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Abstract1

We use a real-time temperature-programmed desorption chemical-ionization mass spectrometer (FIGAERO-2

CIMS) to measure particle-phase composition and volatility of nucleated particles, studying pure α-pinene oxi-3

dation over a wide temperature range (-50 ◦C to +25 ◦C) in the CLOUD chamber at CERN. Highly-oxygenated4

organic molecules are much more abundant in particles formed at higher temperatures, shifting the compounds5

towards higher O:C and lower intrinsic (300 K) volatility. We find that pure biogenic nucleation and growth6

depends only weakly on temperature. This is because the positive temperature dependence of degree of oxida-7

tion (and polarity) and the negative temperature dependence of volatility counteract each other. Unlike prior8

work that relied on estimated volatility, we directly measure volatility via calibrated temperature programmed9

desorption. Our particle-phase measurements are consistent with gas-phase results and indicate that during10

new-particle formation from α-pinene oxidation, gas-phase chemistry directly determines the properties of ma-11

terials in the condensed phase. We now have consistency between measured gas-phase product concentrations,12

product volatility, measured and modeled growth rates, and the particle composition over most temperatures13

found in the troposphere.14

Introduction15

Atmospheric new-particle formation contributes up to half of the global cloud condensation nuclei (CCN) number16

concentration.1–3 Important processes include formation of molecular clusters, stabilization where the rate of growth17

greatly exceeds any evaporation, and finally growth to CCN size (50-100 nm diameter) with sufficient speed to avoid18

coagulational loss.4–6 However, the sensitivities of the CCN budget to the mechanisms and rates of new-particle19

formation and growth are highly uncertain. Accurate representation and parameterization of new-particle formation20

for different environmental conditions in models remains a critical challenge in predicting climate forcing from aerosol21

indirect effects.1,7–922

Biogenic volatile organic compounds (VOC) dominate total VOC concentrations across the globe, especially23

in clean or moderately-polluted environments.10,11 Monoterpenes comprise a major fraction of biogenic VOCs, and24

low-volatility organic compounds from monoterpene oxidation play an essential role in new-particle formation.12,1325

However, until quite recently the chemical mechanism governing formation of organic vapors that nucleate or drive26

condensational growth of extremely small particles (smaller than 10 nm diameter) has been unclear. Peroxy radical27

(RO2) auto-oxidation and subsequent fast association (“dimerization”) of peroxy radicals in the gas phase has emerged28

as a major formation pathway of highly-oxygenated organic molecules (HOMs)14–18 with (extremely) low vapor29

pressures that participate in nucleation12 and initial particle growth.1930

However, several questions remain unanswered. First, there is a long-standing question whether particle growth31

via organic condensation is rate limited by gas-phase production of low-volatility products or by reactive uptake of32

more volatile products followed by condensed-phase chemistry forming low-volatility products in the particle phase33

(glyoxal being a canonical example).20–22 Second, the temperature dependence of condensible product formation (and34

thus secondary organic aerosol yields) remains uncertain and could depend strongly on whether condensation is rate35
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limited by gas-phase oxidation or condensed-phase chemistry.36

Quantum chemical calculations confirm that the unimolecular H-atom transfers within monoterpene-derived per-37

oxy radicals have an activation energy on the order of 20 kcal mol−1.23,24 At warmer temperatures, auto-oxidation38

may outpace bimolecular termination reactions and generate products with high oxygen content and thus lower vapor39

pressures. At lower temperatures, due to the high energy barriers, auto-oxidation is expected to significantly slow40

down compared to the barrierless termination reactions; this will suppress the yield of highly oxygenated organic41

compounds. In addition to influencing auto-oxidation and the formation of HOMs, lowering temperature also re-42

duces saturation vapor pressures, increases saturation ratios for the same production rates, and thus provides more43

condensable material to contribute to nucleation and particle growth. The trade-off between these two significant44

temperature effects highlights a challenge in predicting new-particle formation in environments ranging from the45

warm tropical surface to the outflow regions of deep-convective clouds. It also highlights the strong need to obtain46

full experimental closure on the temperature dependent mechanisms responsible for this process.47

Background48

Previously, Stolzenburg et al. 201825 and Frege et al. 201826 have measured the composition of gas-phase products49

and small charged clusters during new-particle formation from α-pinene over a range of temperatures in the Cosmic50

Leaving OUtdoor Droplets (CLOUD) facility at CERN. Frege et al. 201826 used an atmospheric pressure interface51

time-of-flight mass spectrometer (APi-ToF) to measure naturally charged ions, showing that low temperature (−2552

◦C) favors formation of products with lower oxygen content and lower molecular weight compared to products formed53

at high temperature (+25 ◦C). Stolzenburg et al. 201825 combined measurements from a proton-transfer-reaction54

mass spectrometer and a nitrate anion chemical ionization mass spectrometer (CIMS) to measure neutral gas-phase55

species with a wide range of polarity and volatility, finding that products formed at low temperature (−25 ◦C) have a56

higher room-temperature saturation vapor pressure than products formed at high temperature (+25 ◦C). Volatility in57

this case was estimated using a simple composition-volatility relationship.25,27 Further, they modeled particle growth58

using a dynamical Volatility Basis Set (VBS) to treat both the curvature (Kelvin) and condensed-phase mixing59

(Raoult) effects on condensed-phase activity and were able to quantitatively reproduce particle growth rates derived60

from a suite of microphysical instruments.61

However, due to the lack of detailed composition and volatility measurements of the particles following new-62

particle formation and condensational growth, it is not known whether measurements of particle-phase composition63

will confirm our understanding of the temperature dependence of the gas-phase chemistry, or whether the particle64

composition will show signs of subsequent condensed-phase chemistry. To answer those questions, here we present65

real-time particle-phase composition measurements from a series of CLOUD experiments of new-particle formation66

from pure α-pinene oxidation over a wide temperature range (−50 to +25 ◦C) with atmospherically relevant precursor67

concentrations. We use a Filter Inlet for Gases and Aerosols (FIGAERO) thermal desorption inlet on an iodide CIMS.68

We first describe the overall response of the instrument to new-particle formation events in the CLOUD chamber,69
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then characterize the broad set of identified products, and finally show the progressive evolution of composition and70

volatility of the products versus temperature in the two-dimensional volatility basis set.27 Using direct temperature71

programmed desorption, we infer volatility during new-particle formation, and confirm that covalently bound dimers72

of α-pinene oxidation products are present in newly formed particles. Our objective is to investigate whether full73

closure exists between the observed gas-phase species and concentrations, the observed particle growth rates, and the74

observed condensed-phase composition at all temperatures.75

Materials and Methods76

The CLOUD chamber77

The CLOUD chamber at CERN is a 26.1 m3 stainless steel chamber with precisely controlled temperature,78

humidity and constituent gases. It is fed as a continuously stirred tank reactor with a flow of synthetic air formed79

by mixing vapor from liquid nitrogen and liquid oxygen storage tanks. VOC gases are diluted to the required80

concentration with pure air before entering into the chamber. The temperature in the chamber is controlled to a81

precision of ± 0.1 ◦C over a broad range from -65 ◦C to 30 ◦C, and the chamber is mixed rapidly by inductively82

coupled fans mounted at the top and bottom. Ions are controlled in three states (“neutral”, “galactic cosmic ray”, and83

“beam”) via a switchable high-voltage clearing field and regulated exposure to a 3.5 GeV π+ beam from the CERN84

proton-synchrotron. A suite of real-time gas- and particle-phase instruments sample the chamber simultaneously,85

collectively establishing a flushing time of approximately 1.5 h. More details can be found in Kirkby et al. 201128
86

and Duplissy et al. 2016.2987

Results presented here are from α-pinene oxidation experiments during the CLOUD-12 campaign in Fall 201788

under galactic comic ray conditions at four different temperatures: -50 ◦C, -25 ◦C, +5 ◦C and +25 ◦C. The α-pinene89

concentration was 600 pptv for experiments at -50 ◦C, +5 ◦C and +25 ◦C, and 1200 pptv for the experiment at -2590

◦C (experiment at 600 pptv is not available). We held ozone at a constant 40 ppbv and performed all experiments91

in the dark, and no hydroxyl radical scavenger was used. The chamber’s relative humidity (RH) was 90 % for92

experiments at -50 ◦C and -25 ◦C and 38 % for experiments at +5 ◦C and +25 ◦C. We do not expect the difference93

in humidity to significantly influence our results as RO2-derived HOM formation shows limited RH dependence.30 In94

the chamber, the background concentration of nitrogen oxides was in the sub pptv range and the background sulfuric95

acid concentration was lower than 5 × 104 cm−3.28 For these experiments, we added no nitrogen oxides or sulfur96

dioxide into the chamber and so these results represent NOx-free “pure biogenic” organic conditions.97

FIGEARO chemical ionization mass spectrometer98

We used a chemical ionization mass spectrometer (CIMS) with a Filter Inlet for Gas and AEROsol (FIGAERO)99

(Aerodyne Research Inc. & Tofwerk AG) to measure the nucleated particles from α-pinene oxidation. The FIGAERO-100

CIMS, which has a sensitivity on the pg m−3 level, has been described in detail in Lopez-Hilfiker et al. 2014.31 In101

brief, it measures gas-phase compounds while collecting particles on a Teflon filter in the inlet at a flow rate of102
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8 liters per minute. After particle collection, the FIGAERO switches to a particle thermal desorption mode in103

which the filter is bathed in heated nitrogen carrier gas ranging from room temperature to about 160 ◦C following a104

temperature program. Because the entire filter manifold is made of Teflon and thus has very low thermal conductivity,105

it responds rapidly to the changing carrier-gas temperature. The thermally desorbed compounds from the collected106

particles subsequently flow into an ion-molecule reactor and are measured by the downstream CIMS. Figure S1 shows107

examples of thermal-desorption profiles of representative products identified from the experiments here. The gas-108

phase sampling/particle collection time in our experiments was 30 minutes and the thermal desorption mode lasted109

for 15 minutes before the instrument returned to the gas sampling and particle collection mode. Here we focus largely110

on the particle-mode data.111

We used iodide as the reagent ion as it can cluster effectively with low-volatility organic compounds.32 We112

produced iodide ions by passing methyl iodide from a permeation source over a 210Po foil. The long time-of-flight113

(LTOF) mass spectrometer has a mass resolving power of up to 12,000 (Tofwerk AG). We collected data at 1 Hz and114

averaged them to 0.1 Hz for post processing.115

The temperature of the maximum desorption signal (Tmax) during the particle mode correlates with vapor116

pressure and vaporization enthalpy,31,33 provided that compounds do not thermally decompose.34 We performed117

volatility calibrations by manually depositing an aliquot of a mixture of several known pure organic acids and fitting118

the 1/Tmax (in K) of each calibrant with their sub-cooled liquid vapor pressure. We calibrated with the filter starting119

at room temperature and show representative data in the Supporting Information. We use the calibration curve120

to estimate the gas-phase saturation concentration of all the measured compounds by correlating 1/Tmax with their121

saturation vapor pressure.122

Results and Discussion123

FIGAERO CIMS measurements of new-particle formation124

We first present an example of a new-particle formation event in the CLOUD chamber from pure α-pinene125

oxidation and show the corresponding FIGAERO particle-phase signals. In this event, the α-pinene concentration126

was 600 pptv and the chamber temperature was -50 ◦C. In Figure 1a, we show the particle number size distribution127

combining measurements from a nano-SMPS (TSI, Inc.) and a custom-made long-SMPS. This is a so-called “banana”128

with time on the x-axis, mobility diameter on the (log) y-axis, and the number size distribution shown via colors;129

the nucleation event in this case occurred somewhat before the earliest time shown and subsequent condensation130

drove growth from roughly 3 nm to 30 nm over 4 h, made evident by the leading (upper) edge. This growth rate131

of 8 nm h−1 is typical of atmospheric new-particle formation events5 and indicates that condensible vapors in the132

experiment were similar to those typical of the atmosphere. Because the FIGERO provides a bulk mass measurement,133

we show the corresponding particle volume distribution in Figure 1b. We highlight the particle collection periods in134

the FIGAERO inlet with grey boxes (30 minutes each). For example, when we collected particles between 8:30 and135

9:00 the leading edge was just over 20 nm, and data from the corresponding thermal desorption cycle appear between136
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9:00 and 9:15.137

In Figure 1c we show representative data from the particle desorption cycles for a monomer product, C10H16O8·I−,138

and a dimer product, C20H32O6·I−. Here we define monomer products as ions containing 10 or fewer carbon atoms139

and dimer products as ions containing 11 to 20 carbon atoms. When there is sufficient mass loading (after 8 am140

in this case), the peak signal for the dimer product always appears after the monomer product because it has a141

lower vapor pressure. As the new-particle formation proceeds and particles grow to larger sizes, signals of both the142

monomer and dimer products in the particle phase increase correspondingly in proportion to the particle volume.143

We examined the size-dependence of total oxygen to carbon elemental ratio (O:C) during a new particle-formation144

event and found no observable change in O:C versus particle size. There is thus no evidence from the FIGAERO145

data that the particle composition changes significantly during an event. This may be because the time resolution146

(45 minutes) of our data is not fine enough to capture the very beginning of the particle growth period where the147

Kelvin effect is most critical,19,25 or simply that the signal to noise for particles smaller than 10 nm is insufficient to148

resolve any composition differences. For the results we show in the rest of this paper, we use the data from the last149

cycle for each experiment in order to maximize the signal to noise.150

Our signal generally consists of a background that is nearly independent of temperature overlain by a well-defined151

thermal desorption peak, as shown in Figure S4. To separate these we fit a linear background, as shown, and interpret152

the peak area of the temperature-dependent peak above this background as the signal due to particles collected on153

the filter during the sampling cycle. As we show in Figure S3, the sum of peak areas of all identified products in a154

sampling cycle is proportional to the corresponding average SMPS mass. Further, during nucleation events with a155

constant HOM vapor concentration (such as the event shown in Figure 1), the total signals of the first FIGAERO156

cycle in which there are barely any particles in the chamber is generally well under 8% of maximum FIGAERO cycle.157

For our quantitative analysis we use the signal from the end of each event, with maximum suspended volume; we158

thus conclude that this signal is almost entirely due to collected particles, with little or negligible interference from159

adsorbed vapors on the filter.160

In Figure S5a, we correlate the FIGAERO signals with known mass concentration of a mixture of organic acids as161

shown. In Figure S5b, we correlate the total particle-phase mass measured by the FIGAERO-CIMS and the average162

integrated particle concentration during particle collection cycles under all temperatures, as measured by the SMPS.163

The total particle mass from the FIGAERO correlates well with the SMPS mass, with an r2 of 0.89. We find a ratio164

of 1.6 between the inferred total mass based on filter calibrations (presuming a constant sensitivity of the I− chemical165

ionization) and the inferred mass based on the SMPS mass assuming a particle density of 1.4 g cm−3. We have166

observed correspondingly good correlation between the integrated FIGAERO signal and total particle volume during167

a number of CLOUD campaigns.35 This indicates that the overall sensitivity of the FIGAERO-CIMS to particle168

loading is consistent across different experiments in our studies and that we are recovering a large fraction, if not all,169

of the total available mass.170
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Measured products from FIGAERO-CIMS171

In Figure 2, we show a representative mass-defect plot for particle-phase constituents from α-pinene oxidation172

at +5 ◦C. We show mass-defect plots for all temperatures in Figure S6 in the Supporting Information. We are able173

to clearly measure the monomers (C7−10 compounds) and dimers (C14−20 compounds) in the particle phase at all174

temperatures in our experiments. Here we only show iodide adducts (CxHyOz·I−), although a small portion of the175

detected ions underwent iodide declustering.32 Due to the extremely low level of NOx in the chamber (sub pptv), we176

do not observe any signals from nitrogen containing species, consistent with NOx-free conditions.177

In Figure 2, we color code the symbols by oxygen number. In the monomer mass range, detected compounds178

show 4 ≤ nO ≤ 10 at 5 ◦C. In the dimer mass range, the oxygen number varies from 5 ≤ nO ≤ 13. Products with179

higher oxygen content may also exist as gas-phase products with up to 18 oxygens are detected by the nitrate-chemical180

ionization mass spectrometer deployed in the same campaign (manuscript in prep). But the signals of these products181

in the particle phase may be too low in our instruments to produce a reliable signal above the background. As shown182

in Figure S6, as the temperature drops, the products shift progressively towards lower oxygen content in both the183

monomer and the dimer bands. This is consistent with gas-phase observations from CLOUD-10 and CLOUD-1125,26
184

that the rate of auto-oxidation is lower during new-particle formation at lower temperature, producing less oxidized185

products at low temperature than at high temperature. In addition, lower temperature enhances condensation of186

compounds with higher room-temperature saturation vapor pressures, which may be less oxygenated. For instance,187

at +25 ◦C, for the C10HyOz series, the lowest oxygen content measured in the particle phase is O6 while at, while at188

-25 ◦C and -50 ◦C, the lowest oxygen content is O3, as shown in Figure S6. We shall discuss this more in the next189

section.190

As Figure 2 shows, we detected many dimer products in the thermal desorption data. This confirms that dimers191

from α-pinene oxidation are covalently bounded, likely from RO2 + RO2 association reactions,36 as they thermally192

desorbed without evident fragmentation at temperatures as high as 130 ◦C in our instrument (also see Figure S1). We193

did not detect any products in the trimer (C30) or tetramer (C40) mass ranges, though these species were observed as194

naturally occurring ions by the APi-ToF-CIMS in prior CLOUD experiments.26 This is consistent with these higher195

mass ions being molecular clusters of covalently bound monomers and dimers that appear only as monomers and196

dimers in the bulk particle thermal desorption data.197

Volatility distributions of nucleated particles versus temperature198

In Figure 3, we present the condensed-phase constituents at different temperatures within the two dimensional199

volatility basis set (2D-VBS) introduced by Donahue et al. 2011.27 The x-axis is the log of saturation concentration200

(C∗300 K) experimentally estimated using the thermal desorption profile measured at 300 K described in the Supporting201

Information. We report volatility as C∗ (and not C◦) because our observations are over mixtures and thus implicitly202

include activity coefficients. The y-axis is the observed oxygen to carbon ratio, O:C. Every datapoint is normalized203

by the largest signal in the +25 ◦C data and the size of each datapoint signifies the signal level. The different204
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broad colored bands in the background represent the volatility classes of extremely low-volatility organic compounds205

(ELVOC), low-volatility organic compounds (LVOC), semi-volatile organic compounds (SVOC) and intermediate-206

volatility organic compounds (IVOC). We shift the volatility classes for the lower temperature experiments using207

the Clausius-Clapeyron relation and the enthalpy of evaporation in Donahue et al. 201127 and Epstein and Donahue208

200937 because the classes are fundamentally associated with atmospheric saturation ratios. Details of this calcu-209

lation are in the Supporting Information. We also show the products aggregated into a 1D-VBS (C∗ only) at four210

temperatures in Figure S7 of the Supporting Information.211

The counter-balancing effects of oxidation and temperature are evident in Figure 3, where to a great extent212

the condensed-phase products remain in the LVOC range, with a tail extending into the ELVOC range. At +25213

◦C, most of the products have a 300 K saturation concentration lower than 1 µg m−3. As temperature decreases,214

there is a progressive shift of both the monomer and dimer products towards higher 300 K (intrinsic) saturation215

concentration and towards lower O:C. This is consistent with reduced formation of HOMs as observed by previous216

gas-phase measurements.25,26 This also reflects the temperature effects on the saturation vapor pressure. Therefore,217

the suppressed formation of compounds with lower volatility is compensated by the shift of the volatility classes at218

lower temperatures, indicated by the shifted colored bands in Figure 3. For example, a compound with logC∗ = 2219

at 300 K is an SVOC at +25 ◦C and +5 ◦C, but it is an LVOC at -25 ◦C and an ELVOC at -50 ◦C. This supports220

the roughly constant particle growth below 10 nm observed across a wide range of temperatures by Stolzenburg et221

al. 2018.25222

During low-temperature experiments, we used insulation to maintain the temperature between the chamber and223

the instrument sampling/filter system. Still there may have been loss of higher-volatility compounds during the224

low-temperature experiments. Therefore, our low-temperature measurements should be a lower bound of the signals225

from the actual collected material. This could be why the -50 ◦C distribution does not extend through the LVOC226

region, as the molecules at the LVOC-SVOC boundary are quite volatile at room temperature.227

Further, some decomposition occurred during thermal desorption, and some observed monomers (blue symbols)228

are actually products of dehydration33 or decomposition of dimers;38 these have volatilities (indicated by peak signal229

temperatures) much lower than most of other monomer products as shown in the volatility space in Figure 3 and230

instead appear within the dimer region. Despite these caveats, the evolution in both the volatility and the O:C231

direction in the 2D-VBS as a function of temperature is clear, and most of the identified products have volatilities232

based on peak thermal desorption temperature that are consistent with our broad estimates of their vapor pressures233

based on their molecular formulae.27234

The volatilities used in prior nucleation and growth experiments on α-pinene oxidation were estimated based on235

composition.19,25 The volatilities we show here in Figure 3 are directly measured based on peak desorption temper-236

ature. However, the experimental conditions were similar during different CLOUD campaigns. Based on measured237

vapor concentrations and estimated volatility distributions, Stolzerburg et al. 2018 were able to quantitatively repro-238

duce the observed size-dependent growth rates at -25 ◦C, +5 ◦C and +25 ◦C (they did not reach -50 ◦C) using a239

dynamical VBS model. Their results indicated that the condensing vapors remained just within the LVOC envelope240
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(approximately one order of magnitude to the left of the LVOC-SVOC dividing line at all temperatures). Here we241

show direct confirmation of this result at the corresponding temperatures, though our particle phase composition242

measurements with direct measurement of the volatility suggest that the demarcation is closer to the LVOC-SVOC243

dividing line. This represents a strong agreement within approximately one order of magnitude in volatility (over a244

range of many orders of magnitude).245

Our particle-phase observations show that the molecules condensing to drive particle growth are progressively246

more oxidized at elevated temperature, and also that there is a significant presence of covalently bound dimer species.247

This confirms that the rate-limiting step for particle growth in this case is gas-phase formation of HOMs (rather than248

subsequent particle phase chemistry) and is consistent with the rate-limiting step for nucleation itself being gas-phase249

formation of dimers from RO2 reactions, at least for T ≥ -25 ◦C. At -50 ◦C the products are dominated by products250

with relatively low signals of auto-oxidation products, relatively low O:C, and low dimer formation; however, the251

temperature is so low that even the mildly oxidized products are essentially ELVOCs capable of both nucleation and252

growth. That in turn is consistent with very high overall secondary organic aerosol mass yields previously reported253

for α-pinene oxidation at very low temperature.39,40 It also implies that at high altitudes, even slightly oxidized254

compounds (e.g., first-generation products without auto-oxidation) may condense to facilitate new particle formation255

and growth.41256

Taken all results together, our study shows that lower temperature reduces the production of HOMs but at the257

same time promotes condensation of less oxidized vapors to facilitate particle formation and growth. Our condensed-258

phase volatility measurements are consistent with volatility distributions from growth rate calculation using gas-phase259

observations. All told, the volatility distributions are consistent to within an order of magnitude (out of nearly 10) and260

the growth rates are consistent to within ∼30 %.25 Further, we confirm a significant population of covalently bound261

dimer species that survive thermal decomposition; these are thought to be critical for “pure biogenic” nucleation,262

though subsequent growth is driven by monomer HOM species. Our results indicate that for the α-pinene oxidation263

system, at least in the early stage of particle formation and growth under the typical loadings and conditions we264

studied in the CLOUD chamber, gas-phase chemistry, instead of condensed-phase or heterogeneous reactions that265

occur after low- or semi-volatile organics condense, is the dominant driver of the properties of biogenic SOA particles.266

Associated Content267

Supporting Information268

Volatility measurements in the FIGAERO-CIMS, mass measurements in the FIGAERO-CIMS, shifts of volatility269

classes as a function of temperature and supporting figures.270
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Figure 1: Example experiment performed with 600 pptv α-pinene and 40 ppbv ozone in the chamber at -50 ◦C and 90%
RH. Panels (a) and (b) are merged size-distribution data measured by a nano-SMPS and a long-SMPS for the new-particle
formation event. Panel (a) shows the number distribution and panel (b) shows the volume distribution. Time periods in the
grey squares in (b) are the particle collection intervals (30 mins each) for the FIGAERO. The arrows indicate the corresponding
signals during subsequent thermal-desorption cycles shown in panel (c). Each thermal desorption cycle lasts 15 min. The signals
of a representative monomer (C10) and dimer (C20) product rise with total particle volume but remain roughly proportional,
consistent with a constant particle composition. The gas phase was in a steady state during the experiment, as confirmed by
the total gas-phase signal shown as black diamonds averaged over each gas-phase collection interval measured by the I− CIMS.
The constant gas phase signal and initially low filter desorption signal confirms that the FIGAERO filter signal represents the
particle-phase composition.
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Figure 2: Mass-defect plot for nucleated particles at +5 ◦C. Marker size corresponds to the square root of the ion signals,
while color indicates number of oxygen atoms, as shown. We show the ions attached with I−. The band between 300 and 450
Th is the “monomer” band of (largely) C10 species, while the band between 450 and 600 Th is the “dimer” band of (largely)
C20 species. Each (slightly tilted) row corresponds to species with progressively more oxygen atoms, whereas each column
corresponds to species with progressively more hydrogen atoms (almost entirely with an even hydrogen number).
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Figure 3: FIGAERO particle-phase data for α-pinene oxidation projected onto a 2D-VBS for the nucleated particles at CLOUD
temperatures (from top to bottom) of +25 ◦C, +5 ◦C, -25 ◦C and -50 ◦C. Symbol colors differentiate monomers and dimers and
symbol sizes are ion signals normalized by the highest signal in each temperature. The calibrated assessment of the volatility
as C*(300K) of the desorbed compounds is shown in the x axis. From left to right, the broad, colored bands in the background
are volatility classes of extremely low-volatility organic compounds (ELVOC), low-volatility organic compounds (LVOC), semi-
volatile organic compounds (SVOC) and intermediate-volatility organic compounds (IVOC). These classes are defined by actual
volatility (C∗(T)) and so shift with temperature according to the Clausius-Clapeyron equation.
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Schnitzhofer, R.; Seinfeld, J. H.; Sipilä, M.; Stozhkov, Y.; Stratmann, F.; Tome, A.; Vanhanen, J.; Viisanen, Y.; Vrtala, A.;404

Wagner, P. E.; Walther, H.; Weingartner, E.; Wex, H.; Winkler, P, M.; Carslaw, K. S.; Worsnop, D. R.; Baltensperger, U.;405

and Kulmala, M. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature406

2011, 476, 429–433.407

(29) Duplissy, J.; Merikanto, J.; Franchin, A.; Tsagkogeorgas, G.; Kangasluoma, J.; Wimmer, D.; Vuollekoski, H.; Schobes-408

berger, S.; Lehtipalo, K.; Flagan, R. C.; Brus, D,; Donahue, N. M.; Vehkamäki, H.; Almeida, J.; Amorim, A.; Barmet, P.;409
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