behavior. Therefore, the
modeling assumed a ventricular phenotype.
Single data set calibration versus combined data
set calibration

The Paci2020 model, adapted for the extracellular concen-
trations and room temperature used in the in vitro experi-
ments, was deployed to generate an initial population of
2600 Biophysical Journal 118, 2596–2611, May 19, 2020
30,000 models. As described in Materials and Methods,
three different calibrations were performed (using AP
only, CaTr only, or both AP and CaTr biomarkers), leading
to three calibrated populations: AP_only, CaTr_only, and
AP_CaTr, respectively.

A comparison of the AP and CaTr biomarkers for the
three populations is shown in Fig. 3. The AP_only popula-
tion (green boxplots) consists of 969 models. As expected,
it shows good agreement with the experimental AP bio-
markers in addition to a good coverage of the experimental
ranges, both nonpaced and paced (Fig. 3, A and B). How-
ever, many models have CaTr biomarkers outside the exper-
imental ranges; e.g., CTD90, CTD50, and CTD30 are often
too short (Fig. 3, C and D). The CaTr_only population
(black boxplots) consists of 5030 models in good agreement
with CaTr biomarkers, both nonpaced and paced (Fig. 3, C
and D). However, many models yield AP durations and
triangulation outside the experimental ranges (Fig. 3, A
and B). As expected, the AP_CaTr population, obtained
by calibrating with both AP and CaTr biomarkers (blue box-
plots), appears to be the best constrained, with 477 models
showing good agreement and coverage of the biomarker
space.

Fig. 4 shows the distributions of the seven parameters
with differential responses in the three experimentally cali-
brated populations (jDmedianj > 10% between AP_only or
CaTr_only and AP_CaTr). Distributions of all parameters
varied in the population are shown in Fig. S7. Adding AP
biomarkers for calibration (AP_only and AP_CaTr popula-
tions versus CaTr_only) helps adjust five key parameters in
important ways (lowers their median values): GNa and INa
inactivation time constants, GK1 and INCX maximal current,
and the ICaL inactivation time constant (Fig. 4). The smaller
GNa is due to the upper limit on the AP peak. This also im-
poses a smaller INa inactivation time constant (faster inacti-
vation), further contributing to reduced AP peak amplitude.
A lower GK1 results in a slightly depolarized MDP, conse-
quently reducing INa availability and again limiting the AP
peak. A reduced INCX maximal current prevents an exces-
sively fast early repolarization phase, e.g., short APD30.
Finally, a smaller ICaL inactivation time constant speeds
up ICaL inactivation, thus limiting excessively long APs.

Considering CaTr biomarkers for calibration (CaTr_only
and AP_CaTr versus AP_only) increases the median values
for two calcium-release parameters: the Irel inactivation time
constant and the Iup half-saturation value (Fig. 4). The first
causes a slower inactivation of Irel and consequently a longer
CaTr (Fig. 3, C and D). The latter, which appears in the de-
nominator of the Iup formulation (16), causes a reduction of
Ca2þ uptake, thus also contributing to a longer CaTr.

Overall, these results reveal important information
contributed by the AP or CaTr biomarkers in the calibration
process to better capture the experimental recordings. For
the rest of this study, including the in silico drug trials,
only the AP_CaTr population of 477 hiPSC-CM models



FIGURE 2 Simulated spontaneous APs and

CaTrs for the Paci2020 model at 37�C (green) versus

the same model adapted to 21�C (blue) and extracel-

lular concentrations as in the in vitro optical record-

ings (right column, spontaneous illustrative in vitro

trace). To see this figure in color, go online.
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was considered. The AP and CaTr traces for this population
are shown in Fig. 5.
In silico drug trials

Using the population of 477 hiPSC-CM models shown in
Fig. 5, calibrated with both experimental AP and CaTr bio-
markers, we ran in silico drug trials for five reference com-
pounds (astemizole, dofetilide, ibutilide, bepridil, diltiazem)
at four increasing concentrations (D1–D4) each. Simulation
results were validated against the corresponding in vitro ex-
periments, which were not used during the calibration pro-
cess. For each drug trial, we checked how the drug
affected the AP and CaTr biomarkers compared to the con-
trol (D0) and assessed the presence of drug-induced abnor-
malities. Fig. 6 summarizes the drug effects on four AP
and CaTr biomarkers (AP CL, APD90, CTD90, and CaTr
Tri90�30). Shown are 1) in silico biomarker boxplots for
the models that after drug administration still produce spon-
taneous APs and CaTrs at room temperature and at the ion
concentrations tested in vitro and 2) in vitro optically re-
corded biomarkers (green diamonds) and their variability
ranges (green bars). Results for all biomarkers are shown
in Figs. S8–S12.

Our in silico population, calibrated with optically re-
corded biomarkers in control conditions only, successfully
reproduces the drug-induced changes in the AP and CaTr
biomarkers. The four drugs (astemizole, dofetilide, ibuti-
lide, and bepridil), which cause a strong IKr block, induced
AP and CaTr prolongation. In particular, simulated APDs,
CaTr tRise0,peak, and AP and CaTr Tri90�30 are well within
the experimental ranges. Conversely, simulated AP and
CaTr CL and CTDs tend to underestimate the increase
observed in vitro. For diltiazem, an ICaL blocker, simulations
reproduced a dose-dependent APD90 shortening. However,
the CTD90 prolongation observed in vitro for intermediate
doses (D2 and D3) was not captured in silico. Table 3 re-
ports the occurrences of drug-induced repolarization abnor-
malities and quiescent phenotypes in both simulations and
experiments.

The in vitro data set showed overall fewer abnormalities in
hiPSC-CMs in response to drugs than the simulations. A
likely reason for this could be that in silico results assume sin-
gle-cell behavior with a wide range of ionic profiles, whereas
syncytial structures were used in vitro, in which good cell-
cell coupling usually has damping effects on proarrhythmic
behavior. This could be tested with tissue or monolayer
models, but two-dimensional simulations are outside of the
scope of this work and represent a whole topic worth investi-
gating in the future. For the drugs inducing AP prolongation
(astemizole, dofetilide, ibutilide, and bepridil), the abnor-
malities recorded in vitro were single or multiple EADs, cor-
responding to the types A, B, and C reported in (14). We also
observed three cases of tachyarrhythmia (rate of spontaneous
oscillations greater than 2Hz), two for dofetilide (D3 andD4,
after EADs) and one for ibutilide (D4). Finally, nine cases of
irregular rhythm were observed: four for dofetilide (D1, D2,
and D3), four for ibutilide (D1 and D2), and one for bepridil
(D1). Example in silico traces for drug-induced phenotypes
are shown in Fig. 7, along with those from in vitro experi-
ments: single and multiple EADs (Fig. 7, A–D), single
EADs (Fig. 7, E and F), repolarization failures (Fig. 7, G
and H), and irregular rhythms (Fig. 7, I–N). Expanded and
additional traces are reported in Fig. S13.

Simulations of ibutilide and dofetilide closely agree
with the experiments. A dose-dependent increase in
Biophysical Journal 118, 2596–2611, May 19, 2020 2601



FIGURE 3 AP (A and B) and CaTr (C andD) biomarker distributions in the three populations of hiPSC-CMmodels, calibrated with in vitro AP biomarkers

only (green), CaTr biomarkers only (black), or both (blue). In each box, the central mark is the median of the population, box limits are the 25th and 75th

percentiles, and whiskers extend to the most extreme data points not considered outliers. Red crosses represent outliers. The dashed magenta lines represent

the lower and upper bounds of the experimental recordings, as reported in Table 1. To see this figure in color, go online.
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abnormalities was seen, typical of drugs classified as known
risk of TdP in CredibleMeds in patients (48) and as interme-
diate risk in hiPSC-CMs in (47). For dofetilide, at D4 all six
in vitro recordings showed EADs, whereas in silico the ab-
normalities were milder. Therefore, we tested in silico three
additional doses higher than D4, as in (4), that triggered a
considerable number of EADs (up to 59 EADs/repolariza-
tion failures at D7).

For astemizole, a known risk of TdP drug in Credible-
Meds (48), in silico results reveal multiple abnormalities
at D3 and D4, whereas the in vitro data show a dose-depen-
dent increase in proarrhythmic markers but no arrhythmia
events per se at the tested doses. We show that in silico pop-
ulation of models investigations can complement in vitro ex-
periments by covering a wider range of ionic profiles and
therefore revealing a wider range of responses.

Bepridil’s main effect on hiPSC-CMs is the suppression
of spontaneous activity in a high percentage of the popula-
tion (107/477 and 444/477 models at D3 and D4, res-
pectively). This is consistent with our in vitro experiments
2602 Biophysical Journal 118, 2596–2611, May 19, 2020
(6/6 observations at D4 did not produce APs) and with other
reports (47). Conversely, only a few abnormalities were
observed in hiPSC-CMs, in contrast to its toxicity in adult
cells in vitro and in silico (4,48). This may be due to the
different expression of ion currents in adult and hiPSC-
CMs, especially ICaL (14). Therefore, for bepridil, we also
tested the effect of modulating its ICaL blocking power while
not changing the drug’s effect on INa, IKr, and INaL. Fig. 8
shows four different models that developed abnormalities
with astemizole D4, but not with bepridil D4 (black traces).
However, reducing bepridil’s ICaL blocking power by half
was already enough to trigger EADs. The same behavior
was observed by fully inhibiting bepridil’s ICaL blocking
effect.

A lower number of abnormalities were seen for diltiazem
in silico (Fig. S14 C), with no tachyarrythmic events, as seen
in our in vitro experiments at D4. In fact, most of our models
(Table 3) stopped their spontaneous APs, in agreement with
what was observed in (47). However, 20 models at D4
showed a strong decrease in AP amplitude (in a few cases,



FIGURE 4 Parameter distributions for the three populations: AP_only

(green), CaTr_only (black), and AP_CaTr (blue). Red crosses represent out-

liers. Boxplot description as in Fig. 3. Only parameters with jDmedianj >
10% between AP_only or CaTr_only and AP_CaTr are shown here; distri-

butions of all 22 parameters are reported in Fig. S7. To see this figure in co-

lor, go online.

FIGURE 5 AP (A) and CaTr (B) traces included in the final population of

477 in silico hiPSC-CMs, calibrated with both AP and CaTr biomarkers. To

see this figure in color, go online.
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peaks were recorded below 0 mV) and slight increase of fre-
quency (Fig. S14, A and B). These low-amplitude oscilla-
tions (or residual activity) of the membrane potential were
observed in Zeng et al. (49). They demonstrated that such
residual electrical activity is due to a residual availability
of INa not fully blocked by drugs specifically designed to
mainly block L-type Ca2þ channels. Such abnormal reacti-
vation of INa may have triggered re-entrant (tachycardic)
responses in our multicellular experiments. In silico results
provide further insights that this spontaneous electrical
activity may be due to a combination of residual INa (partly
blocked by diltiazem but still able to trigger an AP), strong
If, and weak IK1 (Table S4, column RESAC).

Simulation studies were used to better understand bio-
physical mechanisms underlying the drug-induced pheno-
types. We observed that astemizole, dofetilide, and
ibutilide mainly induced repolarization abnormalities,
whereas bepridil and diltiazem mainly stopped the sponta-
neous activity. Table S4 summarizes the ionic parameter dif-
ferences, the amount of repolarization abnormalities, and
the residual activity at the maximal dose tested in silico
(D4, except D7 for dofetilide). For cessation of the sponta-
neous activity, D3 had more balanced groups for bepridil
and diltiazem. We focused our analysis only on those groups
containing at least 20 models showing nonsinus rhythm. The
models developing EADs and repolarization failures in
response to astemizole, dofetilide, and ibutilide show
weak IKs and IK1 compared to the models not developing
Biophysical Journal 118, 2596–2611, May 19, 2020 2603



FIGURE 6 Summary of the drug-induced changes on four nonpaced AP and CaTr biomarkers in the in silico population of hiPSC-CMs versus in vitro

optical recordings. Each line shows results for a different drug, tested at four concentrations (D1–D4) and compared to control conditions (D0). Note

that all controls are displayed at D0, not just in-plate controls for the tested drug. Each column corresponds to a different biomarker. In each panel: blue

boxplots, simulated biomarkers (boxplot description as in Fig. 3); green diamonds, in vitro biomarkers; green bars, experimental ranges of the in vitro

data. No in vitro biomarkers for a specific dose means that it was not possible to compute them for the APs and CaTrs. To see this figure in color, go on-

line.
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such abnormalities, highlighting a reduced repolarization
reserve. Also, IpCa, an outward flow of Ca2þ ions, is very
small, contributing to the accumulation of positive charges
in the cytosol. Conversely, a different pattern emerged for
the models that terminated their spontaneous activity in
response to bepridil and diltiazem. They show, compared
to the models still developing APs at D3, a strong IK1 that
stabilizes the resting potential. Furthermore, especially for
2604 Biophysical Journal 118, 2596–2611, May 19, 2020
bepridil, the stronger Iup half-saturation constant Kup re-
duces the intake of Ca2þ by the SERCA pump and therefore
the Ca2þ available to be released from SR, impairing the
Ca2þ handling that is now an important component of auto-
maticity in the Paci2020 model. For diltiazem, we found
that INa was smaller in models in which the drug terminated
spontaneous activity compared with the group that still
showed it.



TABLE 3 Drug-Induced Abnormalities Observed in In Silico versus In Vitro Nonpaced hiPSC-CMs

Drug Dose

In Silico In Vitro

OK Q RA IRR RESAC OK Q RA IRR RESAC Tachy

Astemizole D1 476 1 – – – 6 – – – – –

D2 475 2 – – – 6 – – – – –

D3 466 2 4 5 – 6 – – – – –

D4 432 2 38 5 – 6 – – – – –

Bepridil D1 472 5 – – – 5 – – 1 – –

D2 466 11 – – – 6 – – – – –

D3 365 107 3 2 – 6 – – – – –

D4 27 444 6 – – – 6 – – – –

Diltiazem D1 477 – – – – 5 – – 1 – –

D2 452 25 – – – 4 – 1 1 – –

D3 204 269 – 4 – 6 – – – – –

D4 12 444 1 – 20 – – – 1a – 6a

Dofetilide D1 474 2 – 1 – 4 – – 2 – –

D2 470 2 – 5 – 5 – – 1 – –

D3 466 2 3 6 – 5 – – 1 – –

D4 461 3 4 9 – – – 6a – – 2a

D5 455 3 12 7 –

D6 435 1 39 2 –

D7 414 1 59 3 –

Ibutilide D1 477 – – – – 5 – – 1 – –

D2 477 – – – – 3 – – 3 – –

D3 474 2 – 1 – – – 6 – – –

D4 427 1 47 2 – – – 5 – – 1

IRR, irregular rhythm; OK, spontaneous beating with no abnormalities; Q, quiescence; RA, repolarization abnormality (EADs and/or repolarization failure);

RESAC, residual activity; Tachy, tachyarrhythmic oscillations; –, phenotype not observed.
aIn vitro observations showed more than one abnormal phenotype. For dofetilide, D5 ¼ 10� EFTPCmax, D6 ¼ 30� EFTPCmax, and D7 ¼ 100� EFTPCmax

were tested only in silico to assess whether doses higher than D4 could trigger more abnormalities.

Optically Calibrated hiPSC-CM Population
DISCUSSION

Here, we demonstrate the integration of human in silico
drug trials and experimental AP and CaTr data, obtained
by all-optical electrophysiology in syncytia of hiPSC-
CMs, for prediction and mechanistic investigations of
drug action. We report the following:

� An improved version of the Paci2018 hiPSC-CM model
(16) was developed and validated. It better reflects the
mechanisms underlying AP automaticity.

� The value of comprehensive high-throughput all-optical
measurements of cellular responses (AP and CaTr) within
the syncytial context in refining in silico populations of
models is demonstrated.

� This study shows the predictive power of experimentally
calibrated population of hiPSC-CMs models through
in silico trials on five drugs, in agreement with in vitro
data sets.

� Mechanistic insights are gleaned from in silico population
runs to understand the differential responses of hiPSC-CM
and adult cardiomyocytes to bepridil. Despite observed
cardiotoxicity in adult cells (4,48), in vitro experiments
showed low occurrence of proarrhythmic markers in
hiPSC-CMs. In silico trials with the hiPSC-CM models
show a wide range of responses to drug action, which com-
plement and explain the in vitro experiments.
Research on hiPSC-CMs is rapidly developing, with new
experimental data becoming available, which in turn serve
as a driving force for the constantly evolving computational
models to offer more accurate in silico tools. Based on
in vitro (40) and in silico (17) tests, it was identified that
our Paci2018 hiPSC-CM model (16) did not properly reflect
the role of INCX in automaticity, i.e., no cessation of sponta-
neous activity was seen in the model as the consequence of a
strong INCX block, as suggested by experiments. Therefore,
we updated this hiPSC-CM model to reproduce the specific
mechanisms reported in Figs. 1 and S1 and (17,40). In addi-
tion, the new Paci2020 model also qualitatively simulates
the relationship between changes in CL and APD90 as a
consequence of the If modulation (Fig. S17). The model re-
sponds to If augmentation with shorter CL and APD90,
whereas If reduction increases them. In Rast et al. (52), a
similar relationship was observed in iCell2 (CDI) hiPSC-
CM field potentials between the interbeat interval and the
field potential duration for ivabradine (If reduction) and for-
skolin (If augmentation).

Using the Paci2020 model to construct an in silico popu-
lation based on our in vitro optical recordings, we showed
that the combination of AP and CaTr biomarkers provides
superior calibration, with a better coverage of the biomarker
space (Fig. 3). It is also interesting that the calibration with
AP biomarkers was the most restrictive: AP_CaTr and the
Biophysical Journal 118, 2596–2611, May 19, 2020 2605



FIGURE 7 Illustrative abnormalities observed at room temperature during the drug trials in vitro (left column) and in silico (right column) in the population

from Fig. 5. APs (black) and CaTrs (orange) are shown. (A–D) Single and multiple EADs are shown. (E and F) Single EADs are shown. (G and H)

Repolarization failure is shown. (I–L) Irregular rhythms and coupled APs are shown. (M and N) Irregular rhythm or temporary cessation of the spontaneous

activity is shown. To see this figure in color, go online.
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AP_only populations contained only 477 and 968 accepted
models, respectively, whereas the CaTr_only population
contained over 5000, many of which were inadequate,
e.g., presented extremely short or long APs (Fig. S15).
Therefore, model calibration exclusively based on CaTrs
can easily lead to the inclusion of more unrealistic models
for hiPSC-CMs. We find that AP biomarkers are preferred
to obtain physiological (or semiphysiological) models,
whereas combining both biomarkers clearly refines the cali-
bration. These tests highlight the importance of the calibra-
tion process and the key value of comprehensive records
(simultaneous APs and CaTrs) in populations of cells in
their multicellular context, obtainable by all-optical electro-
2606 Biophysical Journal 118, 2596–2611, May 19, 2020
physiology. The choice of parameter sampling range (here
[50, 200]%, as in (20,45)) is essential for obtaining enough
models for the in silico drug trials. A narrower range could
limit the representativeness of the population and, conse-
quently, of the trials. Conversely, a wider range is more
prone to include models with nonphysiological parameters.

Figs. 6 and S8–S12 compare simulated and experimental
biomarkers. Of note, the experimental drug trials were not
used to calibrate the population of models; yet, the experi-
mentally observed biomarker trends over increasing drug
doses, in particular APDs, CTDs, and Tri90�30, were suc-
cessfully reproduced. Moreover, for CaTr tRise0,peak and
AP and CaTr Tri90�30, simulations showed good



FIGURE 8 Effect of different ICaL block levels during the administration

of D4 bepridil. For each of the four models (whose control APs are reported

in green), we reduced the bepridil blocking action of ICaL: normal ICaL
blocking action (in black), half ICaL blocking action (in orange), no ICaL
blocking action (in blue). Bepridil effect on the other ion currents was

not changed. Drug trials were performed at room temperature. To see this

figure in color, go online.
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reproduction of the experimental variability intervals. CTDs
were generally underestimated at the various drug doses. A
possible reason for this is that in the control population
(Fig. 3), CTDs are included in the variability ranges, but
they cannot cover the higher values. Physiologically correct
in silico drug-induced CaTr prolongation (except for diltia-
zem) was seen, as proven by the overlap of the in silico and
in vitro CaTr Tri90�30. However, the CTD90 and CTD30 ab-
solute values after drug administration were overall smaller
in silico than in vitro.

We were able to obtain the same type of abnormalities
(Fig. 7) observed in our in vitro data and in (14), i.e., single
and multiple EADs (Fig. 7, A–F), with the addition of repo-
larization failure (Fig. 7, G and H) and irregular rhythms
(Fig. 7, I–N). Conversely, the in silico models did not show
the tachyarrhythmias observed, e.g., in (14) or in six cases
in our in vitro experiments in response to the highest dose
of diltiazem. As discussed previously, these tachyarrhyth-
mias may be syncytium-level events in vitro that could not
have been captured in the simulations. Furthermore, a com-
mon response of the in silico hiPSC-CMs, especially to
administration of diltiazem and bepridil, is the suppression
of spontaneous activity. Indeed, diltiazem administration at
D3 and D4 also stopped the spontaneous APs in a big portion
of our in silico population: 269 and 444 models out of 477,
respectively. This is in agreement with the in vitro diltiazem
experiments of seven out of 15 laboratories involved in the
multisite study reported in (47), in which 100% of the
hiPSC-CMs tested did not produce spontaneous APs after
administration of 10mMdiltiazem (equal to ourD4). Further-
more, in five laboratories, a variable amount (20–70%) of
hiPSC-CMs stopped beating. The same effect was observed
for bepridil. In fact, as a consequence of D3 and D4 bepridil
administration, 107 and 444 models out of 477 stopped.
Again, this is in agreement with our in vitro experiments
(no spontaneous APs at D4) and with the experiments of
(47) (50% hiPSC-CMs stopped spontaneous APs in four lab-
oratories with D3 bepridil and over 80–90% hiPSC-CMs in
15 laboratories with D4 bepridil).

It is interesting to note that in our in vitro experiments,
despite the reliable AP and CaTr duration and triangulation
increase, astemizole did not induce abnormalities, whereas
they were observable in nine in silico hiPSC-CMs at D3
and 43 at D4. Astemizole is considered an intermediate-
risk drug in (47) in hiPSC-CMs and a high-risk drug both
in vitro (53) and in the in silico drug trials performed in
(4) on human adult ventricular cell models. Especially in
Blinova et al. (47), 11 out of 15 laboratories observed single
and multiple EADs in 100% of their cells at 37�C in
response to 0.1 mM astemizole (equivalent to our D4).
The absence of EADs in our in vitro data (while showing
proarrhythmic markers such as APD prolongation and
increased APD triangulation) may be due to a number of
reasons. One possibility is the lower temperature, though
temperature-corrected in silico hiPSC-CMs revealed repo-
larization abnormalities. Another reason could be poten-
tially higher IK1 (and/or IKs) in our high-density syncytial
preparations compared to other studies (54).

Overall, hiPSC-CMs proved to be an effective in vitro and
in silico model to test drug-induced adverse cardiac effects.
Unexpected results in vitro and in silico for bepridil, consid-
ered a highly cardiotoxic drug (4,48), prompted further
investigation. In our in vitro experiments and in another
multisite experimental study (47), bepridil triggered a very
small amount of abnormalities, which is also seen in our
in silico population. It has been hypothesized that the reason
may be the higher expression of L-type Ca2þ channels
Biophysical Journal 118, 2596–2611, May 19, 2020 2607



Paci et al.
observed in vitro in hiPSC-CMs compared to adult cells
(14), reiterated in (47): ‘‘Bepridil is a potent hERG blocker
that also blocks L-type calcium and peak and late sodium
currents at higher concentrations. High expression levels
of calcium ion channels in hiPSC-CMs as compared to pri-
mary ventricular tissue may have contributed to more atten-
uated cellular proarrhythmic effects of the drug as compared
to other drugs in the high TdP risk category.’’ We tested
in silico whether high levels of ICaL could have had a pseu-
doprotective effect against bepridil in hiPSC-CMs, partially
compensating the IKr block and resulting in a milder effect
than in cells expressing less ICaL (e.g., adult cardiomyo-
cytes). Figs. 8 and S16 provide evidence that this can
explain the different action of bepridil in hiPSC-CM and
adult human tissue. Table S2 shows the IC50 used for our
in silico drug trials, taken from (4). Bepridil has the closest
IKr and ICaL IC50 among APD-prolonging drugs. Therefore,
an ICaL block comparable to the IKr block in a condition of
highly expressed ICaL could indeed compensate APD pro-
longation and mask the occurrence of abnormalities other-
wise seen in adult cardiomyocytes in silico (4,55). Our
in vitro and in silico tests show the undeniable value of
hiPSC-CMs as models for drug testing and how in silico
simulations could help the interpretation of the in vitro tests.
The hiPSC-CMs represent a potentially infinite pool of hu-
man cardiomyocytes and can capture key aspects of human
cardiac electrophysiology in normal and diseased conditions
(genetic mutations). Therefore, they are a great asset to pre-
dict the occurrence of adverse drug effects in an unparal-
leled manner that can be patient specific.

As with all experimental models, the hiPSC-CMs are not
without limitations. For example, they have different ion
current expressions than adult cardiomyocytes, potentially
affecting INa, ICaL, IKr, and IKs (see Fig. 2 in (14)), for which
IC50-values are commonly computed. It must be noted that
extensive experimental data sets from healthy adult human
cardiomyocytes are nonexistent because of the unavailabil-
ity of such cardiac tissue. Thus, inferences could only be
made based on donor-heart-derived human cells
(41,55,56) or well-studied adult cardiomyocytes from other
species. Nevertheless, different ion channel expressions can
lead to underestimation (as for bepridil) or overestimation of
the actual toxicity of a drug. Optimization approaches are
being developed to improve the maturity of in vitro
hiPSC-CMs and bring them closer to an adult phenotype,
including extracellular matrix optimizations, stimulation
protocols, mass transport improvements, alignment, sub-
strate and metabolic function optimizations, etc. (57). The
challenge of hiPSC-CM maturation has recently also been
tackled in silico, trying to provide more adult in silico
models (58) or to quantitatively predict inter-cell-type dif-
ferences in drug responses (59). Such advances can posi-
tively impact cardiotoxicity testing.

Overall, well-characterized commercial hiPSC-CMs
(e.g., CDI) have demonstrated their utility and superiority
2608 Biophysical Journal 118, 2596–2611, May 19, 2020
to animal models (27), even in their current state of maturity.
Here, we show the suitability of optically recorded data
from hiPSC-CMs to produce information that empowers
in silico modeling through a set of comprehensive bio-
markers. All available Ca2þ data are indeed obtained by op-
tical means; with the development of new small-molecule
and genetically encoded voltage dyes, AP records may
completely replace electrical measurements because of their
contactless nature, easy parallelization, and ability to mea-
sure cell properties in multicellular context. However, abso-
lute values remain a challenge for optical measurements
because voltage- and Ca2þ-sensitive dyes are rarely cali-
brated, i.e., they cannot provide reliable amplitude informa-
tion for APs or CaTrs, i.e., mVor mM. Such absolute values
were essential in (20) to calibrate our first hiPSC-CM pop-
ulation; in fact, ‘‘AP peak smaller than 57.7 mV’’ (20) was
included as a constraint here to avoid unrealistic membrane
potentials.

During our in silico tests, three limitations emerged.
Firstly, CTD90, CTD50, and CTD30 are underestimated dur-
ing drug administration (Fig. 6, rows 1–4). The reason is that
the 477 models in the population show relatively short con-
trol CaTrs despite correct inclusion in the variability ranges
by calibration. Although the in silico CaTrs correctly
captured the drug-induced trends, they underestimated the
changes observed experimentally. The in silico CaTr
Tri90�30 matched the experimental values well, i.e., CaTr
triangulation during drug administration was captured. In
the case of diltiazem (Fig. 6, last row), we observed a pecu-
liar behavior of the in vitro measurements after drug admin-
istration because the CaTrs showed larger CTDs at D2 and
D3 than at D1, despite CTD90 shortening for increasing dil-
tiazem doses being clear from D2 to D4. The second limita-
tion is that up to D4, in silico dofetilide generated few
abnormalities, whereas D4 dofetilide triggered in vitro
EADs in all the measurements. We observed already in
(23) that to induce a remarkable amount of EADs or repolar-
ization failures in an in silico hiPSC-CM population, we
needed an IKr block greater than 90%. Conversely, D4 dofe-
tilide blocks only 80% IKr. With higher doses, tested in (4),
we obtained a considerable increase in AP abnormalities.
Finally, we did not observe in our simulations tachyarrhyth-
mias as seen in vitro in a few samples, perhaps because of
differences in single versus multicellular behavior. We
observed higher spontaneous AP rates, e.g., in irregular
rhythms (in Fig. S13 I, AP rate goes to 0.6 Hz) or residual
activity in case of diltiazem (in Fig. S14 B, the rate goes
up to 0.8 Hz). However, we did not observe AP rates greater
than 2 Hz.
CONCLUSIONS

In conclusion, this work supports the combined use of high-
content, high-quality all-optical electrophysiology data and
in silico hiPSC-CM simulations to conduct, augment, and
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interpret drug trials. We report that simultaneously acquired
APs and CaTrs enhance the model calibration process to
obtain a final population that better reflects the experimental
recordings. Our population was able to reproduce the effect
of five different compounds, including the drug-induced ab-
normalities observed in vitro. In silico models constrained
by in vitro data can be used to expand the parameter space
of the investigations and to glean mechanistic insights into
drug action. Finally, our simulations highlight the impor-
tance of being aware and taking into account potential dif-
ferences in ionic currents between hiPSC-CMs and adult
cardiomyocytes, which could result in differences between
in vitro or in silico hiPSC-CMs and in vivo outcomes for
specific compounds.
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