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Abstract—Light field (LF) acquisition devices capture spatial
and angular information of a scene. In contrast with traditional
cameras, the additional angular information enables novel post-
processing applications, such as 3D scene reconstruction, the abil-
ity to refocus at different depth planes, and synthetic aperture. In
this paper, we present a novel compression scheme for LF data
captured using multiple traditional cameras. The input LF views
were divided into two groups: key views and decimated views.
The key views were compressed using the multi-view extension of
high-efficiency video coding (MV-HEVC) scheme, and decimated
views were predicted using the shearlet-transform–based predic-
tion (STBP) scheme. Additionally, the residual information of
predicted views was also encoded and sent along with the coded
stream of key views. The proposed scheme was evaluated over
a benchmark multi-camera based LF datasets, demonstrating
that incorporating the residual information into the compression
scheme increased the overall peak signal to noise ratio (PSNR) by
2 dB. The proposed compression scheme performed significantly
better at low bit rates compared to anchor schemes, which
have a better level of compression efficiency in high bit-rate
scenarios. The sensitivity of the human vision system towards
compression artifacts, specifically at low bit rates, favors the
proposed compression scheme over anchor schemes.

I. INTRODUCTION

The spatial and angular information of scenes has attracted
significant attention in various 3D capturing [1], [2], pro-
cessing [3] and rendering applications [4]–[7]. The idea of
capturing angular information along with spatial information
was initially proposed by G. Lippmann in 1908 [8]. With the
advancement in computing technology, the light field (LF)
was captured using multiple traditional cameras [9]. Each
camera captures a single perspective of the scene; thus, the
capturing system records a sparsely sampled LF. Moreover,
advancements in optical technology and the pursuit of dense
sampling led to capturing LF using a single plenoptic camera.
Initially, the plenoptic camera was introduced for the consumer
market [10], and later, commercial applications were also
targeted [11]. In a plenoptic camera, a lenslet array is placed
between the main lens and image sensor to multiplex the
spatial and angular information of the scene. Recording the
spatial information of the scene from different perspectives
provides an opportunity to perform various post-processing
applications; however, it also increases the amount of captured
data. Standard image and video encoders can be used to
compress LF data. However, such encoders do not take into
account the correlation present in LF data; hence, they provide
low compression efficiency. A recent call for proposal from
JPEG Pleno [12], reflects the importance of novel compression
solutions for LF data. Recently, various compression schemes
have been proposed with the aim of efficiently compressing

LF data. These proposals for LF compression can be divided
into two major groups based on acquisition technology: the
plenoptic camera and the multi-camera system. However, few
compression schemes are applicable to both types of captured
data [13], [14].

A. Related Work

In 2016, a handful of compression schemes [15]–[19] were
presented as a response to grand challenges [20], [21] of
plenoptic image compression . The majority of the presented
schemes introduced novel tools in standard high efficiency
video coding (HEVC) image encoder to compress plenoptic
images. Li et al. [16], [22] proposed a bi-prediction mode
capability within an HEVC image compression framework
for the compression of plenoptic images. In addition to 33
intra prediction modes in HEVC, each block was allowed to
take predictions from previously encoded blocks. A similar
approach was proposed by Monteiro et al., who added two
novel tools to the HEVC image compression scheme. Each
block can take predictions from other blocks by using the self-
similarity (SS) and local linear embedding (LLE) operators
[18]. An SS-based prediction scheme was incorporated in
HEVC by Conti et al. [19]. Following the idea of a pseudo-
video sequence (PVS), initially proposed by Olsson et al.
[23], an alternative approach was proposed by Liu et al., who
converted a plenoptic image into sub-aperture images, which
were treated as frames of a PVS [17]. The HEVC video
encoder was used to encode the PVS, and the scheme was
selected as the best proposal in the international conference on
multimedia and expo (ICME) grand challenge. The representa-
tion of an input plenoptic image suitable for the HEVC video
encoder has shown a high compression efficiency compared to
introducing additional tools in the HEVC image compression
standard.

In the grand challenge organized by international conference
on image processing (ICIP) 2017 [12], plenoptic images were
provided in the form of sub-aperture images, and all submitted
compression schemes used the sub-aperture representation of
plenoptic images for compression. Ahmad et al. proposed
interpreting sub-aperture images as a frame of multi-view
sequences and performed compression using multi-view ex-
tension of high-efficiency video coding (MV-HEVC) [13]. A
two-dimensional prediction and rate allocation schemes were
proposed to improve the compression efficiency. Tabus et al.
[24] exploited the disparity information of input plenoptic
images to increase compression efficiency. The disparity map
was quantized into several regions, and the displacement of
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Fig. 1. Block diagram of the proposed compression scheme. On the encoder side, the proposed scheme categorizes the input LF views into key views and
decimated views. Key views are compressed, and their corresponding decoded views are used to predict the decimated views by applying the STBP scheme.
Residual information is calculated between decimated views and predicted views, and they are compressed separately along with key views. On the decoder
side, a similar procedure is applied to predict the decimated views by using key views. The residual bitstream is decoded and added with predicted views to
improve the visual quality.

each region of the side view relative to the central view was
estimated. A set of sparse views, a disparity map correspond-
ing to the central view and region displacements of the side
views were encoded. A pixel-level correlator was developed
to further refine the side views from corresponding neighbor
views. The compression scheme proposed by Zhao et al. [25]
categorizes the sub-aperture images into two groups: selected
views and dropped views. The selected views were treated as
PVS and coded using a video encoder. The dropped views
were approximated as a weighted sum of the decoded version
of selected views. Jia et al. proposed a specific ordering of
sub-aperture images and compressed them as a PVS [26].
The decoded version of the PVS was again converted into
a plenoptic image and the residual information was estimated
and transmitted in order to enhance the visual quality.

In addtion to compression proposals for plenoptic images in
the grand challenges, Li et al. proposed a memory-optimized
2D hierarchical coding structure for plenoptic image com-
pression [27]. The sub-aperture images were divided into
four quadrants, and predictions among images were contained
within each quadrant in order to optimize the reference picture
buffer. Li et al. [28] proposed a scalable coding scheme for the
compression of plenoptic images captured with a plenoptic 2.0
camera. A sub-sampled set of microlens images and disparity
information of missing microlens images were compressed
and used to predict the input plenoptic image. Later on, the
predicted plenoptic image was used to compress the original
plenoptic image with an HEVC inter-prediction scheme. Bakir
et al. [29] presented a plenoptic image compression scheme
in which the input sub-aperture images were divided into two
groups. First group was encoded using an HEVC encoder, and
the second group was estimated using linear approximation
of previously encoded sub-aperture images. On the decoder
side, an additional deep-learning-based scheme was used to
improve the reconstruction quality of sub-aperture images.
Few researchers have developed compression solutions for

multi-camera based LF data. Hawary et al. proposed a scalable
compression scheme that mainly relies on the sparsity in the
angular Fourier domain of the captured LF [30]. A sparse set
of views were compressed as a PVS and were used to predict
the remaining views. Xian et al. [14] proposed a compression
solution based on the homography information between the
side views and the central view. A joint optimization problem
was set up in which the homographies that minimized the
low-rank approximation error were estimated. Ahmad et al.
proposed interpreting LF data captured with the multi-camera
system as frames of multiple PVSs and compressed using MV-
HEVC [31]. In this way, the 2D correlation present among
the views of LF data was exploited by using temporal and
inter-view prediction tools available in MV-HEVC. Komatsu
et al. [32] introduced a computationally efficient scalable
coding scheme for multi-camera based LF data. A set of
binary images were chosen to record the common structure
among all views, and the differences among the views were
represented with additional weight images. The number of
binary images was provided as a free parameter in a scalable
coding framework that controls the trade-off between quality
and computational complexity. Alves et al. [33] analyzed the
redundancy in plenoptic images and multi-camera–based LF
data using 4D DCT transform.

B. Motivations and Contributions

The grand challenges for plenoptic image compression [20],
[21] and the availability of plenoptic image datasets [34]–
[36] have resulted in numerous plenoptic image compression
schemes. However, LF data captured with multi-camera sys-
tems have received less attention from the research community.
The wide range of post processing applications of LF data
makes it challenging to benchmark LF compression schemes.
At present, both objective and subjective assessment methods
are used to evaluate LF compression schemes. The ICME
2016 grand challenge results [37] shows that schemes [17]
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with good compression efficiency at low bit rates also perform
better in subjective quality assessment. Morever, it can be
observed that most of the previously mentioned compression
schemes [24], [25], [30], [38] use a subset of views to
generate the remaining views. In this way, the reconstruction
algorithms were integrated into the compression framework.
In the perspective of JPEG Pleno’s call for LF compression
proposals, this study presents the shearlet-transform–based
prediction (STBP) tool suitable for multi-camera LF data
compression, especially at low bit rates. The proposed scheme
uses an epipolar plane image (EPI) representation for a subset
of input LF views and predicts the remaining views by
applying shearlet transform in the frequency domain. In [39]
it was reported that a shearlet-transform–based reconstruction
scheme for LF data performs significantly better than other
state-of-the-art LF reconstruction schemes.The pre-study in
[38] provides the initial motivation to develop a shearlet-
transform– based LF compression scheme. This paper extends
the pre-study in [38] with the following key contributions:
• The theory, methodology and analysis of the abstract

presented in [38] is explained in detail enabling the full
reproduction of our proposed scheme. The paper presents
an experimental setup for testing the reconstruction meth-
ods within the proposed compression scheme.

• We encoded key views by using an MV-HEVC–based
compression scheme that allows each frame to take
two-dimensional predictions from available neighboring
frames. In section IV-A, it is reported that even for 5× 5
key views the MV-HEVC based compression scheme
provides 0.4 dB better performance than HEVC based
pseudo video sequence compression scheme which is
used in [25], [29], [38] . An analysis of variable quality
allocation among key views on STBP scheme is presented
in section IV-B.

• The STBP error was encoded and incorporated in the
proposed compression scheme in order to improve com-
pression efficiency at high bit rates. The state-of-the-art
methods were investigated to compress the STBP error
and the impact of adding residual information at different
bit rates is explained in section IV-D. It is demonstrated
that the residual coding of STBP error improves the
PSNR by 2 dB.

• The proposed scheme was tested on nine LF images
selected from three different publically available datasets
with original spatial resolution instead of down-sampled
LF images as in [38].

C. Scope and Limitation

The proposed scheme can be used for plenoptic images,
but it provides limited compression efficiency compared to
LF captured with a multiple camera system (MCS). The main
reason for this limitation is the significantly lower range
of disparities contained in plenoptic images ,e.g., the Lytro
Generation 1 and Illum cameras, thus reduces the need for
the elaborate view interpolation method presented in this
work. Furthermore, the sub-aperture image (SAI) represen-
tation of plenoptic images mimics the views captured by the

MCS. However, the generation of SAIs involves several pre-
processing steps, such as image demosaicing, that do not
take into account the characteristics of the plenoptic image as
analyzed in [40]. The SAIs also suffer from vignetting noise,
misalignment, and a lack of proper spatial sampling. Hence,
in the proposed study, we have considered datasets captured
with a multiple camera system [1], [41], [42].

D. Paper Outline

In Section II, the main elements of the proposed compres-
sion scheme are discussed. The sub-sections explain the se-
lection and encoding of key views, the STBP and the residual
coding scheme. Section III explains the test conditions and the
experimental setup. In Section IV, the experiment results are
reported and discussed, including the encoding of key views,
the effects of compression process on shearlet transform, the
prediction of decimated views, and the residual coding and
complexity analysis of proposed compression scheme. Finally,
Section V presents the major conclusions of this work.

II. PROPOSED COMPRESSION SCHEME

The block diagram of the proposed compression scheme
is presented in Fig. 1. The LF with MxN views is given
as an input to the compression scheme. The input views are
divided into two categories, i.e. keys views and decimated
views. The STBP is applied to the decoded version of keys
views in order to predict the decimated views. Moreover, the
quality of predicted views is enhanced by incorporating the
residual information of the decimated views. The details of
each block of Fig. 1 is as follows:

1. Selection of key views: A set of sparse views (here-
after, key views) is selected from input LF by following the
procedure explained in Section II-A. The remaining views are
marked as decimated views, and they are used to compute the
residual information.

2. Key views encoding: The MV-HEVC based compression
scheme is used to compress the key views [43]. The com-
pression scheme takes the multi-view PVSs and uses tools
available in MV-HEVC to exploit the 2D correlation present
in LF data.

3. Decoding of key views: The MV-HEVC based encoder
in block 2 maintains the decoded frames in order to perform
inter- and bi-predictive coding. This block uses the existing,
built-in decoding of the MV-HEVC encoder.

4. Shearlet-transform–based prediction (STBP) scheme:
The decimated views are recreated by predicting them from
the decoded key views using the STBP. Section II-B contains
a detailed description of the STBP.

5. Residual encoding: The residual information is com-
puted by taking the difference between decimated views and
predicted views. In the proposed method, residual information
is converted into a single PVS and compressed along with
key views. The residual compression scheme is explained in
Section II-C.

6. Residual decoding: The bitstream corresponding to the
residual information of decimated views is decoded using the
base layer of MV-HEVC.
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A. Key Views–Selection and Encoding

The captured LF with MxN views is uniformly decimated
by factor S in both horizontal and vertical directions, resulting
in a sparse set of MsxNs views also referred to as key views.
In the next stage, the encoding of key views is performed
and in our proposed method, the key views are interpreted
as a set of Ms pseudo videos with each having Ns frames
as shown in Fig. 2. The key frames are compressed using
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M

Fig. 2. The input LF with M × N views was uniformly sub-sampled with
factor S in both directions to obtain Ms ×Ns key views.

state-of-the-art MV-HEVC by following the method proposed
in [43]. Exploiting the tools available in MV-HEVC, a two-
dimensional prediction scheme, shown in Fig. 3, is used to
classify the views as frames. The compression scheme makes
use of four parameters of MV-HEVC in order to assign a
specific prediction level and rate-allocation to each frame.
The parameters picture order count (POC) and view ID (VID)
uniquely identify the position of each frame in the MV-HEVC
framework. Similarly, the decoding order (DO) and view order
index (VOI) represent the decoding order of each frame on
the horizontal (POC) and vertical (VID) axes. The POC and
VID axes are assigned with different predictor levels. Fig. 3
presents an example of 5×5 key views, and the central frame
with POC=2 and VID=2 is taken as a base frame and assigned
with a prediction level of 0. The remaining frames are assigned
with either a prediction level of 1 or 2. In the rate-allocation
process, the frames with low prediction level are assigned with
high quality and the quality is decreased at each successive
prediction level. In this way, better quality frames are used for
the prediction of other frames in order to improve the overall
compression efficiency.

Algorithm 1, explains the rate-allocation scheme used to
encode the key frames and Table I displays the parameters
used in algorithm 1. The quality of each frame is controlled
by varying the quantization parameter. The presented scheme
estimates the position of the base frame and assign it with
a base quantization parameter. An offset is added to the
base quantizaton parameter, and assigned as a quantization
parameter for each remaining frame. The offset is estimated
by considering the frame distance (distance between current

TABLE I
LIST OF IMPORTANT NOTATIONS

Symbol Description
Ms Number of PVSs
Ns Number of frames in each PVS

bPOC POC assigned to base frame
bVID VID assigned to base frame
Qb Quantization parameter assigned to base frame

nPOC Picture order count of each frame
vVID VID of each frame
kDO Decoding order of each frame
iVOI View order index of each frame
sPOC Assigned prediction level in POC axis
tVID Assigned prediction level in VID axis

TABLE II
WEIGHTS ASSIGNED TO EACH FRAME BASED ON ITS PREDICTION LEVEL

Predictor Levels (PL) Picture Order Count
View ID PL = 0 PL = 1 PL = 2

PL = 0 Qb 4 4

PL = 1 4 3 2

PL = 2 4 2 1

frame and base frame) and the decoding distance of each frame
relative to the base frame. The rate allocation scheme iterates
over all the frames and estimates the required quantization
offset (Qo) for each frame. The frames having POC=2 or
VID=2 (in the base column or base row) are assigned a
quantization offset equivalent to their prediction level (0, 1,
or 2). The quantization offset for the remaining frames is
calculated by using the frame distance and decoding distance
with respect to the base frame (calculated in line 22). Lines 10
and 11 of algorithm 1 calculate the frame distance between the
current frame and the base frame on the POC and VID axes.
Similarly, from line 12 to line 20 decoding distance between
the current and the base frame on both the POC and VID
axes is calculated. A weight parameter W is used to control
the limit of the quantization parameter for each frame. In
line 11, the weighing function indexes the weights matrix for
each frame by using frame prediction level on the POC (sPOC)
and view ID axes (tVID). Table II displays the parameter W
assigned to each frame based on the frame’s prediction level.
The frames with low prediction levels are assigned with high
weights compared to the frames assigned with high prediction
levels. Finally, the quantization parameter (Q(x,y)) for each
frame is calculated in line 24 and returned as output by the
algorithm 1.

B. Shearlet-Transform–Based Prediction (STBP) Scheme

In order to significantly reduce the LF data, a good predic-
tion scheme is required. In our procedure, we employed an LF
reconstruction algorithm utilizing the shearlet transform de-
veloped for the reconstruction of densely sampled LF (DSLF)
[39], which means that disparity between adjacent views is
no more than one pixel apart. This property allows one to
obtain an arbitrary ray inside the viewing zone by simple local
interpolation, such as linear interpolation, without involving
computationally demanding global processing. The capability
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Algorithm 1 Rate allocation for Key views
Input: Ms, Ns, bPOC, bVID, Qb, nPOC, vVID, kDO, iVOI, sPOC,
tVID

1: Read POC (nPOC) and VID (vVID) of each frame.
2: Read DO (kDO) and VOI (iVOI) of each frame.
3: Read prediction level in POC (sPOC) and VID axis (tVID).
4: for x = 1:Ms do
5: for y = 1:Ns do

. Getting the assigned weight value of current frame
6: W =Weightage(sPOC(x), tVID(y))
7: if x == bPOC && y == bVID then

. Current frame lies in base ViewID or base POC
8: Qo(x,y) = max(sPOC(x), tVID(y))
9: else

10: dPOC = b |nPOC(x)−bPOC|
W c

11: dVID = b |vVID(y)−bVID|
W c

12: if nPOC ≤ bPOC then
13: dDO = bkDO(x)

W c
14: else
15: dDO = bkDO(x)−bPOC

W c
16: end
17: if vVID ≤ bVID then
18: dVOI = b iVOI(y)

W c
19: else
20: dVOI = b iVOI(y)−bVID

W c
21: end

. Quantization offset for current frame
22: Qo(x,y) = dPOC + dVID + dDO + dVOI

23: end
. Quantization parameter for current frame

24: Q(x,y) = Qb +Qo(x,y)
25: end
26: end
27: Output: Q

of STBP to reconstruct the intermediate views from a sparse
set of views is exploited for LF compression.

The full parallax 4D LF is described using two plane
parameterization [9],

L(u, v, s, t), (1)

where (u, v) plane is represent image plane coordinates for
each view, and (s, t) are coordinates of the capturing plane as
shown in Fig. 4(a). By fixing the (u, s) and (v, t) parameters
horizontal and vertical EPIs [44] are formed as follows

EH(v, t) = L(u0, v, s0, t) (2)

EV (u, s) = L(u, v0, s, t0) (3)

Fixing the parameter s = s0 and u = u0 in (1) results
in generating a horizontal EPI image, as presented in (2).
Similarly, fixing t = t0 and v = v0 in (1) generates a vertical
EPI image, as presented in (3). In general, it is assumed to
have sufficient sampling over the image plane (u, v), such that
cameras provide enough resolution to capture the finest details
of the scene. In the proposed approach, as an LF reconstruction
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Fig. 3. The rate allocation scheme for 5x5 key views. The central view with
POC=2 and VID=2 is chosen as base frame.

tool, we undertook EPI reconstruction using shearlet transform
presented in [39]. Intermediate view reconstructions in the 4D
full parallax case can be interpreted as multiple 3D horizontal
and vertical parallax DSLF reconstructions. Each 3D parallax
DSLF can be obtained by reconstructing each densely sampled
EPI from coarsely sampled EPIs, as illustrated in Fig. 4(b) for
the horizontal parallax case.

Due to the very strict structure of DSLF in the spatial and
frequency domains, the reconstruction of DSLF from available
measurements can be considered as a sparse regularization
problem for inpainting. The regularization tool in our case
is the shearlet transform, since it is a directional sensitive
transform based on the shear operator, allowing one to con-
struct desirable frequency domain tilling, as shown in Fig.
4(c). Let us assume that measurements g obtained using M
measurement matrix applied on ground truth densely sampled
EPI f such that

g =M � f, (4)

where � represents element-wise multiplication. As demon-
strated in [39] a good approximation fn of f can be obtained
using the iterative procedure

fn+1 = S∗(Tλn(S(fn + αn(g −M � f)))), (5)

where Tλ is a hard thresholding operator, S and S∗ are
direct and inverse shearlet transforms respectively. Algorithm
2 explains the shearlet transform based reconstruction process
for a single EPI image. The inputs of the algorithm include
number of iterations, EPI image, mask (indicates key views
pixels), shearlet analysis and synthesis filters. In the analysis
part, the Fourier transform of the EPI image is multiplied with
each shearlet analysis filter, and corresponding coefficients
are computed by taking the inverse Fourier transform of the
product. The best coefficients are selected by applying a hard
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Fig. 4. (a) The parameterization of captured images, (b) the interpretation of input images as decimation of DSLF, (c) and an example of frequency plane
tilling using shearlet transform required for efficient DSLF reconstruction.

threshold. In the synthesis part, the Fourier transforms of
each selected coefficient are computed and multiplied with
the corresponding shearlet synthesis filter. The summation
is computed for all the responses, and the inverse Fourier
transform is applied to estimate the reconstructed EPI image.
The difference (scaled by parameter α) between the recon-
structed and the original EPI image is computed and added
with the reconstructed EPI image. The reconstructed image
is then used for the next iteration, and algorithm steps are
repeated for N iterations. More details about the construction
of transforms, parameters and iterative procedure can be found
in [39]. It is important to note that the construction and
computation of S and S∗ transforms are mainly based on
the drange = dmax − dmin - range of disparity values in
available measurements g; thus, estimation of dmin and dmax
are assumed as prior knowledge.

C. Residual Encoding
The STBP scheme provides significant compression ef-

ficiency at low bit rates [38]. However, at high bit rates,
proposed prediction scheme has an inherited reconstruction
error, and it requires additional residual information to improve
the visual quality. In the proposed compression scheme, the
residual information is also encoded and sent along with the
bitstream of key views. The residual is computed by taking
the difference between decimated views and predicted views.
Algorithm 3 explains the process of generating residual PVS.
The algorithm iterates over each view of input LF (I) and
reconstructed LF (R), and it estimates the error signal (E). In
line 6, the minimum error value is added with the error signal
in order to have non-negative values in residual PVS (Presidual).
Hence, for each view, the minimum error values are also
transmitted with the bitstream. In the proposed compression
scheme, the residual information of each view is interpreted
as a frame of PVS and compressed in the base layer of MV-
HEVC using the intra-prediction mode.

III. TEST ARRANGEMENT AND EVALUATION CRITERIA

The experimentation was performed on nine LF images
selected from three different publicly available datasets [1],

Algorithm 2 Shearlet-transform–based prediction scheme
Input: g, Given EPI image

N , number of iterations
S, Shearlet analysis filters in frequency domain
S∗, Shearlet synthesis filters in frequency domain
q, Number of shearlet filters
M , Mask of EPI image
α, Acceleration parameter for rate of convergence
λ, Set of threshold values for each iteration

1: f1 = g . Initially set f1 as the original EPI image
2: for n = 1:N do
3: Fn = F{fn} . Fourier transform of fn
4: for i = 1:q do . Perform shearlet analysis
5: C(i) = F−1(Fn × Si)

. Apply threshold to select best coefficients

6: C∗(i) =

{
C(i), if |C(i)| ≥ λn
0, if |C(i)| < λn

7: end
8: F0 = 0
9: for j = 1:q do . Perform shearlet synthesis

10: Fj = Fj−1 + F{C∗(j)} × S∗j
11: end
12: fn = F−1(Fj) . Reconstructed EPI image
13: fn+1 = fn + αn(g −Mfn)

14: end
15: Output: fn+1

[41], [42]. Table III displays the details of selected LF images
in which M and N represents the angular resolution and W
and H represents the spatial resolution of each LF image. The
input views were sub-sampled using horizontal and vertical
sampling period SM and SN in order to form a sparse set of
key views. Each LF image contains views in RGB format, and
its equivalent YUV444 format was used as a reference input
signal. The reference input signal was further converted into
the YUV420 format and given as an input to the proposed
and anchor compression schemes. The shearlet transform has
filtering artifacts on the image border, as described in [39].
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Algorithm 3 Residual sequence generation
Input: I , Original LF views

R, Predicted LF views
1: f = 0
2: for m = 1:M do
3: for n = 1:N do
4: f = f + 1
5: E(m,n) = I(m,n)−R(m,n)

. Making values of residual sequence non-negative
6: Presidual(1, f) = E(m,n)−min(min(E(m,n)))

7: end
8: end
9: Output: Presidual

Instead of extra padding, the comparison was made with the
anchor schemes by excluding 21 pixels from each side of the
image. The mean PSNR (PSNRmean) in Y component of
all the views was used as a quality metric to evaluate the
compression efficiency of the proposed scheme as explained
in (6).

PSNRmean =
1

MN

M∑
m=1

N∑
n=1

PSNR(m,n) (6)

The PSNR of a specific view (at view position m and n) is
estimated by:

PSNR(m,n) = 10log10
2552

MSE(m,n)
(7)

where the mean square error between the views is estimated
by:

MSE(m,n) =
1

T

W−b∑
x=b+1

H−b∑
y=b+1

[I(x, y)− I ′(x, y)]2 (8)

where b represents the border pixels excluded from each side
of the image; W and H indicate the width and height of each
view, respectively; T denotes the number of pixels of each
view considered for comparison (T = (W −2∗b)(H−2∗b));
and I(x, y) and I ′(x, y) represent the value of pixels in the
original and reconstructed views, respectively. The BD-PSNR
[45] metric was also used to compare the compression results.

The compression efficiency of proposed scheme was evalu-
ated against the state-of-the-art compression scheme [31] and
two benchmark HEVC [46] and X265 [47] anchor schemes.
The video coding schemes use highly optimized tools to ex-
ploit temporal correlation,(i.e., motion vector scaling, advance
motion vector prediction, differential motion vector encoding,
etc). The interpretation of LF views as a PVS enables video
coding schemes to exploit the inter-view correlation present in
LF data. The LF views were converted into a single PVS and
given as input to the benchmark anchor schemes [46], [47].
The first frame was encoded as an intra-frame, the second
as a P-frame, and all the remaining frames were encoded as
B-frames.

TABLE III
LF IMAGES USED FOR EXPERIMENTATION

Name M N SM SN W H
Chess 17 17 4 4 1400 800
Lego Buildozer 17 17 4 4 1536 1152
Eucalyptus Flowers 17 17 4 4 1280 1536
Amethyst 17 17 4 4 768 1024
Bunny 17 17 4 4 1024 1024
Jelly Beans 17 17 4 4 1024 512
Greek 9 9 2 2 512 512
Sideboard 9 9 2 2 512 512
Set2 11 33 2 4 1920 1080

IV. RESULTS AND ANALYSIS

A. Encoding of Key Views

The initial step of the proposed compression scheme in-
volved compressing the key views by using MV-HEVC as
explained in Section II-A. The key views were also converted
into a single PVS and compressed using an HEVC encoding
scheme. Two LF images from the Stanford dataset, namely
Chess and Eucalyptus flowers were compressed at four differ-
ent bit rates in order to test varying bit-rate scenarios. The rate
distortion (RD) comparison between the proposed scheme and
the HEVC scheme is presented in Fig. 5. It can be seen that
the proposed scheme provides better compression efficiency
compared to the benchmark HEVC scheme with an average
BD-PSNR gain of 0.4 DB. The proposed scheme enables
each frame to exploit two-dimensional inter-view correlation
from neighboring views. Moreover, allocating better quality
to frames used for the prediction of other frames improves
compression efficiency. The compression efficiency of the
proposed scheme improves with the increased number of key
views since more frames take predictions from better quality
frames.
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Fig. 5. Rate-distortion analysis between the proposed compression scheme
and the HEVC scheme for 5× 5 key views.

B. Compression artifacts on Shearlet transform

The shearlet transform was applied to EPI images that
exhibit a special line structure. The line in the EPI image
corresponds to points/regions visible in the perspective views
captured by each camera. The variation in quality among
images as a consequence of the compression process can
affect the reconstruction process when employing EPI im-
ages. An experiment was performed in order to study the
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Fig. 6. Rate-distortion analysis of variable and fixed quality rate-allocation
schemes. a) The input 5 × 5 key views were compressed using fixed and
variable rate-allocation schemes. b) The corresponding shearlet reconstruction
of 17× 17 views for fixed and variable rate allocation schemes.

effect of variable rate-allocation on the STBP process. The
Truck image from Stanford dataset was used and a subset
of 5 × 5 key views was extracted from 17 × 17 input views
by following the procedure explained in Section II-A. The
encoding of key views was performed using HEVC with
two different rate-allocation schemes. In the first encoding
scheme, a fixed quantization parameter was used to ensure the
similar quality among images. In the second encoding scheme,
variable quantization parameters were used for all 25 views
to yield variable quality. The compression was performed
on three different bit rates for both fixed and variable rate-
allocation schemes. Fig. 6 (a) and (b) display the RD curves
for 5 × 5 key views and the reconstruction results of the
STBP, respectively. The combined compression efficiency of
the variable rate-allocation scheme on 5 × 5 key views and
the shearlet reconstruction outperform the fixed rate allocation
scheme. Hence, the key views compressed with variable rate-
allocation scheme can be used as an input of STBP.
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Fig. 7. Rate-distortion analysis between STBP and anchor schemes.

C. Prediction of Decimated Views Using Shearlet Transform

Fig.7 displays an RD comparison between the STBP (with-
out incorporating residual information) and anchor schemes.
The performance of anchor schemes is better at high bit rates
compared to the proposed scheme. However, at the low bit
rates, the compression efficiency of the proposed scheme is
higher compared to anchor schemes. The difference in the
behavior of compression schemes is a consequence of their
utilization of input information. In the high bit-rate scenario,
the high quality of residual information enables the anchor
schemes to achieve efficient compression. Conversely, shearlet
transform relies on key views to predict the intermediate views
without incorporating residual information; hence, it has an

inherit reconstruction error. In the low bit-rate scenario, the
bit budget of the proposed compression scheme allows the
encoder to provide higher quality to key views. In this way, the
shearlet transform utilizes good quality key views to predict
the intermediate views. On the other hand, anchor schemes
distribute the bit budget among all the views that result in
degradation of overall visual quality.
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Fig. 8. Rate-distortion analysis of HEVC intra- and inter-prediction coding.
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Fig. 9. Rate-distortion analysis of the STBP scheme with residual information
added to the predicted views at rates R1, R2, R3, and R4.

D. Residual Encoding

The reconstruction error of the STBP scheme can be re-
duced by encoding the residual information of the predicted
views. In the proposed compression scheme, the residual
information is treated as a single PVS and given as an input
to the base layer of MV-HEVC, which works similarly to
HEVC for such an input. In order to exploit the correlation
present in the residual information using tools available in
HEVC, the residual sequence was encoded with intra- and
inter-prediction modes, and the RD comparison is shown in
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Fig. 10. Rate-distortion analysis of the proposed compression scheme (STBP-WR) with two benchmark anchor schemes (HEVC and X265) and a state-of-art
compression scheme (MV-HEVC). The central view of each LF image is also shown in each sub figure.

Fig. 8. The STBP-NR curve represents the reference STBP
scheme (without residual coding). The key views, selected as
input for STBP were encoded at four different bit rates, and
that also describes the rate of STBP-NR (since no residual
information was added). Hereafter, we call these four rates
R1, R2, R3, and R4. The residual information corresponding
to rates R1 and R3 was encoded using HEVC intra-prediction
(STBP-R1-Intra and STBP-R3-Intra) and the HEVC inter-
prediction mode (STBP-R1-Inter and STBP-R3-Inter). In the
inter-prediction mode, the encoder was allowed to use all the
available prediction tools in the HEVC framework (intra-,
inter- and bi-prediction modes). However, the encoder was
forced to use only intra-prediction modes in HEVC intra
coding. The RD curves in Fig. 8 reflect a similar compression
efficiency between inter- and intra-prediction schemes. Inter-
prediction makes use of motion estimation and compensation
for predicting the current frame which is not beneficial for
residual PVS since it does not possess the properties of natural
images. The similar compression efficiency between the two
schemes reflects a lower correlation among frames of residual
PVS. Hence, we proposed using the HEVC intra-prediction

mode to encode the residual PVS. The HEVC intra-prediction
scheme has a relatively less computational cost compared to
HEVC inter-prediction coding and it can be further used to
obtain random access capability in the proposed compression
scheme.

Fig. 9 displays the enhancement in visual quality obtained
due to the addition of residual information. The STBP-NR
represents the reference STBP scheme, evaluated at four bit
rates (R1=4265 KB, R2=2379 KB, R3=272 KB, and R4=56
KB). The scheme STBP-R1-Intra adds the residual information
with predicted views at rate R1 (4265 KB). The residual
information was coded with different quantization values, and
its decoded version was added with predicted views. Similarly,
for the other three rates (R2, R3, and R4), the residual
information corresponding to each rate was encoded with
different quantization parameters, and its decoded version was
added with the corresponding predicted views. The response
of residual coding was not found same for all four bit-rates.
Fig. 9 illustrates the more significant compression efficiency at
higher rates compared to that at lower rates. The performance
of STBP at low bit rates is much better (as shown in 7), and
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Fig. 11. Subjective analysis of the proposed compression scheme for a view from the bunny image. a) The original view with highlighted sub region. b)
Shows the rendered sub-region compressed with the proposed scheme, as well as the MV-HEVC, and HEVC compression schemes. Two low bit rates (R3
and R4) were considered, and the PSNR of each view was also mentioned for each compression scheme.

adding a residual with Intra coding method does not improve
visual quality relative to the added size of the coded residual.
The prediction efficiency of the STBP starts decreasing from
R3 and it becomes very low at high bit rates (R2 and R1). In
other words, the input quality of key views at high bit rates
has less influence on STBP. For example, the coded size of
key views at R2 is 2379 KB, and increasing the quality of key
views by allocating an extra 1886 KB (at R1=4265 KB) has
less impact on visual quality (around a 0.1 dB increase). In
comparison, adding 248 KB of residual information at R2 has
a significant impact on overall visual quality (around a 2 dB
increase). It can be concluded that adding residual information
at high bit rates improves the compression efficiency of the
proposed scheme.

Fig. 10 illustrates the comparison of the proposed com-
pression scheme with the two benchmark schemes and a
state-of-the-art scheme [31]. It can be seen that, overall, the
proposed scheme performs better compared to both anchor
schemes. The compression efficiency of the proposed scheme
is significantly better at low and medium bit rates relative to
the high bit rate scenarios. In comparison to the state-of-the-art
scheme, the proposed scheme has better compression at low
bit rates, and the scheme presented in [31] performs better at
medium and high bit rates. The sensitivity of the human vision
system towards compression artifacts specifically at low bit
rates [48], favors the proposed compression scheme over the
other presented compression schemes.

E. Subjective Analysis
A sub-region of the Bunny image taken from view (6,9)

is highlighted in Fig. 11 for compression rates R3 and R4.

The HEVC-based compression schemes show notable artifacts
in the decoded view in both selected rates. MV-HEVC-based
compression scheme shows observable blurriness at rate R4.
At both rates, it can be seen that the proposed scheme
retains most of the information compared to other compression
schemes. The compressed views from all the compresses
schemes at rate R4 are available online [49].

F. Computational Complexity

The computational complexity of the proposed compression
scheme is dependent on usage of residual information. In
cases where residual information is not used in the proposed
scheme the encoder only compresses key views using MV-
HEVC. On the decoder side, the key views are decoded using
the MV-HEVC decoder, and STBP is used to predict the
decimated views. In such compression schemes, complexity
is significantly reduced on the encoding side because only
key views are compressed. On the decoding side, the MV-
HEVC-based decoding of decimated views is replaced with
the STBP process. The addition of residual information in the
proposed compression scheme requires the use of the STBP
process on the encoder side, and the residual information is
coded using the MV-HEVC single layer intra-prediction mode.
On the decoding side, the key processes include decoding
the key views by using MV-HEVC, STBP to predict the
decimated views and to decode the residual bitstream. Hence,
the enhancement in the visual quality of the predicted views
is obtained at an increased computational cost.

The proposed compression scheme can be used in two
ways: 1) The first way results in a complete LF compression
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scheme with high RD efficiency at low bit rates and acceptable
RD efficiency at high bitrates. 2) In the second way, the
encoder selects the proposed scheme for low bit rates and
switches to a more optimal compression scheme for high
bit rates. Modern encoders select optimal tools during the
encoding process by using the RD optimization. The decision
for encoders becomes more complex when they iterate over
all available options in order to select the most optimum tool
for a specific scenario. However, Fig. 10 demonstrates that
STBP consistently performs better at low bit rates which can
simplify the encoder’s task.

V. CONCLUSION

In this paper, we have presented a novel compression
solution for LF data captured with a multi-camera system.
The input LF views were divided into two categories: key
views and decimated views. The key views were encoded
using MV-HEVC and decimated views were predicted using
the STBP scheme. Additionally, the residual information was
also coded in order to further enhance the visual quality of the
predicted views. The proposed compression scheme performed
better in low bit rates compared to anchor schemes which have
better compression efficiency at high bit rates. The sensitivity
of the human vision system towards compression artifacts
at low bit rates favors the proposed compression scheme
over the anchor schemes. The proposed compression scheme
can be used without incorporating the residual information.
In such cases, on the encoder side, key views are coded
and sent to the decoding side where STBP scheme predicts
the remaining decimated views. The proposed compression
scheme can benefit applications where fewer resources are
available on the encoding side. The proposed scheme can be
further improved by introducing coding tools that exploit the
correlation present in residual information. In the future, we
will investigate alternative compression method for the resid-
ual information, and we also intend to perform a subjective
quality assessment of the proposed scheme with other state-
of-the-art LF reconstruction algorithms.

ACKNOWLEDGMENT

The work in this paper was funded from the European
Unions Horizon 2020 research and innovation program under
the Marie Sklodowska-Curie grant agreement No 676401,
European Training Network on Full Parallax Imaging.

REFERENCES

[1] M. Ziegler, R. op het Veld, J. Keinert, and F. Zilly, “Acquisition system
for dense lightfield of large scenes,” in 3DTV Conference: The True
Vision-Capture, Transmission and Display of 3D Video (3DTV-CON),
2017. IEEE, 2017, pp. 1–4.

[2] M. Martı́nez-Corral, J. Barreiro, A. Llavador, E. Sánchez-Ortiga, J. Sola-
Pikabea, G. Scrofani, and G. Saavedra, “Integral imaging with fourier-
plane recording,” in Three-Dimensional Imaging, Visualization, and
Display 2017, vol. 10219. International Society for Optics and
Photonics, 2017.

[3] A. Ansari, A. Dorado, G. Saavedra, and M. M. Corral, “Plenoptic image
watermarking to preserve copyright,” in Three-Dimensional Imaging,
Visualization, and Display 2017, vol. 10219. International Society for
Optics and Photonics, 2017.

[4] S. Hong, A. Ansari, G. Saavedra, and M. Martinez-Corral, “Full-parallax
3d display from stereo-hybrid 3d camera system,” Optics and Lasers in
Engineering, vol. 103, pp. 46–54, 2018.

[5] P. A. Kara, A. Cserkaszky, A. Barsi, M. G. Martini, and T. Balogh,
“Towards adaptive light field video streaming,” COMSOC MMTC
Communications-Frontiers, 2017.

[6] D. G. Dansereau, O. Pizarro, and S. B. Williams, “Linear volumetric
focus for light field cameras.” ACM Trans. Graph., vol. 34, no. 2, pp.
15–1, 2015.

[7] D. G. Dansereau, O. Pizarro, and S. Williams, “Decoding, calibration
and rectification for lenselet-based plenoptic cameras,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2013,
pp. 1027–1034.

[8] G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J.
Phys. Theor. Appl., vol. 7, no. 1, pp. 821–825, 1908.

[9] M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings
of the 23rd annual conference on Computer graphics and interactive
techniques. ACM, 1996, pp. 31–42.

[10] R. Ng, M. Levoy, B. Mathieu, G. Duval, M. Horowitz, and P. Hanrahan,
“Light field photography with a hand-held plenoptic camera,” Computer
Science Technical Report CSTR, vol. 2, no. 11, pp. 1–11, 2005.

[11] C. Perwass and L. Wietzke, “Single lens 3d-camera with extended depth-
of-field,” in Human Vision and Electronic Imaging XVII, vol. 8291.
International Society for Optics and Photonics, 2012, p. 829108.

[12] T. Ebrahimi, S. Foessel, F. Pereira, and P. Schelkens, “Jpeg pleno:
Toward an efficient representation of visual reality,” IEEE Multimedia,
vol. 23, no. 4, pp. 14–20, 2016.
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and R. Olsson, “Shearlet transform based prediction scheme for light
field compression,” in Data Compression Conference (DCC 2018),
Snowbird, Utah, US, March 27-March 30, 2018, 2018.

[39] S. Vagharshakyan, R. Bregovic, and A. Gotchev, “Light field reconstruc-
tion using shearlet transform,” IEEE transactions on pattern analysis and
machine intelligence, vol. 40, no. 1, pp. 133–147, 2018.
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