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Ballistocardiography can Estimate Beat-to-Beat
Heart Rate Accurately at Night in Patients after

Vascular Intervention
Christoph Hoog Antink, Member, IEEE, Yen Mai, Roosa Aalto, Christoph Brüser,

Steffen Leonhardt, Senior Member, IEEE, Niku Oksala, and Antti Vehkaoja, Member, IEEE,

Abstract—While bed-integrated ballistocardiography (BCG)
has potential clinical applications such as unobtrusive monitoring
of patients staying in the general hospital ward, it has so far
mainly gained interest in the wellness domain. In this work, the
potential of BCG to monitor hospitalized patients after surgical
intervention was assessed. Long-term BCG recordings (mean
duration 17.7 h) of 14 patients were performed with an EMFit
QS bed sensor. In addition, ten healthy subjects were recorded
during sleep (mean duration 7.8 h). Using an iterative algorithm,
beat-to-beat intervals (BBIs) and the ultra-short-term heart-rate-
variability (HRV) parameters standard deviation of NN intervals
(SDNN) and root mean square of successive differences (RMSSD)
were estimated and compared to an ECG reference in terms
of average estimation error and temporal coverage. While the
absolute BBI estimation error was found to be higher when full-
day patient data was used (16.5 ms), no significant difference
between healthy subjects (12.7 ms) and patient nighttime data
(11.0 ms) was observed. Nevertheless, temporal coverage of BBI
estimation was significantly lower in patients (39.3 % overall,
51.7 % at night) compared to the healthy sleepers (73.2 %). This
resulted in reduced HRV estimation coverage (9.7 % vs. 37.2 %)
at comparable estimation error levels.

Index Terms—Ballistocardiography, Beat-to-Beat Intervals,
Heart Rate, Heart Rate Variability, Unobtrusive Sensing

I. INTRODUCTION

N IGHT-time physiological monitoring with unobtrusive
bed-integrated ballistocardiography (BCG) sensors has

gained interest in the wellness domain as it enables easy-to-
use approach for self-monitoring of sleep quality and quantity.
So far, the use of BCG monitoring in clinical applications
has been limited. A potential clinical application for this
technology is unobtrusive monitoring of patients who are
staying in beds in the general hospital ward.

Currently, monitoring of such patients is relatively sparse
or unsystematic, and is mainly performed visually or with
intermittent measurements. Continuous real-time monitoring
of hospital patients would be beneficial for monitoring of
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recovery and early detection of the deterioration of a pa-
tient’s condition e.g. due to postoperative complications. In
addition, heart rate variability (HRV) is a potential, clinically
underexploited measure of the state of the autonomic nervous
system that could provide information on the recovery of a
patient noninvasively. It has been shown in several studies that
recovery of HRV parameters after surgery is altered in patients
developing postoperative complications [1], [2], [3], [4].

Monitoring techniques based on cardiac-associated vibra-
tions have been proven adequately accurate for heart rate
(HR) and heart rate variability (HRV) measurements in healthy
subjects with bed-integrated ballistocardiography (BCG) [5],
[6], [7] as well as wearable seismocardiography (SCG) sen-
sors [9]. Brüser et al. achieved 0.61 % relative error Ērel with
85 % coverage in beat-to-beat interval (BBI) estimation with
eight healthy subjects. Corresponding numbers in the study
by Kortelainen et al. were 0.4 % and 88 % with six subjects.
The same studies also included groups of patients suffering
from insomnia or other sleep related disorders. In these
groups, the performance of BCG monitoring was decreased
to 1.8 % relative error and 80 % coverage with 28 insomniac
subjects [6] and 1.61 % relative error and 69 % coverage with
25 subjects [5]. In addition to the scientific community, a
few companies exist that provide ballistocardiography–based
bed monitoring devices aimed either at the consumer marked
(e.g. the “Beddit Sleep Monitor”, Apple Inc., USA), at clinical
applications (e.g. the “EarlySense” systems, EarlySense Ltd.,
Israel, [8]), or at both (e.g. the “EMFIT QS” product range,
Emfit Ltd, Finland).

Wearable SCG is an alternative for bed-integrated BCG
method. However, in high-risk cardiovascular patients, the
technology has faced severe reduction in accuracy, as the sig-
nal induced by a heartbeat is often weaker and less consistent
in shape. Kaisti et al. [10] reported over ten-fold increase in
RMS error from 5.6 ms to 60.3 ms in study groups consisting
of 29 healthy subjects and 12 coronary artery disease patients
with a wearable SCG measurement method using a 6 degree of
freedom motion measurement unit. The BBI signal coverage
was 93.4 % and 92.6 % for the two groups, respectively. For
a detailed review of other BCG and SCG applications as well
as differences between the methods, we refer to [11].

The aforementioned studies have evaluated the accuracy
of BCG and SCG based heart rate monitoring during sleep.
For continuous monitoring of hospital patients, also the per-
formance in day-time needs to be assessed, as the subject
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is awake and the data presumably contains more interfering
components from movements. To the best of our knowledge,
such studies have not been published to date. Further, as earlier
stated, heart rate variability has been shown to correlate well
with physiological status of the patient and even to predict
upcoming postoperative complications [1], [2], [3], [4], thus
the accuracy of HRV estimation is of interest for possible
future clinical applications.

As BCG based measurement technique is extremely prone
to movement artifacts, long segments of uncorrupted clean
signal are unlikely, especially during daytime. Therefore the so
called ultra-short HRV (< 5 min segments) is the approach of
interest. Peccia et al. listed in their review 29 papers published
since 2003 that utilize or assess the accuracy of ultra-short
HRV analysis [12]. Segment lengths from 10 s upwards have
been used in these studies.

In this work, we studied the accuracy of BBI and HRV
estimation from BCG signals recorded with the commercially
available Emfit QS monitoring system (Emfit Oy, Finland)
in fourteen patients who underwent vascular intervention as
well as ten healthy young adults. Typically, vascular patients
have several comorbidities (such as diabetes, hypertension,
dyslipidemia, coronary artery disease, cerebrovascular disease)
and may have reduced cardiac function. For all patients, long-
term recordings (mean 17.72 h, range 4.64 h to 22.96 h) includ-
ing day- and nighttime were acquired. Healthy subjects were
recorded for one night. For BBI estimation, the previously
developed CLIE algorithm [5] was used and augmented with
an iterative estimation approach [13].

II. ALGORITHM

The original Continuous Local Interval Estimator approach
used in this paper is described in detail in [5]. In addition, an
outlier rejection method and an iterative estimation method as
described [13] were later introduced. The algorithm estimates
BBIs by assessing self-similarity of consecutive heartbeats
using lag-adaptive versions of the short-term autocorrelation
SLASTA[i, η], the maximum amplitude pairs SMAP[i, η] and
the average magnitude difference function SAMDF[i, η]. The
three functions return a probability that a candidate shift η
of the signal corresponds to the actual BBI, ηopt,i for each
window i of the BCG-signal and fused using a Bayesian
approach,

Sf [i, η] =SLASTA[i, η] · SMAP[i, η] · SAMDF[i, η], (1)
ηopt,i = arg max

η
[Sf [i, η]] . (2)

As this algorithm makes no prior assumptions about BBIs
it was proven to be capable of processing even severely
arrhythmic data [14]. The threshold of self-similarity, qth is
the only tunable parameter: Only candidate intervals with(
Sf [ηopt,i]/

∑
η Sf [η] > qth

)
are accepted as valid intervals,

forming a trade-off of accuracy and temporal coverage. In
this full-day data of partially awake, non-healthy subjects,
significant outliers were found and the algorithm was modified
to increase robustness at the cost of generality. To remove
outliers in the beat-to-beat interval estimates, a straight-
forward thresholding algorithm was applied: If beats exhibited

First-Pass Estimation
BCG Data

Prior Calculation

Intermediate
BBI Interval
Estimation

Second-Pass Estimation

Final
BBI Interval
Estimation

Fig. 1. Flowchart of the algorithm. In the first pass, the original CLIE
algorithm is used for BBI estimation. Based on its results, an adaptive prior
is calculated, which is used in the final step to calculate BBIs from the BCG
signal.

a relative deviation from the median estimation bigger than
∆max, the detected interval was considered an outlier and
removed from the analysis.

In the first pass of the iterative algorithm [13], CLIE
was used to estimated beat-to-beat intervals without prior
assumption about the heart rate. Next, the detected intervals
ηopt,i were median filtered with a filter of width nmedian,

η̂opt,i = medianfilter (ηopt,i, nmedian) (3)

In the second pass, an adaptive prior was used in the interval
estimation,

Sprior[η, k, η̂opt,i] =
1

2k
e−
|η−η̂opt,i|

k , (4)

S∗f [i, η, k, η̂opt,i] =Sf [i, η] · Sprior[η, k, η̂opt,i]. (5)

Based on previous observations [15], a Laplacian distribution
with variable scale k was chosen. The process is visualized in
Figure 1. Note that the threshold on self-similarity qth is used
in both the first- and the second-pass estimation, i.e. candidate
intervals with q < qth are removed. After the second pass, all
remaining intervals exceeding their surrounding estimations
by ∆max (dotted line) are removed as well. In sum, four
parameters can be set manually: The quality threshold qth,
the scale of the laplacian distribution k, the outlier threshold
∆max, and the width of the filter to calculate the short-term
median BBI, nmedian. The sensitivity of the algorithm towards
parameter variation is demonstrated in detail in [13]: qth trades
of accuracy and temporal coverage, see also [5]. Decreasing
∆max decreases the amount of outliers, while at the same time
decreases temporal coverage. On the other hand, choosing a
smaller k increases coverage but leads to an increased error,
in particular if the heart rate shows large variability. In this
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study, the following set of parameters was used: qth = 0.5,
k = 0.18, ∆max = 20 %, and nmedian = 51.

Devices that have independent system clocks and are not
synchronized can exhibit severe drifts in sampling rate [16],
which we also observed in our recordings and which led to
major deterioration in our previously published results [13].
This was less critical in the shorter measurements of healthy
subjects. Here, an individual but constant multiplier of the
sampling rate could be obtained for each recording that mini-
mized the estimation error of the BBI intervals. In the longer
recordings of the vascular patients, however, drift was found
to be time-variant. Thus, an adaptive compensation algorithm
was developed. In essence, the algorithm calculates a time-
varying offset that minimized the median BBI estimation error
in a moving window with the size of 1500 beats, which
corresponds to approximately 25 minutes. The offset-vector
was additionally median filtered with the same filter size to
remove outliers.

III. EVALUATION

The patient recordings were made in the vascular surgery
ward of Tampere University Hospital. The subjects were
monitored for up to 24 hours with an EMFit QS bed sensor.
The bed sensor was placed between the hospital bed mattress
and the bed frame. The sampling rate of the BCG signal
obtained with the Emfit QS system was 100 Hz and the signal
was bandlimited to 1-5 Hz. Reference ECG was recorded with
a Faros 360 five-lead Holter monitor manufactured by Bittium
Biosignals using 1 kHz sampling frequency. Ambu Blue sensor
L-00-S electrodes were used in the recording. The average
age of the subjects was 69.57 years. Two of the subjects
were female. The subjects had undergone different vascular
interventions such as aortic aneurysm endograting, carotid
endarterectomy or femoropopliteal bypass surgery.

In addition, reference sleep measurements from ten healthy
subjects were recorded using the same sensor systems. The
average recording duration was 7.77 h (range 3.88 h - 8.97 h).
The average age of the subjects was 22.6 years and three of
the subjects were male. A favorable statement was obtained
for this study from the Regional Ethical Committee of Pirkan-
maa Hospital District (R17027). The study was registered at
ClinicalTrials.gov, identifier NCT03572751.

To evaluate the performance of the algorithm in terms of
ultra-short-term HRV analysis, the two time-domain parame-
ters standard deviation of NN intervals (SDNN) and root mean
square of successive differences (RMSSD) were evaluated in
overlapping 45-second windows. Here, a threshold on the
coverage was set. Only if the window contained more than
thcov (for example 70 %) of beats, the window was used for
analysis. Note that this coverage was calculated only based on
the BCG signal itself without using the reference ECG.

IV. RESULTS AND DISCUSSION

A. Adaptive Sample Drift Compensation

The effect of the adaptive sample drift compensation al-
gorithm is showcased qualitatively for patient 8 in Fig. 2. If
the nominal sampling rates of the devices are used, only the
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Fig. 2. Example of the operation of the developed drift compensation method.
Top row: Only the center of the measurement (middle column) is aligned
properly. Middle row: The beginning and the center of the measurement are
aligned (first two columns). Bottom row: All parts of the measurement are
aligned.

center of the measurement (middle column) is aligned properly
as this minizes the difference between the two modalities. If
an optimal constant multiplier is calculated, the beginning and
the center of the measurement are aligned (first two columns).
With adaptive drift compensation, all parts of the measurement
are aligned. The gross average error over all patients and BBI
estimates is 28.41 ms / 2.98 % if nominal sampling rate is
assumed. If adaptive drift compensation is used, however, this
error is reduced to 16.51 ms / 1.80 % (see also next section).

B. Beat-to-Beat Interval Estimation

Tables I and II show the results of BBI estimation for
patients as well as healthy subjects. Several things can be
observed. First, the average error is found to be slightly higher
in the patient population compared to the healthy subjects
(16.51 ms / 1.80 % and 12.67 ms / 1.22 %), while the coverage
is lower (39.31 % and 73.24 % respectively). Moreover, the
inter-subject variability is higher: While it ranges from 8.44 ms
to 30.65 ms in terms of error and 60.44 % to 84.10 % in
terms of coverage for the healthy subjects, it ranges from
11.13 ms to 37.60 ms and 7.52 % to 68.57 % in the patient
data. One difference between the two sets of measurements
is the different population of subjects. In addition, the mea-
surements performed on the younger, healthy volunteers were
overnight recordings, i.e. subjects can be assumed to be
asleep and stationary most of the time. Thus, another analysis
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TABLE I
DURATION, COVERAGE, MEAN ABSOLUTE ERROR ēabs AND RELATIVE
ERROR ērel OF BBI ESTIMATION FOR THE COMPLETE PATIENT DATA.

Patient Duration Coverage ēabs ērel

ID [h] [%] [ms] [%]

1 22.96 7.52 37.60 5.63
2 9.36 32.87 15.04 1.38
3 22.41 20.99 21.34 2.23
4 21.95 25.55 11.13 1.37
5 13.38 16.75 28.66 2.68
6 18.38 27.73 12.82 1.96
7 4.47 30.92 20.62 2.90
8 21.64 60.08 11.58 1.15
9 21.59 46.85 21.53 2.15
10 21.25 42.87 25.37 2.53
11 6.17 51.44 16.39 1.59
12 19.01 68.57 11.17 1.44
13 22.77 56.20 14.30 1.43
14 22.35 66.77 17.69 1.72

Mean 17.69 39.65 18.95 2.16
Gross Average 39.31 16.51 1.80

TABLE II
DURATION, COVERAGE, MEAN ABSOLUTE ERROR ēabs AND RELATIVE

ERROR ērel OF BBI ESTIMATION FOR HEALTHY SUBJECTS.

Healthy Duration Coverage ēabs ērel

ID [h] [%] [ms] [%]

1 8.99 82.33 8.77 0.89
2 7.69 63.27 12.73 1.30
3 8.97 78.39 18.29 1.93
4 8.04 60.44 11.60 1.07
5 3.88 84.10 8.44 0.80
6 7.54 79.18 9.57 0.82
7 8.09 81.10 11.64 1.26
8 7.85 61.19 30.65 2.17
9 8.05 77.43 9.91 0.99
10 8.49 66.74 10.76 1.19

Mean 7.76 73.42 13.23 1.24
Gross Average 73.24 12.67 1.22

was performed separating the patient dataset into nighttime
(23:00 to 7:00) and daytime data. Table III shows the results
of the nighttime analysis. For patient 7, no nighttime data
was available. On average, coverage was found to be higher
(51.74 %) compared to the total recording (39.31 %), although
still smaller compared to healthy sleepers (73.24 %). In terms
of error, however, the results improved significantly, and the
relative error of the patient nighttime analysis (1.17 %) even
slightly outperforms those of the healthy subjects (1.22 %).
These findings are summarized in the box-plot in Fig. 3.
Using the Wilcoxon rank sum test no significant difference
was found between the error of the healthy subjects and the
nighttime patient data. Figures 4 and 5 show Bland-Altman
plots comparing the three scenarios. Both healthy and patient

TABLE III
DURATION, COVERAGE, MEAN ABSOLUTE ERROR ēabs AND RELATIVE

ERROR ērel OF BBI ESTIMATION FOR THE NIGHTTIME PATIENT DATA, I.E.
ONLY DATA RECORDED BETWEEN 23:00 AND 07:00 IS CONSIDERED IN

THE ANALYSIS.

Patient Duration Coverage ēabs ērel

ID [h] [%] [ms] [%]

1 8.00 11.83 22.03 2.68
2 3.28 48.71 9.78 0.91
3 8.00 35.58 12.58 1.19
4 8.00 41.60 9.24 1.12
5 8.00 22.27 18.72 1.68
6 8.00 36.49 10.71 1.56
7 0.00 - - -
8 8.00 65.24 10.35 0.98
9 8.00 51.25 17.69 1.70
10 8.00 74.97 6.22 0.59
11 0.50 56.11 11.05 1.03
12 8.00 85.32 9.78 1.29
13 8.00 64.02 12.23 1.12
14 8.00 94.10 9.31 0.88

Mean 6.56 52.88 12.28 1.29
Gross Average 51.74 10.98 1.17
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Fig. 3. Boxplot of the subject-wise absolute error (top row) and coverage
(bottom row) for BBI estimation of the complete patient dataset (first column),
patient daytime data (second column), patient nighttime data (third column),
and healthy subjects (fourth column).

nighttime data show very similar distribution and limits of
agreement. During daytime, however, the spread is larger and
more outliers are apparent. Moreover, a systematic bias (-
9.75 ms) in beat-to-beat interval estimation can be observed
during the daytime, which was smaller in both patients at
night (-1.29 ms) and in the healthy sleepers (-2.80 ms). While
the 5th and 95th percentile closely envelope most of the BBI
differences, significant outliers in the range of more than
200 ms are obvious, in particular during daytime, indicating
failure of the outlier rejection method.

Figure 6 shows an aggregated analysis of all patients over
the time of day. For this, coverage and error were assessed in
a 5-minute sliding window for all patients. Peaks in the error
can be found at around 8:00 and 12:30, which correspond to
breakfast and lunch time during which there are more move-
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Fig. 4. Bland-Altmann-Plot of BBI estimation for the daytime section (top)
and the nighttime section (bottom) of the patient data. To avoid clutter, 10,000
sample points were randomly selected for plotting.

ments and patients may be sitting on their beds. Note that the
coverage is reduced in general during the day and in particular
during the peaks in the error signal. The measurement were
started on average at 19:18 (standard deviation 95 minutes).
Given the average usable duration of 17 hours, 41 minutes,
the set of peaks between 17:00 and 20:00 can probably be
attributed to the interventions associated with attachment and
detachment of the devices as well as dinner. Fig. 7 shows
examples of raw signals for different subjects and different
times of day. Mean BBI and SDNN are calculated on 20
consecutive beats for visualization purposes.
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Fig. 5. Bland-Altmann-Plot of BBI estimation for the healthy subjects group.
To avoid clutter, 10,000 sample points were randomly selected for plotting.

TABLE IV
RESULTS OF SDNN / RMSSD ESTIMATION FOR THE HEALTHY SUBJECTS.
THE MEAN VALUE REPORTS THE GROUND-TRUTH MEAN VALUE OVER ALL

SHORT-TERM WINDOWS DERIVED FROM THE REFERENCE DATA.

Healthy SDNN [ms] RMSSD [ms] Coverage
ID Mean ēabs Mean ēabs [%]

1 74.87 6.79 67.81 7.18 59.25
2 90.92 7.08 91.49 7.93 11.65
3 77.52 7.32 73.28 11.26 43.91
4 86.56 8.27 68.06 14.42 19.61
5 113.73 10.50 110.08 10.81 36.25
6 109.61 12.96 106.81 15.23 52.64
7 44.38 9.79 39.19 17.24 57.46
8 136.01 18.70 134.40 22.77 6.98
9 85.82 9.98 71.93 11.64 38.65
10 97.12 8.90 77.29 7.86 31.87

Mean 65.47 7.16 60.02 9.02 25.59
Gross Average 87.98 9.21 79.67 11.98 37.23

C. Heart Rate Variability Estimation

In Fig. 8, the effect of the coverage threshold thcov for
HRV analysis is demonstrated on the healthy subjects dataset.
As expected, a decrease in tcov leads to a higher coverage of
HRV estimation while at the same time increasing error and
vice versa. In the following analysis, a threshold of tcov = 0.7
was arbitrarily chosen.

Tables IV and V show the results of the SDNN and
RMSSD estimation for the healthy as well as the patient
population. For the patient data, the complete recordings
were used. Compared to BBI estimation, differences are more
pronounced. While the average coverage is 37.23 % for the
healthy subjects, it is only 9.65 % for the patient data. This can
partly be explained by the fact that the included daytime data
exhibits large portions where the coverage of BBI estimation is
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Fig. 6. Aggregated analysis over all patients and time of day. For calculation, a sliding analysis window of length 5 minutes was used.
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Fig. 7. Example snippets of 12 seconds of raw signal for different patients and different times of day. The solid black lines indicate the reference intervals
derived from ECG, the dashed red lines the estimations from BCG. Both annotations were shifted to be aligned at the first beat.
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Fig. 8. Coverage and error of the SDNN estimation with different values of
the threshold parameter tcov.

TABLE V
RESULTS OF SDNN / RMSSD ESTIMATION FOR THE PATIENTS. THE
MEAN VALUE REPORTS THE GROUND-TRUTH MEAN VALUE OVER ALL

SHORT-TERM WINDOWS DERIVED FROM THE REFERENCE DATA.

Patient SDNN [ms] RMSSD [ms] Coverage
ID Mean ēabs Mean ēabs [%]

1 50.17 - 46.10 - 0.00
2 20.34 3.05 13.93 3.88 1.33
3 53.66 1.77 39.95 2.86 0.26
4 20.44 4.10 18.73 10.36 1.12
5 74.99 5.90 63.52 11.89 0.02
6 23.02 1.87 15.90 5.45 1.28
7 15.52 7.94 13.35 14.02 1.81
8 72.26 8.34 36.08 4.65 9.36
9 43.58 4.25 36.81 6.66 10.67
10 40.20 2.87 34.52 5.81 20.79
11 39.39 5.80 21.15 7.74 15.02
12 24.39 8.08 18.03 9.95 23.57
13 54.42 7.26 36.57 7.30 10.18
14 14.74 5.91 13.65 7.99 37.34

Mean 39.08 5.16 29.16 7.58 9.48
Gross Average 39.35 5.84 29.42 7.47 9.65

low. In addition, even the analysis of the nighttime-only data
showed a reduced BBI estimation coverage. If this reduced
coverage stems from missing beats that are spread throughout
the recording instead of being clustered at a singular locations,
the coverage of HRV estimation is over proportionally reduced
as it requires segments of valid data with high coverage.
However, although the HRV coverage is relatively low it
may still be enough to provide additional value for patient
monitoring because HRV does not necessarily need to be
assessed in a continuous manner. The inter-subject variability
was also found to be more extreme, as coverage ranges from
0 to 37.34 % in the patients, while the range was 6.98 % to
59.25 % for the healthy sleepers. The mean absolute error for
the patient data was 5.84 ms / 7.47 ms (SDNN / RMSSD),
and 9.21 ms / 11.98 ms for the healthy subjects. Although
this means that the error is smaller for patients in terms of
absolute values, one can also see that the relative error is much
higher: while the average ground truth values over all subjects
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Fig. 9. Bland-Altmann-Plot of SDNN and RMSSD estimation for the healthy
subjects group. To avoid clutter, 5,000 sample points were randomly selected
for plotting.
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Fig. 10. Bland-Altmann-Plot of SDNN and RMSSD estimation for the patient
group. To avoid clutter, 5,000 sample points were randomly selected for
plotting.

and temporal windows is 87.98 ms / 79.67 ms for the healthy
population, it is 39.35 ms / 29.42 ms in the patient dataset for
SDNN and RMSSD respectively. This is visualized in the BA
plots in Figures 9 and 10. In addition to the spread of the data,
one can see that the proposed method underestimates SDNN
/ RMSSD, resulting in an offset of -2.72 ms / -0.71 ms for
patients and -8.44 ms / -11.05 ms for healthy subjects. As HRV
is higher in the healthy subjects, potential negative effects of
the adaptive prior, such as systematic underestimation, become
more severe.

V. CONCLUSION AND OUTLOOK

In general, our findings confirm that continuous monitoring
of high-risk cardiovascular patients is possible with BCG. Our
findings are consistent with previous findings presented by
others [10] as well as our group [13] in that results are indeed
inferior to those obtained from sleep laboratory studies [5],
[17]. However, after careful compensation for time-varying
sample drift and by analyzing nighttime data only, we were
able to show that beat-to-beat interval estimation results are
comparable between healthy subjects and our patient group in
terms of average absolute estimation error. The coverage, on
the other hand, was reduced notably. In combination with the
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aforementioned findings in terms of a reduced signal quality
we conclude that the CLIE algorithm performs very well in
selecting only those parts of the signal that exhibit sufficient
self-similarity for BBI estimation in sleeping subjects. Analyz-
ing the daytime data as well, the results on the patient dataset
are inferior. After aligning the data in terms of time of day,
obvious peaks in the error corresponding to breakfast, lunch,
and dinner become apparent. At the same time, the coverage
also drops markedly. While this shows that the algorithm is
capable of rejecting some portions of the signal associated with
daytime motion artifacts, it fails to reject them completely.
We assume that in particular rhythmic artifacts with relatively
low amplitude, for example associated with talking or other
voluntary movements, remain undetected and thus compromise
results, in particular leading to systematic underestimation
of BBIs. As a consequence, future work should focus on
the undoubtedly difficult task of detecting these types of
artifacts without decreasing estimator accuracy. In addition,
the recording of sleep stages or at least a binary sleep / wake
classification would allow further analysis of the exact origin
of outliers in the data.

It is interesting to note that we did not observe a significant
increase in error in the patient group as reported by others.
While Kaisti et al. [10] found a ten-fold increase in RMSE
in patients using a wearable seismocardiographic sensor, we
could only find a significant reduction in coverage using the
bed-integrated ballistocardiographic sensor and the proposed
algorithm. However, Kaisti et al. did their analysis on short-
term, controlled recordings of patients with coronary artery
disease. Thus, future work is needed to show whether or not
similar degradations are observed with ballistocardiography
and the proposed algorithm when it is applied to coronary
artery disease patients, whose cardiac function is likely to
differ from the patients analyzed here.

When heart rate variability is to be estimated, the situ-
ation becomes even more challenging than BBI estimation
alone. As consecutive segments of BBIs are necessary for
HRV calculations, missing beats can have detrimental effects.
Nevertheless, estimation of the time-domain HRV parameters
SDNN and RMSSD was shown to be possible in principle.
In terms of absolute values, the error was actually found to
be smaller for the patient data. However, since both SDNN
and RMSSD were significantly smaller in the patients, the
resulting relative error was higher. Also, while the estimation
of SDNN was more accurate in the ultra short window of
45 seconds, some authors suggest that shorter window sizes
lead to different results compared to SDNN estimation in 5-
minute windows, whereas RMSSD is largely unaffected, even
if the window is reduced to only 30 seconds [18]. However,
other authors have concluded that both RMSSD and SDNN
can be calculated reliably from multiple windows of only 10
second [19]. In our study we found that both parameters were
systematically under-estimated compared to the ECG reference
with the same window size. One potential reason might lie in
the developed iterative estimation approach itself: In contrast
to the original CLIE algorithm [5], the estimation is augmented
by an adaptive prior based on the median BBI interval. While
this improved results in terms of BBI estimation accuracy and

coverage in general, it might steer the estimation closer to
the median, i.e. reduce variability. In the future, this should
be analyzed in detail, preferably with synthetic data where
HRV parameters can be controlled systematically [20]. In ad-
dition, we plan to investigate algorithms that allow estimation
of surrogates that correlate well with established time- and
frequency-domain HRV parameters but can be calculated from
incomplete data and are more robust towards outliers.

REFERENCES

[1] P. Scheffler, S. Muccio, G. Egiziano, R. J. Doonan, A. Yu, F. Carli,
and S. S. Daskalopoulou, “Heart rate variability exhibits complication-
dependent changes postsurgery,” Angiology, vol. 64, no. 8, pp. 597–603,
2013.

[2] T. Ushiyama, K. Mizushige, H. Wakabayashi, T. Nakatsu, K. Ishimura,
Y. Tsuboi, H. Maeta, and Y. Suzuki, “Analysis of heart rate variability
as an index of noncardiac surgical stress,” Heart and Vessels, vol. 23,
no. 1, pp. 53–59, 2008.

[3] P. K. Stein, R. E. Schmieg, A. El-Fouly, P. P. Domitrovich, and
T. G. Buchman, “Association between heart rate variability recorded
on postoperative day 1 and length of stay in abdominal aortic surgery
patients,” Critical Care Medicine, vol. 29, no. 9, pp. 1738–1743, 2001.

[4] G. Ernst, L. O. Watne, F. Frihagen, T. B. Wyller, A. Dominik,
and M. Rostrup, “Decreases in heart rate variability are associated
with postoperative complications in hip fracture patients,” PLOS ONE,
vol. 12, no. 7, p. e0180423, jul 2017.
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