
1

MADS: A Framework for Design and
Implementation of Adaptive Digital Predistortion

Systems
Lin Li∗, Peter Deaville†, Student Member, IEEE, Adrian Sapio∗, Lauri Anttila‡, Member, IEEE,

Mikko Valkama‡, Senior Member, IEEE,
Marilyn Wolf§, Fellow, IEEE, Shuvra S. Bhattacharyya∗, Fellow, IEEE

∗University of Maryland, College Park, ECE Department, College Park, MD 20742, USA
Email: {lli12311, asapio, ssb}@umd.edu

†Princeton University, Electrical Engineering, Princeton, NJ 08544, USA
Email: deaville@princeton.edu

‡Tampere University, Electronics and Communications Engineering, Finland
Email: {lauri.anttila, mikko.valkama}@tuni.fi

§ University of Nebraska-Lincoln, Lincoln, USA
Email: mwolf@unl.edu

Abstract—Digital predistortion (DPD) has important appli-
cations in wireless communication for smart systems, such as,
for example, in Internet of Things (IoT) applications for smart
cities. DPD is used in wireless communication transmitters to
counteract distortions that arise from nonlinearities, such as
those related to amplifier characteristics and local oscillator
leakage. In this paper, we propose an algorithm-architecture-
integrated framework for design and implementation of adaptive
DPD systems. The proposed framework provides energy-efficient,
real-time DPD performance, and enables efficient reconfiguration
of DPD architectures so that communication can be dynamically
optimized based on time-varying communication requirements.
Our adaptive DPD design framework applies Markov Decision
Processes (MDPs) in novel ways to generate optimized runtime
control policies for DPD systems. We present a GPU-based
adaptive DPD system that is derived using our design framework,
and demonstrate its efficiency through extensive experiments.

Keywords-Smart systems, dataflow modeling, digital predistor-
tion, Markov decision processes.

I. INTRODUCTION

Smart systems are capable of sensing the environment and
making decisions based on the available data in an adaptive
manner. To gather useful information about the environment
from sensors in real-time, smart systems may make use of
Internet of Things (IoT) technology. The sensory information
acquired by IoT devices can be transmitted to a base station
for aggregation and analysis to make decisions.

IoT devices are often equipped with wireless interfaces.
However, the quality of the wireless communication in smart
systems can suffer from non-idealities. In particular, non-
linearity of the power amplifier (PA) is a notorious source
of signal distortion. To address this issue, digital predistortion
(DPD) can be utilized to counteract PA non-linearities [1].
The implementation of an adaptive DPD system involves
a complex optimization problem that affects the wireless
communications quality, energy efficiency, and real-time per-
formance of the associated devices.

Due to changes in the environment such as temperature and
voltage, PA characteristics in general vary at run-time. Thus,
for most efficient operation, a DPD system should be able
to change the predistortion coefficients dynamically to ensure
that its underlying model matches accurately with its operating
environment. Moreover, for integration in smart systems with
many types of connected devices and communication modes,
it is critical for DPD systems to support efficient predistortion
across time-varying operational requirements and modulation
schemes. Thus, dynamic system control and reconfiguration
are desirable compared to static design for DPD systems.

In this paper, we develop a general framework for deploying
DPD implementations that address the need for efficient adap-
tivity in wireless communications devices. Implementations
that are deployed using this framework are designed to au-
tonomously make run-time decisions on DPD system configu-
rations based on the current system state and operational state.
The reconfiguration is driven by policies for dynamic system
management that are derived at design time using Markov
decision processes (MDPs) [2]. The key novelty of this paper
is the development of a general framework for MDP-based
design and implementation of adaptive DPD systems.

We refer to the proposed framework as the MDP framework
for Adaptive DPD Systems (MADS). Dynamic reconfiguration
in MADS is performed with the objective of jointly optimizing
Adjacent Channel Power Ratio (ACPR), system throughput,
and power efficiency. ACPR is often viewed as the most
critical metric for assessing the quality of DPD systems. ACPR
is defined as the ratio of the mean power centered on the
adjacent channels to the mean power centered on the desired
channel.

The MADS framework consists of two parts: (1) an MDP
subsystem that utilizes MDP methods hierarchically to derive
complex system configuration parameters that optimize speci-
fied objectives at run-time; and (2) a dataflow-based approach
for DPD implementation, which facilitates efficient system

2

MDP-I

MDP-II

Environment

 State

&

System State

Policy

Mapping

Engine

Control

Actions

MDP

Solver

Stochastic

Models of

Environment

and System

Reward

Function

Design Requirements

and Constraints

Turn DPD on/off

 DPD

configuration

Hierarchical MDP Subsystem

Policy Mapping

Engine

Con�gura�on

Sink Actor

init graph

subinit graph

body graph

Power Amplifer

 Estimate

DPD coefficients

 DPD

configuration

Input

PA_out

PA_in

Parameterized Dataflow

Implementation in LIDE

DPD_out

Policy Generation

DPD

Filtering

DPD

Es�ma�on

 DPD

Coefficients

General Design Process

Algorithm-speci�c

Design Process

Parameterized

 Dataflow

 Model

Fig. 1: An illustration of the MADS Framework.

reconfiguration. The hierarchical MDP approach in MADS
consists of two cooperating MDPs — a top-level MDP, and
a lower-level MDP that is controlled by the top-level one.
The top-level MDP is general (can be used across different
underlying DPD algorithms), and the lower-level MDP is
application-specific — that is, it is customized to the specific
DPD algorithm that the given MADS-based architecture ap-
plied to. Through this hierarchical MDP approach, the MADS
framework systematically extends the given DPD algorithm
with capabilities for efficient run-time reconfiguration.

To demonstrate the MADS Framework, we design an
adaptive version of a state-of-the-art DPD algorithm from
the literature — the DPD algorithm presented by Anttila
in [1], which is shown to be more effective than the DPD
architectures proposed in [3] and [4]. In particular, we apply
the MADS Framework to develop an adaptive architecture that
dynamically selects strategic configurations from the design
space defined by Anttila’s algorithm. We develop a hybrid
CPU/GPU implementation of this adaptive architecture, and
demonstrate its efficiency through extensive experiments.

This remainder of this paper is organized as follows. Sec-
tion II reviews related work from the literature on multi-
objective DPD systems. Section III presents the proposed
MADS framework along with a brief introduction to the
dataflow tools that are employed in our work to proto-
type framework. Section IV develops formulations of multi-
objective optimization in MADS, and the general, top level of
the hierarchical MDP that is employed. Section V demon-
strates the MADS framework by applying it to Anttila’s
algorithm, as described above. The lower-level MDP for this
demonstration system is presented, along with experimental
results that evaluate the performance of the system. Finally,
Section VI draws conclusions and summarizes directions for

future work.

II. RELATED WORK

Optimization problems for DPD systems have been widely
studied over the years. For example, the work in [5]–[8]
applies genetic algorithms to optimize DPD filter coefficients
while assuming fixed filter and polynomial orders. In [9], both
filter coefficients and polynomial orders are jointly optimized
via particle swarm optimization; however, this optimization
is performed with respect to only a single objective —
ACPR. Ghazi et al. propose a data-parallel implementation
of reconfigurable DPD on a mobile Graphics Processing Unit
(GPU) [10]. The implementation allows the DPD parameters
to fit various transmission scenarios by selecting a set of
candidate profiles based on desired linearization performance.
However, this work does not provide any control policy for
optimized run-time reconfiguration. In [11], Wang et al. utilize
a hill-climbing algorithm to search for an effective DPD con-
figuration. Wang’s approach jointly considers two objectives
— accuracy and the number of DPD coefficients. In [12],
Pareto-optimized DPD parameters are derived subject to multi-
dimensional constraints to support dynamically reconfigurable
DPD systems that are adaptive to changes in the employed
modulation schemes and operational constraints. However, this
work does not take into account reconfiguration costs nor
statistics of the environment and system states.

In comparison to the related work referenced above, our
contribution in this paper is novel in its development of a
general framework for integrating dynamic reconfiguration
systematically into a broad class of DPD algorithms. To the
best of our knowledge, the proposed framework is the first
that integrates MDP algorithms for the derivation of dynamic
DPD system parameters, and optimizes multiple objectives

3

including ACPR, power consumption and throughput. Also,
this work

A preliminary version of this paper was presented at AICAS
2019 [13]. This new version of the paper goes beyond this
preliminary version in the following ways. First, we elaborate
on the methods to obtain transmit powers from nearby devices
and we demonstrate the method to compute the transmit
power transition matrix, which is a key step in the proposed
MADS framework. Second, we tabulate detailed simulation
and measurement results, including results on ACPR, power
consumption, and throughput. The results are provided both
from simulations as well as from performance measurements
on a GPU-based implementation. Moreover, we report on sev-
eral new experiments to demonstrate the flexibility provided
to the designer by the MADS Framework in configuring trade-
offs that are important for DPD system operation. Finally,
we present new experiments that evaluate the performance
of MADS when the environment changes as well as when
the reward function changes. We also show results for the
use case where a stringent ACPR performance is enforced,
which is common in wireless communication standards. These
experiments provide further insight into the utility of the
reconfiguration capabilities provided by MADS.

III. MDP FRAMEWORK FOR ADAPTIVE DPD SYSTEMS

The MADS Framework is illustrated in Fig. 1. The frame-
work is designed so that many kinds of DPD algorithms can be
plugged in to generate MDP-integrated, adaptive systems that
are based on those algorithms. When the MADS Framework
is applied to a DPD algorithm X , we refer to X as the base
algorithm, and the adaptive system produced by the MADS
Framework is referred to as MADS-X . The base algorithm is
assumed to have two stages: (1) an estimation stage, where
the DPD coefficients are estimated according to the input and
output signals of the PA, and (2) a filtering stage, where the
input signal is filtered based on the coefficients estimated from
the estimation stage.

In Fig. 1, boxes with black-colored borders represent gen-
eral design processes that are involved in applying the MADS
Framework, while boxes with blue-colored borders represent
design processes that are specific to the base algorithm.

MADS consists of three major components: the policy gen-
eration subsystem, hierarchical MDP subsystem, and parame-
terized dataflow subsystem. The policy generation subsystem
provides policies for the hierarchical MDP subsystem, while
the hierarchical MDP subsystem captures the environmental
and system states and maps these states into actions based
on the policies. These actions in turn are used to modify
dataflow graph parameters within the parameterized dataflow
subsystem. In particular, the parameterized dataflow subsystem
adapts DPD parameters based on actions that are produced
from the hierarchical MDP subsystem. Details of the three
components are elaborated on below.

The block in Fig. 1 labeled Policy Generation, which
corresponds to the policy generation subsystem described
above, illustrates the application of an MDP solver that is
used to derive reconfiguration policies from MDP-I and MDP-
II. As with the base algorithm, the MADS Framework is

not specialized to any specific MDP solver. In our current
implementation of the framework, we use the MDPSOLVE
solver [14]. The output of the Policy Generation block is
the derived policy, which maps states to actions for MDP-I
and MDP-II respectively. The policy generation subsystem is
executed offline.

Based on both general features of DPD applications and
architecture-specific system behaviors, the MADS Framework
models environmental and system dynamics in the form of
hierarchical MDPs [15] which is shown to be efficient for
solving the multi-objective optimization problem [16]. This
modeling approach is illustrated in the block in Fig. 1 that is
labeled Hierarchical MDP Subsystem. The Hierarchical MDP
Subsystem consists of two smaller MDPs, MDP-I and MDP-
II. MDP-I generates a policy that determines when to turn
the DPD system on and off, while MDP-II determines key
DPD parameter configurations that should be used at a given
time when the DPD is on. MDP-I may turn predistortion
off, for example, if due to current channel conditions or
quality of service requirements, predistortion is expected to
not be needed for some significant amount of time. Using the
policies produced in the Policy Generation block, the MDP
subsystem determines the optimal action on-the-fly given the
environmental and system state, which are encapsulated in the
policy mapping engine.

The key aspect of the policy mapping engine is to provide
a table lookup, which is similar to many works in literature
in which tables that store the optimal DPD configuration
are generated. The main difference between our work and
conventional approaches to DPD adaptation is in the methods
used for determining the filter configurations for different
states, and for formulating the state space itself: conventional
works only consider short-term DPD performance while this
work takes wireless environment changes into consideration
and considers long-term rewards.

DPD parameters that can be configured by MDP-II include
the polynomial orders, filter orders, and filter coefficients.
The exact set of parameters that MDP-II optimizes in gen-
eral differs between different choices of the base algorithm.
Thus, when applying the MADS design methodology, MDP-II
should be formulated specifically for the given base algorithm.

As shown in Fig. 1, a reconfigurable DPD application
system developed in MADS is modeled as a parameterized
dataflow graph. Parameterized dataflow is a graph-based form
of model-based design that is well-suited to design and imple-
mentation of signal processing systems that have dynamic pa-
rameters [17]. To implement the dataflow graph, we apply the
lightweight dataflow environment (LIDE), which is a design
tool for dataflow-based design and implementation of signal
processing systems [18]. LIDE provides a compact set of
application programming interfaces (APIs) for implementing
signal processing applications as dataflow graphs. A useful
feature of LIDE is that it facilitates the retargeting of designs
to different implementation languages, such as C, CUDA, and
Verilog/VHDL, and different platforms [19]. MADS inherits
this useful feature of retargetability from LIDE.

A parameterized dataflow specification consists of three
distinct graphs — the init, subinit, and body graphs. Intuitively,

4

the init and subinit graphs are used to compute parameter
updates for the body graph. The init graph can also modify
parameters of the subinit graph. In the remainder of this
section, we describe how these component graphs are applied
in the MADS Framework; for general definitions on these and
other parameterized dataflow concepts, we refer the reader
to [17].

In our LIDE-based implementation of MADS, the init
graph computes system hyperparameters that affect the overall
DPD system architecture (i.e., the DPD specific subsystems
that are used and their interconnections). We refer to these
hyperparameters as architecture configuration parameters. The
parameterized dataflow runtime system in LIDE propagates the
parameter updates computed by the init graph to the subinit
and body graphs.

In contrast to the init graph, the subinit graph computes
system parameters that are used to configure a given DPD
architecture. We refer to these architecture-specific parameters
as DPD coefficients since they are constrained to being values
associated with digital filter coefficients. The subinit graph
encapsulates the base-algorithm-specific DPD estimation sub-
system as a main component. The estimation subsystem is
used to estimate new values for filter coefficients that are
to be used in subsequent executions of the body graph. It
manifests itself as a training phase that uses the indirect
learning method presented in [1]. On the other hand, the body
graph encapsulates the set of available DPD architectures,
and performs signal predistortion based on the most-recently
selected architecture (selected by the init graph) and its most-
recently configured coefficients (from the subinit graph). Exe-
cution control changes iteratively among the init, subinit, and
body graphs based on coordination rules that are defined as
part of parameterized dataflow semantics [17].

The parameterized dataflow graph takes the policy generated
from the hierarchical MDP subsystem as input and executes
the given actions in real-time to update relevant dataflow graph
parameters.

IV. ACTIVATION CONTROL

In this section, we present the formulation of MDP-I. This
MDP is designed in a general way to operate with arbitrary
base algorithms. In general, the formulation of an MDP
requires specification of four key components: the state space
(SS), action space (AS), state transition matrix (STM), and
reward function (RF). In the remainder of this section, we
describe the formulation of these components for MDP-I. For
general background on MDPs, including the role of their four
general components, we refer the reader to [2].
SS: The SS for MDP-I is represented as: s1 = (Tx , on), where
Tx is the current transmission power level, and on is a binary
value representing whether the system is turned on (1) or off
(0). The subscript 1 is used to indicate correspondence with
MDP-I. We quantize the continuous values of transmission
power to obtain a discrete SS.
AS: The AS consists of two actions: one to turn on (activate)
the DPD system and the other to turn it off. We denote the
action by a1.
STM: We define two STMs, which specify the state transition
probabilities for each of the two actions. The definition of

these STMs exploits two properties: (1) Tx is independent
of the action and the other state variable, and (2) the DPD
system is fully under the control of the action, so the system
transitions to the on/off state as requested by the action with
probability 1. The STMs are defined by:

P (s1(t + 1) = (j, y)|s1(t) = (i, x), a1)

= P (Tx(t + 1) = j, on(t + 1) = y|Tx(t) = i, on(t) = x, a1)

= P (Tx(t + 1) = j|Tx(t) = i)P (on(t + 1) = y|a1) ,

(1)

where P (on(t + 1) = y|a1) is 1 if a1 is to turn on the DPD
and 0 otherwise.
RF: We formulate the RF R1 as a linear combination of four
competing metrics: the averaged DPD power consumption
MP , ACPR MA, switching cost MS , and throughput MT ,
incurred by turning on the DPD system from an off status.

R1(s1(t), a1) = c1MP (s1(t)) + c2MA(s1(t))+

c3MS(a1, s1(t)) + c4MT (s1(t)) ,
(2)

where c1, c2, c3 and c4 are the weights of the optimization
objectives. Determination of these weights is a design issue
that influences operational trade-offs of the DPD system. The
values of c1, c2, and c3 should be negative and c4 should be
positive since the MDP is formulated to maximize the reward
function. For brevity, we use c = [c1, c2, c3, c4] to represent
the weight vector. Also, we impose a constraint on c such that∑4

i=1 |ci| = 1.

V. DEMONSTRATION AND EXPERIMENTS

In this section, we demonstrate the MADS Framework by
applying it to Anttila’s algorithm [1] as the base algorithm.
We refer to the integration of MADS with Anttila’s algorithm
as MADS-A.

In Anttila’s algorithm, the DPD system takes the form of
the Hammerstein architecture [20] and is split into two parts
(branches): direct and conjugate predistortions. We denote
the maximum orders of the polynomials for the direct and
conjugate branches by p and q, respectively. The parameters
p and q influence trade-offs among throughput, ACPR, and
power consumption. Strategic control of these parameters is
the target of MDP-II in MADS-A. In Anttila’s algorithm, only
odd-order polynomials are used. Thus, the sets of polynomial
orders are Ip = {1, 3, 5, . . . , p} for the direct branches and
Iq = {1, 3, 5, . . . , q} for the conjugate branches. For more
details about Anttila’s algorithm, we refer the reader to [1].

A. MDP-II Formulation

As discussed in Section III, the MDP-II component of
MADS is application-specific in that it needs to be specialized
to the base algorithm. In this section, we present our MDP
formulation for MDP-II in MADS-A. In MADS-A, the base
algorithm parameters that are controlled by MDP-II are the
polynomial orders p and q. The components of MDP-II are
summarized as follows.
SS: The SS consists of the current transmission power level
(as in MDP-I) and the deployed DPD configuration (p-q
combination), where p ∈ {1, 3, 5, 7, 9} and q ∈ {1, 3, 5, 7, 9}.
In MDP-II, we represent the state as s2 = (Tx, p, q).

5

AS: An action in MDP-II corresponds to determining the p-q
combination for the next MDP time step. Thus, the AS can be
represented as the set of all possible p-q combinations, and the
AS contains 5 × 5 = 25 elements. We denote the AS by a2.
As discussed in Section III, the DPD of the proposed system
has a learning phase when MDP-II decides that a new (p, q)
configuration should be used. In this case, the system would
calculate DPD coefficients for the new (p, q) setting using the
indirect learning approach presented in [1].
STM: We define 25 STMs corresponding to the 25 actions
in MDP-II. The state transitions for transmission power are
controlled by MDP-I, and are independent from both the action
and the system configuration. Similar to our development of
MDP-I, we assume that given a particular action, there is a
deterministic transition to the target configuration. The STMs
can be expressed in a form similar to that of Equation 1. We
omit the details due to space limitations.
RF: Similar to MDP-I, the reward function is a linear combi-
nation of MP , MA, MT , and a switching cost MS . The metrics
MP , MA, MT are the same as in MDP-I and have the same
weighting coefficients. However, the switching cost MS for
MDP-II is different. For MDP-II, MS refers to the cost of
reconfiguration from the p-q combination in the current time
step to the combination to be used in the next time step (based
on a2). The weight of MS for MDP-II is generally determined
separately from the corresponding weight for MDP-I. In this
paper, we use the same weight for MS to simplify the
simulation and analysis.

B. Experiment

We implemented the MADS-A system using LIDE on a
hybrid CPU/GPU platform composed of an Intel i7-2600K
(CPU) running at 3.4 GHz, and an NVIDIA GeForce GTX
1080 (GPU). The body graph (see Fig. 1) of MADS-A is
mapped to the GPU and the subinit and init graphs are mapped
to the CPU. The system throughput and power consumption
data that we collected to calibrate the reward functions for
the MDP formulations in MADS-A are based on the NVIDIA
GeForce GTX 1080.

In Fig. 2, we present the flowchart for the simulations.
First of all, since the transition matrix of the transmission
power is a crucial component for the calculation of STMs, we
collect WiFi packets in two different environment to derive
the transmit power transition matrix (TPTM). To calculate the
reward functions defined in (2), we collect ACPR metrics via
MATLAB simulations and throughput, power consumption,
switching cost using CPU/GPU testbed under different states.
These metrics are fed into the MDP solver Together with the
derived STM which leads to optimal policies under different
states. Finally, we run simulations to obtain the average re-
wards using the policies generated by the MDP solver. Details
of each step are elaborated below.

1) Measurement of Transmit Power Transition Matrix:
To obtain TPTM, we conduct experiments within the main
building that houses the Department of Electrical and Com-
puter Engineering at the University of Maryland, College Park.
After that, we conduct experiments in an office room of the
Kim Building at the same campus. In our context, the main

Collect WiFi packets

 using libpcap

Estimate TPTM

WiFi Signal

 Simulator

Baseband Signal Generator

Digital Predistortion

Power Amplifier

ACPR

CPU/GPU

 Testbed

Digital Predistortion

 Throughput

Power Consumption

MDPSOLVE

Fig. 2: Experimental setup.

TABLE I: Measured metrics for different DPD configurations.

PTX

L1 L2 L3 L4 L5

p, q |ACPR| (dBc) Throughput (Msps) Power Con. (mW)
1,1 71.57 69.87 64.83 59.84 49.20 6130.5893 67
1,3 71.53 70.00 64.79 59.78 49.14 4083.2399 89
1,5 71.54 69.90 64.74 59.78 49.05 3076.8075 108
1,7 71.52 69.92 64.73 59.77 48.98 2348.9606 103
1,9 71.43 69.91 64.74 59.75 48.92 1888.6455 140
3,1 71.71 71.52 71.66 67.48 52.00 4103.6944 85
3,3 71.64 71.85 71.70 67.54 51.99 3081.1472 89
3,5 71.70 71.75 71.58 67.55 51.89 2359.1073 145
3,7 71.69 71.76 71.53 67.52 51.87 1901.2475 135
3,9 71.74 71.75 71.66 67.46 51.85 1572.3608 179
5,1 71.80 71.66 71.62 71.61 69.49 3091.3208 84
5,3 71.71 71.70 71.82 71.71 70.23 2363.3610 110
5,5 71.68 71.71 71.68 71.73 71.52 1904.5626 145
5,7 71.76 71.86 71.84 71.80 71.44 1581.8489 179
5,9 71.76 71.74 71.62 71.67 71.65 1363.3451 148
7,1 71.68 71.67 71.58 71.65 69.53 2374.4928 113
7,3 71.68 71.79 71.72 71.74 70.31 1905.6703 136
7,5 71.79 71.75 71.65 71.81 71.63 1582.9952 148
7,7 71.76 71.75 71.85 71.77 71.57 1371.0460 150
7,9 71.79 71.87 71.83 71.79 71.57 1173.8492 174
9,1 71.70 71.73 71.81 71.55 69.59 1901.2475 150
9,3 71.78 71.78 71.72 71.86 70.49 1582.9952 150
9,5 71.69 71.83 71.57 71.82 71.87 1365.6178 177
9,7 71.78 71.65 71.83 71.74 71.62 1175.5336 180
9,9 71.65 71.60 71.72 71.67 71.73 1019.2224 175

difference between these two buildings is that the wireless
environment in the former is more complicated due to the
presence of more wireless devices. These two buildings are
selected as representative wireless environments within which
the experimental system under investigation could operate.

For the experiments in each building, we place a laptop
computer with WiFi capability in the building. The libpcap
utility, a commonly used software utility that can monitor WiFi
packets over the air, is used on the laptop. The WiFi card on
the laptop works at 2.4 GHz with a bandwidth of 20 MHz.
Each measurement is taken for 10 minutes. The transmit power
from the laptop to the wireless device is extracted, which leads
to a time series of transmit powers. To reduce the dimension
of the TPTM, we classify the transmit powers into five buckets
L1, L2, . . . , L5, with ranges for the buckets given as:
• L1: < 5 dBm
• L2: [5 ∼ 10) dBm
• L3: [10 ∼ 15) dBm
• L4: [15 ∼ 20) dBm
• L5: ≥ 20 dBm
We refer to L1 and L5, respectively, as the low and

high transmit power ranges. An example consisting of 10
bucketized transmit powers is shown as follows:

6

L5, L2, L3, L1, L5, L3, L2, L1, L4, L4. (3)

The transition probability PTX
(Lj |Li) can be computed as

follows:

PTX
(Li|Lj) =

of times when Tx[n + 1] = Li and Tx[n] = Lj

of times when Tx[n] = Lj
, (4)

where Tx[n] represents the nth element in the sequence of
sampled transmit power levels. For the example given in (3),
we can compute the following transmit power transition matrix
PExample

Tx
, where the (i, j)th entry represents PTX

(Li|Lj).

PExample
Tx

=

0 0.5 0.5 0 0
0 0 0.5 0 0.5
0 0.5 0 0 0.5

0.5 0 0 1 0
0.5 0 0 0 0

 (5)

In (6) and (7), we show the TPTMs that resulted from
our measurements for the university and office environments,
respectively. Clearly, the TPTMs are very different in these
two environment in that the transmit power for the office
environment tends to be lower while the transmit power for
the university environment has a higher probability to stay in
the high transmit power regime.

PUniversity
Tx

=

0.17 0 0 0 0
0.17 0 0.02 0.06 0.05
0.17 0 0.02 0.02 0.04
0.50 0.53 0.52 0.62 0.19
0.00 0.47 0.44 0.29 0.71

 (6)

POffice
Tx

=

0.58 0.13 0.16 0.17 0
0.21 0.67 0.24 0.29 0
0.19 0.18 0.58 0.19 1
0.02 0.01 0.02 0.35 0

0 0 0 0 0

 (7)

2) Measurement Results of ACPR, Power Consumption, and
Throughput: Metrics under different DPD configurations are
obtained from a wireless transmission simulator identical to
that used in [1]. The simulator that we adopt consists of a
WiFi signal generator, pulse shaping filter, DPD, and Wiener
PA with the same parameters as [1]. The signal bandwidth
is 20 MHz with 64 subcarriers and the modulation scheme
is Quadrature Phase Shift Keying (QPSK). For each system
configuration (p, q, PTX), the simulator is executed and the
results are used later by MDPSOLVE.

Simulations are carried out with MATLAB using reward
functions that are computed based on profiled execution time
and power consumption characteristics. To measure the power
consumption as well as throughput, we generate simulated
WiFi packets and feed them into the body graph (see Fig. 1),
which encapsulates the DPD filtering functionality mapped
onto the GPU. Then we leverage the NVIDIA Visual Profiler
(NVVP) to measure the power consumption and throughput.

In Table I, we present simulation results for ACPR and
measurements of throughput and power consumption under
different (p, q) configurations. The switching cost is approxi-
mated as 1/10 of the power consumption. From Table I, we
can observe that there exist clear tradeoffs among the different
metrics. More specifically, the results expose and quantify the
following important trends.

• For low transmit power levels, good ACPR performance
can be maintained even with low p and q values, while
for high transmit power levels, high p and q values are
desirable.

• High transmit power leads to worsened ACPR perfor-
mance. One can apply high p and q values to recover the
ACPR performance. As a trade-off, using high p and q
values results in degradation of throughput and increased
power consumption.

Considering the different ranges of the metrics, we nor-
malize all metrics so that the normalized forms range from
[0, 1]. For MDP-I, we use the median value of each metric to
represent the corresponding factor — namely, MP , MA, MS ,
or MT — in the reward function of Equation 2. The medians
are calculated from the measured values tabulated in Table I.
For ACPR, the median is calculated across all numbers in
the five columns labeled L1, L2, L3, L4, L5. For throughput
and power consumption, the medians are computed across the
numbers shown in the columns labeled Throughput and Power
Consumption, respectively. This provides a general approach
for calibrating the MDP-I reward function based on a set of
measurements in the form illustrated in Table I.

3) Experimental Results: In the remainder of this sec-
tion, we present experimental results for MDP-I, MDP-II
and the hierarchical combination of both MDP-I and MDP-
II. We compare the three resulting MDP-generated policies
among themselves to assess the utility of using the proposed
hierarchical MDP. We also compare the MDP approaches
with a number of simple, static policies for configuration
management. The hierarchical combination represents the
MADS-A implementation, while the other reconfiguration
policies are implemented using the same CPU/GPU testbed
by adding/disabling appropriate functionality.

In each of the experiments, we simulate the DPD application
system for 10,000 MDP time steps (reconfiguration rounds),
where the interval between steps is 10 milliseconds (ms). This
is the average reception interval between two packets that was
measured in the WiFi experiments described above.

4) Detailed Results for a Specific Weight Vector:
In this section, we present detailed results for c =
(−0.4,−0.3,−0.2, 0.1), which is selected as a representative
weight vector. These results help to validate and concretely
demonstrate the operation of the MADS framework. The
results are summarized in Fig. 3(a)–3(c). Here, the curves
labeled “Maximum Reward Mapping” represent the policy
that selects the action with highest reward in the current
state without considering the potential impact of the action
on the future. The curve labeled “Thresholding” represents
the performance of a policy that turns off the system when
the transmission power falls into L1 — i.e., is smaller than
5 dBm. The curves labeled with the prefix “Fixed Policy”

7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Reconfiguration Round

0.25

0.3

0.35

0.4

0.45

0.5

A
v

er
ag

ed
 R

ew
ar

d

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Reconfiguration Round

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
v

er
ag

ed
 R

ew
ar

d

(b)

1000 3000 5000 7000 9000

Reconfiguration Round

0.7

0.8

0.9

1

1.1

A
v
er

ag
ed

 R
ew

ar
d

(c)

10 20 30 40 50 60 70 80 90 100

Reconfiguration Round

40

60

80

A
C

P
R

 (
d
B

c)

10 20 30 40 50 60 70 80 90 100

Reconfiguration Round

50

100

150

200

P
o
w

er
 (

m
W

)

MDP-generated Policy

Maximum Reward Mapping

DPD Always On, p = 9, q = 9

DPD Always Off

10 20 30 40 50 60 70 80 90 100

Reconfiguration Round

2000

4000

6000

8000

T
h
ro

u
g
h
p
u
t

(M
sp

s)

(d)

Fig. 3: Measured results for (a) MDP-I, (b) MDP-II, (c) MADS-A (Hierarchical MDPs), (d) absolute value of ACPR (dBc),
power (mW) and throughput (Msps) of hierarchical MDPs.

represent policies that simply fix the DPD configuration as
specified.

The results in Fig. 3(a)–3(c) clearly demonstrate the capa-
bility of MADS-A to significantly outperform the individual
MDPs used in isolation as well the more conventional (static)
configuration management schemes. A similar observation can
be made for different values of c; this is demonstrated in
Section V-B5.

In Fig. 3(d), we demonstrate the ACPR, power consumption,
and throughput under different policies. These results show the
effectiveness of the proposed framework — in particular, its
ability to strike a balance among different DPD metrics.

5) Configuring Trade-Offs Using the Weight Vector: In
this section, we demonstrate optimized trade-offs derived by
MADS-A under several different settings for the weight vector
c. The results help to demonstrate the flexibility provided to
the designer for configuring operational trade-offs by adjusting
the value of c.

In Fig. 4(a), we demonstrate the performance of MADS-A
when c = [0.0,−1.0, 0.0, 0.0] — i.e., when we are optimizing
for ACPR only. In this case, MADS-A adopts the deterministic
setting of always turning on DPD with (p, q) = (9, 9) in order

to achieve the best ACPR performance.

On the other hand, when c is configured as
[0.0, 0.0, 0.0, 1.0], MADS-A with T = +∞ achieves
the same performance as the case of not turning on DPD. The
same observation can be made when tuning c to optimize
for power consumption and switching power. Finally, when
all four metrics are considered, MADS-A with T = +∞
outperforms the other settings, as can be seen from Fig. 4(d).

In Table II, we demonstrate the optimal policy given T =
+∞ for different settings of c. To focus the optimization on
ACPR performance (c = [0.0,−1.0, 0.0, 0.0]), MADS-A turns
on DPD for all states. On the other hand, when either power
consumption or throughput is considered as the only important
metric, MADS-A turns off DPD in all states. Finally, when all
metrics are considered, MADS-A turns off DPD if the transmit
power is low and turns on DPD otherwise. This can be justified
because the non-linearity of the PA is not severe for low levels
of transmit power, and thus, it is unnecessary to turn on DPD.
The results for MDP-II are omitted for brevity.

8

50 100 150 200 250 300 350 400 450 500

Reconfiguration Round

0.6

0.8

1

1.2

1.4

1.6

1.8

A
v
e
ra

g
e
d
 R

e
w

a
rd

MDP-generated Policy (T = +Inf)

Maximum Reward Mapping

DPD Always On, p = 9, q = 9

DPD Always Off, p = 1, q = 1

(a)

50 100 150 200 250 300 350 400 450 500

Reconfiguration Round

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

A
v
e
ra

g
e
d
 R

e
w

a
rd

MDP-generated Policy (T = +Inf)

Maximum Reward Mapping

DPD Always On, p = 9, q = 9

DPD Always Off, p = 1, q = 1

(b)

50 100 150 200 250 300 350 400 450 500

Reconfiguration Round

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
v
e
ra

g
e
d
 R

e
w

a
rd

MDP-generated Policy (T = +Inf)

Maximum Reward Mapping

DPD Always On, p = 9, q = 9

DPD Always Off, p = 1, q = 1

(c)

50 100 150 200 250 300 350 400 450 500

Reconfiguration Round

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

A
v
e

ra
g

e
d

 R
e

w
a

rd

MDP-generated Policy (T = +Inf)

Maximum Reward Mapping

DPD Always On, p = 9, q = 9

DPD Always Off, p = 1, q = 1

(d)

Fig. 4: Measured results for (a) c = [0.0,−1.0, 0.0, 0.0]; (b) c = [−0.5, 0.0,−0.5, 0.0]; (c) c = [0.0, 0.0, 0.0, 1.0]; (d) c =
[−0.05,−0.7,−0.05, 0.2].

10 20 30 40 50 60 70 80 90 100

Reconfiguration Round

0.6

0.8

1

1.2

1.4

1.6

1.8

A
v
e
ra

g
e
d
 R

e
w

a
rd

MDP-generated Policy (T = +Inf)

Maximum Reward Mapping

DPD Always On, P = 9, Q = 9

DPD Always Off, P = 1, Q = 1

(a)

10 20 30 40 50 60 70 80 90 100

Reconfiguration Round

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

A
v
e
ra

g
e
d
 R

e
w

a
rd

MDP-generated Policy (T = +Inf)

Maximum Reward Mapping

DPD Always On, P = 9, Q = 9

DPD Always Off, P = 1, Q = 1

(b)

10 20 30 40 50 60 70 80 90 100

Reconfiguration Round

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
A

v
e
ra

g
e
d
 R

e
w

a
rd

MDP-generated Policy (T = +Inf)

Maximum Reward Mapping

DPD Always On, P = 9, Q = 9

DPD Always Off, P = 1, Q = 1

(c)

Fig. 5: Measured results with first-order throughput and power consumption models under different weight vectors: (a) c =
[0.0,−1.0, 0.0, 0.0]; (b) c = [−0.5, 0.0,−0.5, 0.0]; (c) c = [−0.05,−0.7,−0.05, 0.2].

C. Performance with First-Order Reward Function Modeling

Throughput and power consumption can be modeled as a
function of the complexity of the DPD system. Such modeling
is useful if measurements of throughput and power are infea-
sible to obtain. Additionally, even if measurement is feasible,
evaluating the performance of MADS before making extensive
measurements can help designers gain insight into the possible
outcomes of applying MADS. Such analysis can be very useful
in early stages of the design process.

In this section, we present the performance of MADS based
on the first-order modeling approach for DPD throughput
and power consumption presented in [1]. The metrics can be
written as

MT [p, q] =
1

KT max(p, q)
(8)

MP [p, q] = KP (p + q) (9)

where MT [p, q] and MP [p, q] stand for the throughput and
power consumption under DPD configuration (p, q), respec-
tively, and KT and KP are two constants to scale the metrics
to the appropriate ranges of values.

With this first-order modeling approach, we reformulate
the reward functions and execute simulations with the new
functions. Here, we use KT = 0.0002Msps−1 and KP =
10mW. This leads to the results shown in Fig. 5(a), Fig. 5(b),
and Fig. 5(c). Similar to results shown in Section V-B5, we

9

TABLE II: Optimal policy with infinite horizon (T = +∞) for MDP-I.

Optimal Action (T = +∞)
c = [0.0,−1.0, 0.0, 0.0] c = [−0.5, 0.0,−0.5, 0.0] c = [0.0, 0.0, 0.0, 1.0] c = [−0.05,−0.7,−0.05, 0.2]

(DPD on, L1) Turn on DPD Turn off DPD Turn off DPD Turn off DPD
(DPD on, L2) Turn on DPD Turn off DPD Turn off DPD Turn on DPD
(DPD on, L3) Turn on DPD Turn off DPD Turn off DPD Turn on DPD
(DPD on, L4) Turn on DPD Turn off DPD Turn off DPD Turn on DPD
(DPD on, L5) Turn on DPD Turn off DPD Turn off DPD Turn on DPD
(DPD off, L1) Turn on DPD Turn off DPD Turn off DPD Turn off DPD
(DPD off, L2) Turn on DPD Turn off DPD Turn off DPD Turn on DPD
(DPD off, L3) Turn on DPD Turn off DPD Turn off DPD Turn on DPD
(DPD off, L4) Turn on DPD Turn off DPD Turn off DPD Turn on DPD
(DPD off, L5) Turn on DPD Turn off DPD Turn off DPD Turn on DPD

10 20 30 40 50 60 70 80 90 100

Reconfiguration Round

0.6

0.8

1

1.2

1.4

1.6

1.8

A
v
e
ra

g
e
d
 R

e
w

a
rd

MDP-generated Policy (T = +Inf)

Maximum Reward Mapping

DPD Always On, P = 9, Q = 9

DPD Always Off, P = 1, Q = 1

(a)

10 20 30 40 50 60 70 80 90 100

Reconfiguration Round

0.6

0.8

1

1.2

1.4

1.6

1.8

A
v
e

ra
g

e
d

 R
e

w
a

rd

MDP-generated Policy (T = +Inf)

Maximum Reward Mapping

DPD Always On, P = 9, Q = 9

DPD Always Off, P = 1, Q = 1

(b)

Fig. 6: Measured results with weight vector change: (a)
without policy adjustment (b) with policy adjustment.

0 500 1000 1500 2000

Reconfiguration Round

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
e
w

a
rd

Without Reconfiguration

With Reconfiguration

Fig. 7: Instantaneous reward with a time-varying TPTM.

find that MADS quantifies relevant trade-offs, as expected.
This experiment demonstrates the versatility of the MADS
framework in handling different reward functions.

D. Performance when the Reward Function Changes

In different periods of time, we might have different objec-
tives. For instance, we may want to lower the power consump-
tion when a device equipped with MADS loses connection
to the power grid, while ACPR performance may be more
important when the connection to the power grid is restored.
Such scenarios lead to a time-varying reward function.

In general, if the reward function changes, we need to re-
run the MDP solver to derive the optimal policy to enable
reward convergence. To demonstrate this, we run simulations
in which the optimization weight vector changes during the
simulation, while the policy remains unchanged. Then we
compare this with results obtained after adjusting the policy by
re-running the MDP solver based on the new weight vector.
The results are shown in Fig. 6(a) and Fig. 6(b). We adopt
the setting of c = [0.0,−1.0, 0.0, 0.0] for the first half of the
simulation and c = [−0.5, 0.0,−0.5, 0.0] for the second half
of the simulation. Clearly, if we do not adjust the policy after
the weight vector changes, then the reward drops significantly.
On the other hand, when we adjust the policy based on the
new weight vector, we are able to restore optimal performance.

E. Performance with Alternating TPTMs

When the wireless environment changes, the TPTM in
general changes as a result. In this case, it is desirable for
MADS-A to recalibrate the TPTM, and execute the MDP
solver again to obtain the optimal policy based on the updated
TPTM. In other words, when significant changes to the TPTM
are detected, MDP policies can be recomputed dynamically.
In this section, we motivate the development of such dynamic
recomputation capability as a useful direction for future work
on the MADS Framework.

To motivate the potential utility of dynamically recomput-
ing the MDP policies, we examine two different wireless
environments, as represented by the ECE Department and
Kim Building environments described in Section V-B1. We
compare the instantaneous reward with and without recali-
bration of the TPTM. The results are presented in Fig. 7.
For the time epoch 0 to 500, the TPTM shown in (6) is
used and the TPTM switches to the one shown in (7) for
the time epoch 500 to 1500. Finally, the TPTM returns to

10

50 100 150 200 250 300 350 400 450 500

Reconfiguration Round

-18

-16

-14

-12

-10

-8

-6

-4

-2

A
v
e

ra
g

e
d

 R
e

w
a

rd
10

9

MDP-generated Policy (T = +Inf)

Maximum Reward Mapping

DPD Always On, P = 9, Q = 9

DPD Always Off, P = 1, Q = 1

Fig. 8: Reward performance under ACPR requirement of ≥ 60
dBc.

the one in (6). As we can see from the figure, if we do not
adjust the policy dynamically when the TPTM changes, the
instantaneous reward degrades significantly. On the other hand,
if we can keep track of changes in the TPTM and adjust
the policy accordingly, the instantaneous reward improves.
Efficiently integrating the required recalibration and dynamic
policy recomputation capabilities into MADS-A implementa-
tions is a useful direction for future work.

F. Performance with Stringent ACPR Requirements
Many wireless standards enforce stringent ACPR require-

ments, which specify that ACPR levels under a given threshold
are not tolerable. MADS can support this important use case
by adjusting the reward functions for MDP-I and MDP-II such
that the reward is set to −Γ, where Γ is a large real value,
when the ACPR falls below the given threshold. In Fig. 8,
we demonstrate the average reward with an ACPR threshold
of 60 dBc and c = [−0.5, 0,−0.5, 0]. The reward is set as
−1010 (i.e., Γ = 1010) when the ACPR falls below 60 dBc.
Compared with Fig. 4(b), we observe that MADS prioritizes
ACPR performance to avoid violating the ACPR requirement
even if power consumption is considered as the most important
factor as indicated from the weight vector c. This verifies
that MADS can support standard wireless applications where
stringent ACPR requirements must be enforced.

VI. CONCLUSIONS

In this paper, we have proposed a general framework that
applies Markov decision processes (MDPs) for design and im-
plementation of adaptive DPD systems. Our framework, called
the MDP framework for Adaptive DPD Systems (MADS),
is designed so that many kinds of DPD algorithms can be
plugged in to generate MDP-integrated, adaptive systems
that are based on those algorithms. We demonstrate MADS
by plugging into it a state-of-the-art DPD algorithm, and
implementing the resulting adaptive DPD system on a hybrid
CPU/GPU platform. Through extensive experiments, we have
demonstrated the utility of the resulting implementation, and
of the hierarchical MDP approach that is at the core of the
MADS Framework.

An interesting direction for future work is to detect changes
in the transmit power transition matrix, and incorporate asso-
ciated capabilities in MADS to dynamically recompute the
optimal policy. Secondly, it is useful to take into account the
bit width of different DPD branches within the optimization
process of the framework. This would provide MADS with
finer granularity in the design optimization process. Thirdly,
it would be interesting to investigate the application of the
MADS framework to other DPD algorithms beyond Anttila’s
algorithm.

Another future research direction is to extend the scope of
MADS from DPD to the entire wireless transmitter. In this
case, we need to consider the power consumption of the PA
in addition to that of the DPD. In this paper, we have focused
only on the power consumption of the DPD. An interesting
direction for future work is to develop an end-to-end system
model that not only includes MADS, as proposed in this paper,
but also other aspects including adaptive transmission power
and modulation control. To develop such an approach, we
would redefine the environment states so that they include
the wireless channel condition between the base station and
end device, as well as the expected transmission rate. We
anticipate that the resulting system can still be formulated
as a hierarchical MDP — for example, with the addition of
a third MDP, which determines the optimal modulation and
transmission power to apply. In this case, the transmit power
will in general not be independent of the action, and the
dependence would be handled optimally by the extended MDP
formulation.

ACKNOWLEDGMENTS

This research was sponsored in part by the US National
Science Foundation.

REFERENCES

[1] L. Anttila, P. Händel, and M. Valkama, “Joint mitigation of power
amplifier and I/Q modulator impairments in broadband direct-conversion
transmitters,” IEEE Transactions on Microwave Theory and Techniques,
vol. 58, no. 4, pp. 730–739, 2010.

[2] O. Sigaud and O. Buffet, Eds., Markov Decision Processes in Artificial
Intelligence. Wiley, 2010.

[3] Y.-D. Kim, E.-R. Jeong, and Y. H. Lee, “Adaptive compensation for
power amplifier nonlinearity in the presence of quadrature modula-
tion/demodulation errors,” IEEE Transactions on Signal Processing,
vol. 55, no. 9, pp. 4717–4721, 2007.

[4] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and
C. R. Giardina, “A robust digital baseband predistorter constructed using
memory polynomials,” IEEE Transactions on communications, vol. 52,
no. 1, pp. 159–165, 2004.

[5] R. Sperlich, J. A. Sills, and J. S. Kenney, “Power amplifier linearization
with memory effects using digital pre-distortion and genetic algorithms,”
in Proceedings of the Radio and Wireless Conference, 2004, pp. 355–
358.

[6] C. Çiflikli and A. Yapı́cı́, “Genetic algorithm optimization of a hybrid
analog/digital predistorter for RF power amplifiers,” Analog Integrated
Circuits and Signal Processing, vol. 52, no. 1, pp. 25–30, 2007.

[7] K. Freiberger, M. Wolkerstorfer, H. Enzinger, and C. Vogel, “Digital
predistorter identification based on constrained multi-objective optimiza-
tion of WLAN standard performance metrics,” in Proceedings of the
International Symposium on Circuits and Systems, 2015, pp. 862–865.

[8] J. A. Sills and R. Sperlich, “Adaptive power amplifier linearization by
digital pre-distortion using genetic algorithms,” in Proceedings of the
Radio and Wireless Conference, 2002, pp. 229–232.

11

[9] A. H. Abdelhafiz, O. Hammi, A. Zerguine, A. T. Al-Awami, and
F. M. Ghannouchi, “A PSO based memory polynomial predistorter with
embedded dimension estimation,” IEEE Transactions on Broadcasting,
vol. 59, no. 4, pp. 665–673, 2013.

[10] A. Ghazi, J. Boutellier, O. Silvén, S. Shahabuddin, M. Juntti, S. S.
Bhattacharyya, and L. Anttila, “Model-based design and implementation
of an adaptive digital predistortion filter,” in Proceedings of the IEEE
Workshop on Signal Processing Systems, 2015, pp. 1–6.

[11] S. Wang, M. A. Hussein, O. Venard, and G. Baudoin, “A novel algorithm
for determining the structure of digital predistortion models,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 8, pp. 7326–7340,
Aug 2018.

[12] L. Li, A. Ghazi, J. Boutellier, L. Anttila, M. Valkama, and S. S.
Bhattacharyya, “Evolutionary multiobjective optimization for adaptive
dataflow-based digital predistortion architectures,” EAI Endorsed Trans-
actions on Cognitive Communications, vol. 3, no. 10, pp. 1–9, 2017.

[13] L. Li, P. Deaville, A. Sapio, L. Anttila, M. E. Valkama, M. Wolf,
and S. Bhattacharyya, “A framework for design and implementation
of adaptive digital predistortion systems,” in Proceedings of the IEEE
International Conference on Artificial Intelligence Circuits and Systems,
Hsinchu, Taiwan, March 2019, pp. 112–116.

[14] P. L. Fackler, “MDPSOLVE a MATLAB toolbox for solving Markov
decision problems with dynamic programming — user’s guide,” North
Carolina State University, Tech. Rep., January 2011.

[15] A. Jonsson and A. Barto, “Causal graph based decomposition of factored
MDPs,” Journal of Machine Learning Research, vol. 7, pp. 2259–2301,
2006.

[16] A. Sapio, L. Li, J. Wu, M. Wolf, and S. S. Bhattacharyya, “Recon-
figurable digital channelizer design using factored Markov decision
processes,” Journal of Signal Processing Systems, vol. 90, no. 10, pp.
1329–1343, 2018.

[17] B. Bhattacharya and S. S. Bhattacharyya, “Parameterized dataflow
modeling for DSP systems,” IEEE Transactions on Signal Processing,
vol. 49, no. 10, pp. 2408–2421, October 2001.

[18] C. Shen, W. Plishker, H. Wu, and S. S. Bhattacharyya, “A lightweight
dataflow approach for design and implementation of SDR systems,”
in Proceedings of the Wireless Innovation Conference and Product
Exposition, Washington DC, USA, November 2010, pp. 640–645.

[19] S. Lin, Y. Liu, K. Lee, L. Li, W. Plishker, and S. S. Bhattacharyya, “The
DSPCAD framework for modeling and synthesis of signal processing
systems,” in Handbook of Hardware/Software Codesign, S. Ha and
J. Teich, Eds. Springer, 2017, pp. 1–35.

[20] L. Ding, “Digital predistortion of power amplifiers for wireless applica-
tions,” Ph.D. dissertation, Georgia Institute of Technology, 2004.

Lin Li obtained her Ph.D. degree from the De-
partment of Electrical and Computer Engineering
at the University of Maryland, College Park, USA.
She received the bachelor’s degree in Electrical
Engineering and Automation from Fudan Univer-
sity, Shanghai, China. Her research has focused on
dataflow-based framework for design, implementa-
tion, and optimization of signal processing systems
including wireless communication systems and ma-
chine learning systems.

Peter Deaville received his B.S. degree in electrical
engineering from the University of Maryland, Col-
lege Park, in 2018. He joined Princeton University,
New Jersey, in the spring of 2019 as a Ph.D. student
in the Department of Electrical Engineering, where
his research focuses on exploring in-memory com-
puting using magnetic random-access memory tech-
nology. His other research interests include circuit
design for machine learning, leveraging emerging
methods and technologies.

Adrian Sapio received his BS and MS degrees in
Electrical Engineering from the Rochester Institute
of Technology in 2004 and 2010, respectively. He
is a Ph.D. candidate in Electrical Engineering at
the University of Maryland, College Park, and also
a Lead Engineer at Intelligent Automation, Inc.
in Rockville, MD. His research interests include
design methodologies for embedded systems used
in wireless networks.

Lauri Anttila received the M.Sc. and the D.Sc.
(Hons.) degrees in electrical engineering from Tam-
pere University of Technology (TUT), Finland, in
2004 and 2011, respectively. Since 2016, he has
been a University Researcher at the Department
of Electrical Engineering, Tampere University (for-
merly TUT). In 2016-2017, he was a Visiting Re-
search Fellow at the Department of Electronics and
Nanoengineering, Aalto University, Finland. He has
co-authored 100+ refereed articles, as well as three
book chapters. His research interests are in radio

communications and signal processing, with a focus on the radio implemen-
tation challenges in systems such as 5G, full-duplex radio, and large-scale
antenna systems.

Mikko Valkama received the M.Sc. (Tech.) and
D.Sc. (Tech.) Degrees (both with honors) in elec-
trical engineering (EE) from Tampere University
of Technology (TUT), Finland, in 2000 and 2001,
respectively. In 2002, he received the Best Doctoral
Thesis -award by the Finnish Academy of Science
and Letters for his dissertation entitled ”Advanced
I/Q signal processing for wideband receivers: Mod-
els and algorithms”. In 2003, he was working as a
visiting post-doc research fellow with the Commu-
nications Systems and Signal Processing Institute at

SDSU, San Diego, CA. Currently, he is a Full Professor and Department
Head of Electrical Engineering at newly formed Tampere University (TAU),
Finland. His general research interests include radio communications, radio
localization, and radio-based sensing, with particular emphasis on 5G and
beyond mobile radio networks.

Marilyn Wolf is Professor and Chair of the De-
partment of Computer Science and Engineering at
the University of Nebraska Lincoln. She received
her BS, MS, and PhD in electrical engineering
from Stanford University in 1980, 1981, and 1984,
respectively. She was with AT&T Bell Laboratories
from 1984 to 1989. She was on the faculty of
Princeton University from 1989 to 2007 and was
Farmer Distinguished Chair at Georgia Tech from
2007 to 2019. Her research interests included em-
bedded computing, embedded video and computer

vision, and VLSI systems. She has received the IEEE Computer Society
Goode Memorial Award, the ASEE Terman Award and IEEE Circuits and
Systems Society Education Award. She is a Fellow of the IEEE and ACM
and an IEEE Computer Society Golden Core member.

12

Shuvra S. Bhattacharyya is a Professor in the
Department of Electrical and Computer Engineer-
ing at the University of Maryland, College Park.
He holds a joint appointment in the University of
Maryland Institute for Advanced Computer Studies
(UMIACS). He also holds a part-time position as
International Research Chair, joint with INSA/IETR,
and INRIA in Rennes, France. His research interests
include signal processing, embedded systems, elec-
tronic design automation, machine learning, wireless
communication, and wireless sensor networks. He

received the Ph.D. degree from the University of California at Berkeley.
He has held industrial positions as a Researcher at the Hitachi America
Semiconductor Research Laboratory (San Jose, California), and Compiler
Developer at Kuck & Associates (Champaign, Illinois). He has held a visiting
summer research position at AFRL in Rome, New York. From 2015 through
2018, he was a part time visiting professor in the Department of Pervasive
Computing at the Tampere University of Technology, Finland, as part of the
Finland Distinguished Professor Programme (FiDiPro).

