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Noise can be considered the natural enemy of quantum information. An often implied benefit of high-
dimensional entanglement is its increased resilience to noise. However, manifesting this potential in an
experimentally meaningful fashion is challenging and has never been done before. In infinite dimensional
spaces, discretization is inevitable and renders the effective dimension of quantum states a tunable
parameter. Owing to advances in experimental techniques and theoretical tools, we demonstrate an
increased resistance to noise by identifying two pathways to exploit high-dimensional entangled states. Our
study is based on two separate experiments utilizing canonical spatiotemporal properties of entangled
photon pairs. Following these different pathways to noise resilience, we are able to certify entanglement in
the photonic orbital-angular-momentum and energy-time degrees of freedom up to noise conditions
corresponding to a noise fraction of 72% and 92%, respectively. Our work paves the way toward practical
quantum communication systems that are able to surpass current noise and distance limitations, while not
compromising on potential device independence.
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I. INTRODUCTION

Quantum entanglement is one of the most peculiar and
elusive properties of quantum systems, a key resource in
quantum information processing [1], and an indispensable

ingredient for device-independent quantum cryptography
[2]. At the same time, entangled quantum systems are highly
delicate since their entanglement is readily diminished by
the slightest interaction with the environment. This is of
particular relevance for the distribution of entangled photons
over long distances outside of a protected laboratory
environment, where particle loss and environmental noise
are inevitable. Similar to classical communication, noise
ultimately reduces the channel capacity and thus acts as a
limiting factor for the link distance in quantum communi-
cations. Several proof-of-concept experiments have pushed
the distribution distance of two-dimensional-entangled
photon pairs over fiber [3–5] and free-space [6–8] links,
while others have demonstrated the distribution of high-
dimensional entangled quantum states [9–14].
Although it is not straightforward to certify high-

dimensional entanglement from experimental data, its
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production in the process of spontaneous parametric
down-conversion (SPDC) happens naturally. As a result
of conservation laws in this process, the down-converted
photon pairs are entangled in spatiotemporal properties
such as energy-time [15–18], angle-angular momentum
[19–22], and position-momentum [23–25].
At first glance, from an abstract information theoretic

point of view, high-dimensional entanglement might seem
to be essentially reproducible by just many copies of
regular qubit entanglement. While there is actually a
notable difference even in idealized pure states [26] and
cryptographic settings [27], one of the main reasons for
developing high-dimensional protocols has predomi-
nantly been the aforementioned free availability in down-
conversion combined with the capability of storing more
bits per communicated photon. Indeed, many such benefits
of using high-dimensional encodings in quantum key
distribution (QKD) have been investigated in the past
decade [28–32], followed by experimental implementa-
tions in recent years [33–37]. Apart from an increased per-
photon information capacity, an often implied advantage of
employing high-dimensional entanglement is its potential
for increased resistance to noise.
While it is indeed true that dimension-independent

noise models show an increased resistance of entangled
states to noise [38,39], the actual advantages very much
depend on the physical implementation. Different high-
dimensional degrees of freedom (d.o.f.) are bounded by
different operational constraints. Thus, it has remained an
open question whether practical improvements using high-
dimensional entanglement can actually manifest its prom-
ised advantages.
In this paper, we expound potential pathways to an

increased resilience to noise by utilizing entanglement in
high dimensions. We conduct two experiments, exploiting
the most paradigmatic platforms for generating high-
dimensional entangled quantum states, namely photons
entangled in energy-time as well as transverse position-
momentum. We show that for each high-dimensional
encoding method and its associated state-of-the-art tech-
nology, there is an appropriate pathway to verify entangle-
ment in conditions where qubit entanglement cannot be
distributed due to extreme external noise levels. We are
further able to characterize a realistic trade-off between
dimensionality and robustness to find optimal and flexible
encodings for both implementations and different back-
ground conditions, thereby revealing the transformative
potential of high-dimensional quantum information.

II. PATHWAYS TO NOISE RESILIENCE

Almost all quantum experiments aim to harness a
physical process that is expected to yield a pure entangled
state. If the system is bipartite, and assuming that the
experiment is ideal, then the entangled state can be
represented in the Schmidt basis jψABi ¼

P
i λijiii.

Needless to say, experiments are seldom ideal, and a
number of factors contribute to spoiling the state, during
both its generation and its manipulation. Errors could, for
example, be introduced during the distribution of the state
via quantum channels or through imperfect measurement
devices. Moreover, background photons inevitably intro-
duce noise, resulting in a reduction of the signal-to-noise
ratio at the readout. It is well known that noise deteriorates
entanglement, and the extent to which entanglement
persists despite the presence of noise is known as “noise
resistance of entanglement” [1]. The degree to which the
initially pure state is degraded is often estimated using a
white noise model, i.e., by mixing the target state jψi with
the maximally mixed state:

ρ̂ ¼ pjψihψ j þ 1 − p
d2

1d2 : ð1Þ

One may also note that this model captures particle
loss for the maximally entangled state jψi ¼ jΦþi ≔
ð1= ffiffiffi

d
p ÞPi jiii, where with probability p the state remains

intact, and with probability 1 − p a particle from a pair is
lost. The measurement statistics of the lost photon corre-
spond to the maximally mixed state, while the statistics of
the partner photon are replaced by the marginal. In the case
of the maximally entangled state, this marginal is also
maximally mixed, TrBjΦþihΦþj ¼ ð1=dÞ1, resulting in the
model in Eq. (1). For this “isotropic” state, the resulting
tolerance to noise, i.e., the critical pc after which the state
becomes separable, scales as pc ¼ ½1=ðdþ 1Þ�. This can
already be concluded from the first criteria for mixed state
entanglement, such as positivity under partial transposition
[40,41], and has already been pointed out in early literature
[42,43]. While for general states such resistance to depola-
rizing noise is quite generic [44], physical modeling can
reveal even further avenues of avoiding noise in high
dimensions [38]. We argue in Sec. III, that the noise
introduced in both our experiments is close to white.
Nonetheless, it is important to emphasize here that we
do not assume any noise model when analyzing the
experimental data for entanglement—the simple noise
model serves only as a motivating example for why we
should be expecting an increased noise resistance and it is
not needed for performing or analyzing the experiment. In a
realistic experimental setting, loss can affect the measure-
ment statistics in more complex ways, such as introducing
accidental coincidence counts due to detector or back-
ground noise. A more quantitative analysis of the precise
role of noise in photonic entanglement has been performed
recently [38] and supports our experimental results by
demonstrating a clear advantage of going to high dimen-
sions. For more general states, bipartite depolarizing maps
[44] capture different loss rates or detection efficiencies and
can be solved analytically for any dimension. The common
feature of these noise models is the fact that it is possible for
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the noise resistance to increase linearly with the system
dimension dS. As dS grows, so does the so-called “dimen-
sionality of entanglement.” Thus, one should, in principle,
be able to overcome any amount of noise, and detect
entanglement, simply by looking in systems of high enough
dimension. Despite this feature, there are several reasons
why this idea has not yet manifested in any practical setups.
First, certifying entanglement requires one to collect
enough information about the underlying quantum state.
The number of measurements required to do this scales
at least linearly with the size of the system [45]. Second,
the dimension of a system is not a fundamentally tunable
parameter in an experiment. Finally, the noise very much
depends on the physical implementation of the chosen
scheme. The theoretical description of spatiotemporal d.o.f.
of any photon state is infinite dimensional,

jψiphoton ¼
X
s

Z
dμðxÞψ sðxÞjx; si; ð2Þ

where s is the polarization d.o.f., x is the position, and μðxÞ is
a measure over the space. It then follows that the description
of temporally or spatially entangled photon states is also
infinite dimensional. Despite this, any laboratory mea-
surement still requires one to discretize these d.o.f. The
discretization depends on the measuring device; for exam-
ple, to discretize temporally entangled states one could time
resolve photon detections using high-precision clocks.

For states entangled spatially, one could perform spatial
mode measurements using spatial light modulators or
cameras. All of these techniques have limited resolution;
this means that by increasing the dimension of the states
(i.e., discretizing further), one will often encounter addi-
tional sources of noise, e.g., through cross talk or additional
measurement channels, which consequently lead to dimen-
sion-dependent noise factors pðdÞ entering into the models.
Thus, while high-dimensional entanglement presents an
increased resistance to noise with increasing dimension on
paper, it is not clearwhether this theoretical advantage can be
exploited in a real experiment.
Nevertheless, noise resistance of entanglement is a

highly desirable feature in quantum communication and
is of utmost importance for fundamental reasons. If one is
able to demonstrate the persistence of entanglement, simply
by discretizing the description of systems, then one may
be closer to understanding the fundamental limits on the
information capacity of single-photon quantum communi-
cation channels. In spite of this potential, not a single
quantum experiment to date has been able to show an
increase in noise resistance in a controlled fashion. In this
work, we present two experiments that discretize continu-
ous d.o.f. to encode information in high-dimensional
quantum systems to explicitly demonstrate an increased
resilience to environmental noise. These paradigms are
illustrated in Fig. 1. It is to be read as a flow chart, starting
in the center where a hypothetical noisy quantum state ρ is

FIG. 1. Illustration of the pathways to noise resilience. A mixed entangled state ρ shared by Alice and Bob is encoded in
spatiotemporal properties of photon pairs. Each of the infinite-dimensional d.o.f. of the photons can be discretized and measured in two
bases (center panel). If both measurements are insufficient to certify entanglement in the noisy state, there are two pathways to recover it:
fine-graining to higher dimensions (pathway I, left-hand panel) and measuring in additional bases (pathway II, right-hand panel). In
pathway I, noise is “diluted” by discretizing the existing state space further, resulting in an increased signal-to-noise ratio. Pathway II
exploits the existence of more than two mutually unbiased measurement bases in higher dimensions, providing additional information

about the nonclassicality of the state. The bar charts illustrate the joint probability Pðα;βÞ
i;j of measuring Alice’s modes i in the basis α and

Bob’s modes j in the basis β.
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tested for entanglement by making measurements in two
bases. If none is found, one has two options, depending on
the d.o.f. and its technological constraints. The first path-
way (Fig. 1, left) is to fine-grain or partition the quantum
state to higher dimensions, for example, by discretizing an
energy-time entangled state to a higher temporal resolution.
Alternatively, one may explore pathway II (Fig. 1, right),
which exploits the existence of more than two mutually
unbiased bases (MUBs) in high dimensions. For example,
measurements of an orbital-angular-momentum (OAM)
entangled state can be made in additional bases, providing
more information about the state. In both cases, entangle-
ment can be recovered from a state in an assumption-free
manner, where no entanglement could previously be
certified through standard techniques.

III. EXPERIMENTAL IMPLEMENTATION

Here, we showcase two photonic experiments that
demonstrate high-dimensional noise resilience of entangle-
ment via the above-described two pathways. In the first
experiment we follow pathway I and exploit energy-time
entanglement, while in the second experiment we take
pathway II to explore the orbital-angular-momentum d.o.f.,
both encodings that have seen rapid experimental progress
in recent years [1]. The basic premise of both experiments
is to create photon pairs and show, via a set of appropriately
chosen measurements, that these pairs remain entangled
even in the presence of high levels of noise. To generate the
pairs in both experiments we appeal to spontaneous para-
metric down-conversion.
First, let us consider the creation of photon pairs entangled

in energy-time. In the nonlinear SPDC process, a crystal
pumped with photons of frequency ωP will spontaneously
produce a pair of photons with frequencies ω0 and ω1. The
total energy is strictly conserved such that, despite the crystal
producing photon pairs with a finite bandwidth, the sum of
their frequencies is constant: ℏωP ¼ ℏω0 þ ℏω1. This
results in the emission of two photons that are highly
entangled in energy. Since the spectral linewidth and the
coherence time are inversely related, a narrow pump
bandwidth results in a long coherence time for possible
photon pair emissions, giving rise to entanglement in the
time domain with Schmidt numbers up to ∼109 under
realistic experimental assumptions [33,46]. In our scheme
we utilize ancillary entanglement in the polarization d.o.f. to
facilitate interference in the time domain.
A similar narrative holds for the second experiment,

which produces photons entangled in the orbital-angular-
momentum d.o.f. Here, the strict conservation of momen-
tum in the SPDC process, ℏlp ¼ ℏl0 þ ℏl1, results in the
production of photon pairs anticorrelated in OAM, ℏl0 ¼
−ℏl1, for a Gaussian-mode pump photon with ℏlp ¼ 0,
leading to entanglement in the OAM-angular position
variables [21]. The (theoretically) infinite-dimensional
states produced by the two experiments can be written as

jΨiET-pol ¼
Z

dtfðtÞjtiAjtiB ⊗ jϕ−iAB; ð3Þ

jΨiOAM ¼
X∞
l¼−∞

clj − liAjliB; ð4Þ

where fðtÞ is a continuous function of time, corres-
ponding to the coherence profile of the laser, jϕ−iAB¼
ð1= ffiffiffi

2
p ÞðjHiAjHiB−jViAjViBÞ is a polarization-entangled

Bell state, j� li is the state of a photon carrying an OAM
quantum number of �l, and cl is a complex probability
amplitude, which is defined by the spatial characteristics of
the crystal and pump beam.
In order to gain meaningful insight into noise resilience,

both states must be appropriately discretized. In the energy-
time experiment, we measure the time of arrival of
entangled photon pairs by discretizing a time frame of
duration F into bins and recording which bin a photon is
detected in. The duration of F is fixed and we divide it into
an integer number of time-bin modes d, each corresponding
to a duration td, i.e., F=d ¼ td (see Supplemental Material,
Sec. III [47]). In pathway II, we choose a finite cutoff to the
theoretically infinite sum over modes, such that the modes
with OAM quantum numbers l ∈ f−D;…; Dg are span-
ning a (2Dþ 1)-dimensional Hilbert space. Thus, ideally,
the states generated by the experiments would be close to
the forms

jΨiET-pol ¼
Xd
j¼1

αjjjiAjjiB ⊗ jϕ−iAB; ð5Þ

jΨiOAM ¼
XD
l¼−D

clj − liAjliB; ð6Þ

where jji refers to a photon in a discrete time-bin state
whose duration is td for j ∈ f1;…; dg and αj is a complex
probability amplitude.
Despite investigating different d.o.f., the experiments

have similar characteristic features, as shown in Fig. 2. In
both schemes, a nonlinear crystal is pumped with a
continuous-wave diode laser to generate photon pairs,
which then pass through a setup consisting of measurement
elements and an external noise source. In addition, the
entanglement dimensionality for both cases (d for energy-
time and d ¼ 2Dþ 1 for OAM) is strongly dependent on
the pump characteristics. In the energy-time experiment
[Fig. 2(a)], a narrow-bandwidth pump ensures a large
Schmidt number, while in the OAM experiment [Fig. 2(b)],
a large pump mode with a well-defined transverse momen-
tum results in high-dimensional OAM entanglement.
For additional experimental details, see the Appendixes A
and B. In both experiments, noise is introduced in the form
of background photons generated by sources of light simu-
lating a realistic operational environment for a quantum
communication system. In the energy-time experiment,
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fine-adjustable light emitting diodes placed near the detectors
introduce background counts—simulating a scenario where
classical light may be copropagating with a quantum signal.
In the OAM experiment, background counts are introduced
by increasing the intensity of the ambient light in the lab up to
daylight conditions, which is a realistic scenario for free-
space experiments using large aperture telescopes. White
noise is generated in the energy-time experiment by employ-
ing two independent noise sources for Alice and Bob, thus
eliminating temporal correlations, while in the OAM experi-
ment white noise is introduced by placing the noise source
after the spatial lightmodulators, ensuringmode-independent
noise generation. In both cases, we quantify the amount of
noise introduced via the noise fractionNF,which corresponds
to the fraction of counts in our data that arise from noise.
Intuitively, NF ¼ ½ðno: noise countsÞ=ðno: total countsÞ �,
which takes on values from 0 (no noise) to 1 (complete
noise). A more rigorous definition of the noise fraction NF

and its computation from experimental data is presented in
the Supplemental Material, Sec. II [47].

IV. ENERGY-TIME ENTANGLEMENT
(PATHWAY I)

The first pathway to noise resilience is implemented by
fine-graining measurements of the photon arrival time.
As outlined, we discretize a time frame into d time bins and
record the bin that a photon is detected in. The goal of the
experiment is simple: by increasing the dimension d of the
state in Eq. (5) through fine-graining, we want to certify
entanglement of noisy quantum states, which is otherwise
concealed by noise.
To this end, we collect statistics about the state in two

bases. The first measurement is in the same basis as the
state in Eq. (5). Projecting onto the time-bin states ji; ji,
with i; j ∈ f1;…; dg, is accomplished by recording the

FIG. 2. Experimental setup for (a) energy-time and (b) orbital angular momentum (OAM) d.o.f. In both experiments, a 405-nm
continuous-wave laser produces high-dimensionally entangled photon pairs in a ppKTP crystal exploiting type-II spontaneous
parametric down-conversion (SPDC). The noise is optically added by intensity-adjustable light sources and single-photon detection is
accomplished using avalanche photodiodes. (a) Additional polarization entanglement is generated by bidirectionally pumping the
crystal in a polarization Sagnac interferometer. The polarization basis the photon pairs are measured in after an actively stabilized
postselection-free Franson interferometer defines the measurement basis in the time domain. Each detection event is time tagged and
recorded by means of a time-to-amplitude converter. (b) The OAM-entangled pairs are split depending on their polarization, analyzed
through mode filtering by modulating the complex amplitude of the photons, and subsequently coupled into SMFs. Coincidence counts
are recorded using a coincidence logic.
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time of arrival of single photons with a detector and a
precise clock, which constitutes a multioutcome measure-
ment. The second measurement is more difficult, as it must
be performed in a superposition basis of the time-bin states.
This can be achieved by delaying the state jii for a duration
corresponding to f time bins and subsequently interfering it
with the state jiþ fi. We realize this in our experiment by
utilizing a Franson interferometer [49], which employs an
unbalanced interferometer for Alice and Bob, respectively
[see Fig. 2(a)]. The long interferometer arm delays the state
jii relative to the state jiþ fi, which occupies the spatial
path of the short interferometer arm. The second basis
therefore projects onto the states ð1= ffiffiffi

2
p Þðji; ji þ eiϕjiþ

f; jþ fiÞ, where the phase ϕ is set by the sum of the
two individual interferometer phases and i; j ∈ f1;…; dg.
However, without active switching, this interferometer will
also project onto the states ji; iþ fi and jiþ f; ii, which
are not interfering and thus must be discarded in coinci-
dence postselection. Since we investigate high-dimensional
states, these noninterfering events are part of our state space
and we may not simply discard them. We tackle this
problem by employing a postselection-free Franson inter-
ferometer [50]. In this scheme, polarization entanglement is
exploited to deterministically route the photon pairs in the
Franson interferometer. This requires a hyperentangled
source state [51,52] in polarization and energy-time. We
generate the additional polarization entanglement by bidir-
ectionally pumping a nonlinear crystal centered in a
polarization Sagnac interferometer [53,54], which enables

us to use the polarization d.o.f. to switch between the two
measurement basis in the time domain (see Appendix A for
details). Our entanglement certification is based on a
dimension-dependent entanglement witness WðρET; dÞ,
where, from Eq. (5), ρET ¼ TrpoljΨihΨj. The relation from
the count statistics of the two measurements to the state ρET
is rather involved and can be found in the Supplemental
Material, Sec. I [47]. Here, it suffices to say that our state is
entangled if WðρET; dÞ > 0.
We introduce increasing levels of external noise corre-

sponding to a noise fraction NF ranging from 0 to near-
unity, in order to transition from a close-to-pure to a mixed
state. Following pathway I, we now fine-grain our state
space to higher dimensions. The frame duration F is fixed
at 320 clock cycles and we discretize the frame in four ways
according to F=d ¼ td for d ∈ f10; 20; 40; 80g. This
choice of dimensions depends on the imbalance of the
Franson interferometer, and is detailed in Appendix A.
Figure 3(a) illustrates the scaling of the entanglement
witness W for different dimensions as the noise fraction
NF is increased. This increase is accomplished by incre-
menting the amount of external optical noise, with the
sequence of data points in each dimension corresponding to
the same external noise levels. The noise threshold, which
is the maximal NF for which entanglement can be certified,
increases with higher dimensions, indicating noise resil-
ience (see inset). For d ¼ 10, 20, 40, 80, the noise
thresholds steadily increase from 0.57, 0.76, 0.86 to
0.93, respectively. As a consequence of fine-graining,

(a) (b)

FIG. 3. Main results of our experimental demonstration of noise resistance for (a) energy-time entanglement and (b) OAM
entanglement. Each plot depicts the violation strength of a suitably chosen entanglement witness against the noise fraction, i.e., the
fraction of coincidence detections attributable to noise. In (a), the principal competition in achieving noise resistance is clearly visible.
As the dimensionality is increased through fine-graining (pathway I), more noise is induced (and thus the curves move to the right),
while a higher noise resilience is achieved (thus the noise threshold also moves to the right). Plot (b) is qualitatively different, as it
explores pathway II. Instead of fine-graining, more modes are included in the analysis which allow for an increased number of mutual
unbiased bases to be measured and thus also show a higher noise threshold with increasing dimension. The error bars correspond to 3
standard deviations of the mean, calculated by propagating the Poissonian error in the photon-counting rates via a Monte Carlo
simulation; see Supplemental Material, Sec. IV [47]. In (b), the error bars are smaller than the data points.
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the cross talk between time bins increases due to funda-
mental and technical limitations. This excess noise
becomes relevant once the time-bin size is smaller than
the timing resolution of the detectors, as is the case with
d ¼ 40 and d ¼ 80. For these discretizations, the NF is
significantly increased even in the absence of external
noise, indicated by the first data points in each dimension.
Fine-graining at low external noise levels also reduces the
witness violation, while for noise levels close to the noise
threshold, fine-graining results in the recurrence of other-
wise obscured entanglement.

V. ORBITAL ANGULAR MOMENTUM
ENTANGLEMENT (PATHWAY II)

The second pathway to noise resilience takes advantage
of the larger number of mutually unbiased bases in higher
dimensions. Here, we explore this pathway using mea-
surements of orbital angular momentum MUBs, for which
precise measurement techniques have only recently been
developed [55]. Mutually unbiased bases are an invaluable
tool in many quantum information tasks, such as quantum
state tomography, quantum cryptography, and entangle-
ment certification. They consist of a set of orthonormal

bases fBαg, where Bα ¼ fjψ ðαÞ
m ig, m ∈ f0; 1;…; d − 1g,

and α ∈ f0; 1;…; dg. Such a set is called mutually
unbiased if and only if

jhψ ðαÞ
m jψ ðβÞ

n ij2 ¼ δαβδmn þ ð1 − δαβÞ=d; ð7Þ

where δi;j is the Kronecker delta. In dimensions that are
powers of prime numbers, it is known that there exist exactly
(dþ 1) MUBs. Surprisingly, for dimensions that are not
powers of prime numbers, finding the number of MUBs and
their elements remains an open problem [56]. For the case
of prime dimensions and α ≥ 1, aMUB element is explicitly

given by jψ ðαÞ
m i ¼ ð1= ffiffiffi

d
p ÞPd−1

j¼0 ðωm
d Þd−jðω−ðα−1Þ

d Þsj jji,
where ωd ¼ expð2πi=dÞ and sj ¼ jþ � � � þ ðd − 1Þ. In
the current experiment, we use the intensity flattening
technique [55] to measure the correlations of the photon
pairs in all MUBs (see Appendix B for further details). The

joint probability of Alice and Bob measuring states jψ ðαÞ
m i

and jψ ðβÞ
n i, respectively, is given by Pðα;βÞðm; nÞ. For a

complete set of joint measurements by Alice and Bob in
bases Bα and Bβ, respectively, we define the correlation
visibility as Vðα;βÞ ¼ P

d−1
i¼0 P

ðα;βÞði; iÞ. Following the analy-
sis of Ref. [57], we obtain an upper bound for separable
states by considering the sum of the visibilities over k
MUBs; i.e.,

P
k−1
j Vðj;jÞ ≤ 1þ ½ðk − 1Þ=d�. In particular, for

measurements in all k ¼ ðdþ 1Þ MUBs, entanglement
certification is achieved for

P
k−1
j Vðj;jÞ > 2. Hence, in

contrast to the case of energy-time entanglement described
before, where detections are limited to measurements in
two-dimensional subspaces but dimensions of up to 80, we

are now able to fully characterize the generated states by
performing high-dimensional projective measurements, but
we are limited to lower overall dimensions. However, this
might be largely increased by using custom-tailored phase
matching [58] or by considering the complete space of
transverse spatial modes, namely, radial modes along with
azimuthal modes.
As a starting point, we consider bidimensionally

entangled OAM states of the form ðj1;−1i þ j− 1; 1iÞ=ffiffiffi
2

p
. Entanglement is certified by measuring correlations in

all three MUBs in the two-dimensional space of OAM
jl ¼ �1i. Environmental noise is steadily added by gradu-
ally increasing the intensity of the ambient light present in
the lab, corresponding to a noise fraction NF ranging from 0
to 0.8. Figure 3(b) shows how the sum of visibilities (

P
V)

in dþ 1 MUBs varies as a function of increasing noise
fraction. Entanglement is always certified if

P
V > 2,

irrespective of dimension. For d ¼ 2, entanglement is
certified for noise fractions up to 0.24. However, with
increasing dimension, we are able to tolerate a higher noise
fraction threshold, beyond which no entanglement can be
certified (see inset). For d ¼ 3, 5, and 7, the noise fraction
thresholds are 0.48, 0.63, and 0.72, respectively. The inset
also shows that the noise threshold seems to be saturating as
the dimension is increased. This is primarily due to the
reduced fidelity of measurements in high dimensions, as
well as our state moving further away from an ideal
maximally entangled state as the dimension is increased.
However, it is clear from our results that by increasing the
state dimension, which in turn enables measurements in
more bases, one can increase the resilience of entanglement
to background noise. It is interesting to note that this could
motivate the search for high-dimensional MUBs for any
dimension, as communication systems should ideally be
able to optimally operate beyond prime dimensions.

VI. DISCUSSION

Our experimental results showcase the challenges and
potential of overcoming noise through high-dimensional
entanglement in quantum communication. While the nec-
essary spatiotemporal entanglement is routinely generated
in down-conversion, the real challenge is to encode
information in these high-dimensionally entangled states.
In other words, high-dimensional entanglement is already
present in the workhorses of quantum communication, but
routinely lost through coarse-graining and ignorance of
modes. While this can be beneficial in removing noise from
the signals, we observe a competition between two key
factors: High-dimensional encoding increases the noise
resistance as the dimension grows through the two path-
ways we identified, but also adds additional noise with
increasing dimension. This is a competition that will
ultimately always be won by noise; otherwise, single
photons could carry an infinite amount of information.
The ultimate goal is finding the sweet spot, where the
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increased noise resistance still trumps the additional
noise and thus realizes a practical improvement in noisy
entanglement distribution. What we show in our two
experiments is that this sweet spot is actually beyond
dimension two and thus defies conventional wisdom in the
field, calling for the development of high-dimensional
protocols across photonic platforms. While we have used
two different experiments to illustrate the two pathways to
noise resistance separately, both pathways could in prin-
ciple be realized simultaneously in the same experiment. If
one had access to multiple MUBmeasurements in time bins
or multioutcome measurements in the spatial domain, one
could harness both pathways, leading to an increase in
measurable dimensionality and, as a consequence, higher
noise thresholds.
Our method of adding external noise, namely by fixing a

constant luminosity light source close to our detectors, is a
fairly realistic model of noise that captures the decreased
signal-to-noise ratio in long-distance quantum communi-
cation, where detector dark counts start dominating the
distance-attenuated single-photon pairs. On the other hand,
our experiments also simulate daylight conditions for free-
space quantum communication [59,60], where background
photons will trigger accidentals in the very same way as our
artificial lamps do. In both of these scenarios, the most
detrimental noise in the quantum channel is white, which
motivated us to employ noise sources of this characteristic
in our experiments.
The most remarkable outcome of this study is the fact

that we demonstrate the possibility to certify entanglement
that was otherwise obscured. In other words, entanglement
really was able to overcome physical noise in the imple-
mentation and reveal itself by going to higher-dimensional
encodings. We would like to note that this is not only a
proof-of-principle implementation, but it is also ready to be
directly adopted for long-distance or free-space quantum
communication [9,61]. At least for the energy-time experi-
ment, we could use the exact same setup, whereas for the
OAM experiment, we would require a multioutcome
measurement, such as the recently developed spatial mode
sorter [62]. With the current single-outcome measurements,
every element or dimension we add will experience the
same environmental noise [since it directly couples to
the single-mode fiber (SMF)], thus unfavorably influencing
the competition between noise and entanglement, with the
total noise fraction increasing at the same rate as the
additional noise robustness. The noise fraction we mea-
sured nonetheless proves that if one had a measurement
technique where the noise distributes over multiple chan-
nels, we would have a tremendously increased resistance to
physical noise outside of laboratory settings.
The obvious next challenge is the development of

quantum communication protocols that make direct use
of high-dimensional encodings. The fact that entanglement
can be certified under extremely noisy background con-
ditions motivates the question of whether such noisy

entanglement can indeed be used to certify security of
QKD or aid in other quantum information tasks. It has
recently been proven that every entangled state, no matter
how noisy, provides an advantage in entanglement-assisted
classical communication [63]. In addition, every noisy
entangled state also provides an advantage for the task
of channel discrimination [64]. We hope that this study
spurs further investigation into information theoretic pro-
tocols based on high-dimensional and noisy entangled
states, which can be distributed in regimes where no qubit
communication is possible.
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APPENDIX A: ENERGY-TIME
ENTANGLEMENT EXPERIMENT

The experimental setup can be divided into a hyper-
entangled photon pair source, a Franson interferometer
consisting of two imbalanced polarizing Mach-Zehnder
interferometers (PMZIs), and a detection and time-tagging
unit. Our source is based on SPDC in a 20-mm-long
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periodically poled potassium titanyl phosphate (ppKTP)
crystal designed for type-II quasi-phase-matching.
A grating-stabilized photodiode (Toptica DL pro) emitting
at a wavelength of 405 nm is generating the pump field for
the SPDC. Because of a narrow pump bandwidth of
ΔνFWHM ∼ 500 kHz, the down-converted signal and idler
fields are energy-time entangled within a coherence time of
tcoh ¼ 1=ðπΔνFWHMÞ ∼ 636 ns. The ppKTP crystal is tem-
perature tuned to produce wavelength-degenerate photon
pairs at 810 nm. In order to obtain polarization entangle-
ment, the crystal is bidirectionally pumped in the center of a
polarization Sagnac interferometer [53,54]. After 3-nm
bandpass filtering and single-mode coupling, we detect
an entangled photon pair rate of 15 kcps=mW of pump
power with a heralding efficiency of 20% in both signal and
idler modes.
The single photons are then guided to two bulk optics

PMZIs with an imbalance between long and short inter-
ferometer arm of 2.67 ns. The imbalance of the two PMZIs
is matched up to the correlation length of the photon pairs
(∼800 μm). By adjusting the phases ϕA=B of Alice’s or
Bob’s PMZI, we see Franson interference with a phase of
ϕFranson ¼ ϕA þ ϕB. All of our measurements in the super-
position or Franson basis are performed at maximal
Franson interference contrast (ϕFranson ¼ 0 or π), which
requires phase stability of the PMZIs over the measurement
time. Active phase stabilization of both PMZIs is achieved
by a control loop of a piezoactuator displacing an
interferometer mirror and the difference signal from two
photodiodes indicating the interference contrast. This
interference signal is provided by a 780.241-nm stabiliza-
tion laser (Toptica DL Pro) propagating in the same spatial
interferometer mode as the single photons. It is injected into
the PMZIs via the unused port of the first polarizing beam
splitter (PBS) and measured at the output of the unused port
of the second PBS, where the polarization contrast is
measured by fast photodiodes (Thorlabs–DET 10 A/M)
in a polarization basis conjugate to the polarization basis
defined by the PMZIs. The stabilization laser is frequency
locked to a hyperfine transition of 85Rb, obtained by
saturated absorption spectroscopy, resulting in a wave-
length stability of ∼0.6 fm=min.
We choose the measurement basis in the energy-time

domain by changing the polarization measurement basis
after the PMZI, effectively switching the interferometer
on or off by erasing or revealing the interferometer path
information. Performing a polarization measurement in the
PMZI-defined rectilinear basis corresponds to a measure-
ment in the computational basis, while projecting the
photons in a mutually unbiased polarization basis corre-
sponds to a measurement in the Franson basis (see
Supplemental Material, Sec. III [47] for a stringent formal
treatment). Noise is optically added to the measurement
data by means of fine-adjustable light emitting diodes
(LEDs) powered by a battery, ensuring time-invariant

noise generation. We detect both polarization components
on Alice’s (detectors A0 and A1) and Bob’s (detectors
B0 and B1) side by means of multimode-coupled single-
photon avalanche diodes (Excelitas SPCM-800-11) with a
measured FWHM timing jitter of <800 ps between two
detectors. The detection events are time tagged employing a
time-to-amplitude converter (AIT TTM8000) with a clock
resolution of 82.3 ps.
Postprocessing of the time-tagged data is realized by

binning the detection events of each channel into dimen-
sion-dependent time bins of duration td ¼ F=d, where F is
the duration of one frame. Since the imbalance of our
interferometers is fixed and corresponds to 32 clock
cycles, only time-bin durations which obey ftd ¼ 32 clock
cycles give rise to well-defined Franson interference,
ji; ii þ eiϕFranson jiþ f; iþ fi, where f is an integer corre-
sponding to the time-bin shift. To this end, in order to
see interference, we investigate dimensions which satisfy
d ¼ ½ðfFÞ=32� for integer f and d. For our setup param-
eters and for a time-frame duration of F ¼ 320 clock cycles
this corresponds to d ∈ f10; 20; 40; 80g.
The discretizations to different dimensions are performed

on the same set of measurement data. Since we are tracking
photons emitted from a photon pair source, our state space is
intrinsically bipartite, and only those time frames which
contain exactly one detection event on Alice’s side and
exactly one on Bob’s side are kept; all others are discarded
(e.g., no detection event in Alice’s and 1 detection event in
Bob’s detectors per frame). The detection events which are
kept are then sorted into count matrices pertaining to the
detectors that clicked (A0-B0, A1-B1, A0-B1, A1-B0).
These four matrices in both measurement bases are used to
reconstruct the part of the state ρET required in the
subsequent entanglement certification.
Since the timing jitter of the detectors is 1 order of

magnitude greater than the clock resolution of the time
tagger, our overall timing resolution is dominated by the
detector jitter. Therefore, cross-talk errors between time
bins will sharply increase once the time-bin duration td is
on the order of the timing jitter of the detector, which is the
case for td ¼ 8 clock cycles ¼ 658.4 ns.
The witness used to certify entanglement was derived

using the entropy vector formalism in Ref. [65]. For
each dimension d, the underlying state ρET is not separable
(i.e., entanglement is certified) if WðρET; dÞ > 0, where

WðρET; dÞ

≔
Xd−f
i

jhiijρETjiþ f; iþ fij

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hi; iþ fjρETji; iþ fihiþ f; ijρETjiþ f; ii

p
:

ðA1Þ
In order to compute the witness, one must reconstruct

the underlying density matrix elements of ρET from the
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experimental count matrices. These also depend on
the polarization d.o.f., due to the use of a postselection-free
Franson interferometer. Details of how to compute the
witness from the count matrices produced by the experiment
can be found in the Supplemental Material, Sec. I [47].

APPENDIX B: OAM ENTANGLEMENT
EXPERIMENT

We generate pairs of photons entangled in the orbital-
angular-momentum d.o.f. by pumping a 5-mm-long ppKTP
crystal quasi-phase-matched for type-II SPDC. We use a
405-nm diode laser (Toptica iBeam Smart 405 HP) that is
coupled to a single-mode optical fiber to ensure the best
possible transverse coherence and mode profile, which
is essential to obtain high-dimensionally entangled pairs
of photons. The UV beam is focused by a 500-mm lens
to a spot size of 430 μm (1=e2 beam diamater) at the
ppKTP crytal. We similarly temperature tune this crystal
to produce pairs of wavelength-degenerate, orthogonally
polarized photons at 810 nm. The photon pairs are recol-
limated by a 300-mm lens. This time the polarization d.o.f.
of the photons is solely used to deterministically split the
photons at a polarization beam splitter, such that their spatial
mode can be measured independently of each other. The
photons are then made incident on phase-only spatial light
modulators (Holoeye PLUTO), where a combination of
computer-generated holograms and single-mode fibers are
used to perform a generalized projectivemeasurement in the
OAM state space. Finally, the photons are detected by
avalanche photodiodes and coincidence measurements are
recorded within a coincidence time window of 5 ns using a
custom-built logic. In the computational basis, measure-
ments of photonic OAM may be accomplished by display-
ing a hologram generating the opposite OAM value, thus
resulting in an outgoing beam with a flat wavefront with an
OAM value of l ¼ 0 that will couple efficiently to the SMF
using a 10× microscope objective. This technique is also
known as phase flattening and has been widely used to
measure the OAM content of an unknown beam [66].
However, in order to certify entanglement, it is necessary
to perform measurements in additional bases besides the
computational (OAM) basis, which leads to more complex
mode structures (see Supplemental Material, Sec. V [47]).
Thus, a more elaborate measurement scheme is required to
accurately measure the general OAM state of the exper-
imentally generated entangled pairs. We use a recently
introduced technique called intensity flattening [55], that
allows one to measure any arbitrary transverse spatial mode
of light, including modes in any mutually unbiased basis of
OAM. Although lossy, this technique yields extremely high
detection fidelities. Using this source, after taking into
account the lossy intensitymasking holograms implemented
at the spatial lightmodulators, we achieve coincidence count
rates of 500 Hz in the fundamental Gaussianmode, 1000 Hz
in the first-order OAM modes (l ¼ �1), 700 Hz in the

second-order OAM modes (l ¼ �2), and 400 Hz in the
third-order OAM modes (l ¼ �3). The associated singles
count rates are given by 13, 20, 15, and 11 kHz.
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