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Abstract

Many genes are spaced closely, allowing coordination without explicit control through shared regulatory
elements and molecular interactions. We study the dynamics of a stochastic model of a gene-pair in
a head-to-head configuration, sharing promoter elements, which accounts for the rate-limiting steps in
transcription initiation. We find that only in specific regions of the parameter space of the rate-limiting
steps is orderly coexpression exhibited, suggesting that successful cooperation between closely spaced
genes requires the co-evolution of compatible rate-limiting step configuration. The model predictions are
validated using in vivo single-cell, single-RNA measurements of the dynamics of pairs of genes sharing
promoter elements. Our results suggest that, in E. coli, the kinetics of the rate-limiting steps in active
transcription can play a central role in shaping the dynamics of gene-pairs sharing promoter elements.

1 Introduction

Closely-spaced gene-pairs abound in genomes of all life forms, from human [1, 2] to prokaryotes [3, 4]. Further,
they are highly conserved [2, 5], suggesting that they provide functionality that is selectively advantageous.

Gene-pairs can be arranged head-to-head (transcriptionally divergent), with their transcription start sites
(TSS) closely located, sharing promoter elements such as transcription factor binding sites [1, 2, 4]. Head-
to-tail (tandem) and tail-to-tail (convergent) overlapping gene-pairs are also found, allowing interference
between RNA polymerases (RNAP) [6] and/or with transcription factors [7, 8]. Each configuration can
vary in several parameters, such as distance between TSSs, which affect transcription of the component
genes [9, 10, 11, 4], allowing co-regulation without explicit control mechanisms. The multitude of naturally
occurring configurations suggests that each configuration possesses distinct selective advantages.

While some configurations have been identified and their ubiquity established by models and measure-
ments [2, 12, 11, 13], the range of possible behaviors and advantages as a gene regulation mechanism remain
largely uncharacterized. Such characterization would benefit understanding the array of tasks that organisms
such as Escherichia coli perform using closely-spaced promoters, as opposed to using individual genes or
genes connected by transcription factors.

Much research has been conducted on the global co-expression patterns of closely located genes, par-
ticularly in eukaryotes. This has resulted in the accumulation of evidence for the existence of various,
complementary mechanisms at play [14, 15, 16, 17, 18]. For instance, Limi et al. reported that two highly
expressed genes, Cryba4 and Crybbl, can be simultaneously transcribed from adjacent bidirectional pro-
moters in humans, despite their close proximity [14]. Meanwhile, Behjati et al. found that bidirectional
promoters employ three major architectures across the human genome, varying in their DNA accessibility,



histone modifications, DNA methylation and transcription factor binding profiles [15]. Direct regulatory
interference between spatially close genes has also been reported in human, and it has been associated with
reduced gene expression noise [16]. Finally, Scruggs et al. established that the distance between the promoters
can be used as a regulatory mechanism of the degree of interaction between their dynamics [17].

However, some of these findings may not apply to bacterial genomes, due to various structural differences.
For example, eukaryotic genomes are an order of magnitude larger and they are partitioned into linear
chromosomes and confined to the nucleus. Meanwhile bacterial genomes are singular, circular, and bacteria
lack membrane-bound nuclei [19, 20]. Further, eukaryotic DNA is packed around histones, while prokaryotic
DNA is compressed by supercoiling [20, 21, 22], which is expected to cause major differences into how the
cells of these two domains access their DNA, for both replication as well as transcription, which may explain
why the dynamics of these processes differ so widely between them (e.g. DNA replication is two orders of
magnitude slower in prokaryotes [19]). Consequently, we expect the regulatory mechanisms and the dynamics
of closely spaced promoters to differ significantly between eukaryotes and prokaryotes, which may alter which
mechanism and whether co-expression or interference has a dominant role in each domain.

One aspect that remains unexplored with respect to the bidirectional promoters is the existence of multiple
rate-limiting steps during transcription initiation [23, 24]. As only some of these steps are physically involved
in the gene-pair interactions, we expect the nature of the rate-limiting steps of each promoter to affect the
dynamics of closely-spaced configurations. Importantly, the durations of the open complex formation of a
strong and a weak promoter can differ from little to up to two orders of magnitude [25] and live cell single-RNA
measurements suggest that different promoters are rate-limited at different stages of transcription initiation
[26, 27, 24, 28, 29]. As such, it is plausible that promoters whose initiation kinetics are similar in mean
duration but whose rate-limiting step structures differ will feature different dynamics in the bidirectional
configuration.

Here, we study the dynamics of a stochastic model of a gene-pair in a head-to-head configuration sharing
promoter elements (the most common closely-spaced gene-pair configuration [2, 5]) as a function of the rate-
limiting step configuration of each gene. We analyze the models using analytical stochastic methods. Next,
we validate the main findings by performing time-lapse microscopy measurements of individual genes and in
pairs of genes sharing promoter elements, at the single-RNA level, in live E. coli.

2 Methods
2.1 Models

Transcription in F. coli starts when an RNAP, recruiting the appropriate o-factor, specifically binds to a
promoter. This creates a closed complex of the RNAP and DNA, which can require several trials before
stabilizing [30]. In strong promoters, this step is nearly irreversible [31]. The virtually irreversible open
complex formation follows, consisting of e.g. DNA unwinding and compaction [32] and the RNAP clamp
assembly [33].

We assume a variant of a model of transcription initiation of the overlapping promoters of the galactose
operon in the absence of cAMP-CRP [3]. The transcribed promoter is stochastically selected based on the
relative affinities between the two promoters and the RNAP, encoded in the forward rates of the closed
complex formation of each promoter. After the selection, the remaining steps of transcription initiation
occur at the promoter region [23]. The following stochastic chemical [34, 35] reactions are used to model
this:
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where P, represents a free promoter (unoccupied by an RNAP), I and I represent intermediate tran-
scriptional complexes committed to transcribing genes 1 and 2, respectively, and X and Y represent the
messenger RNA products (or, if they closely follow [36], proteins) of genes 1 and 2, respectively. A schematic
is provided in Figure 2 (a), and a thorough analysis in the supplement.



If the genes did not share promoter elements, the intervals between productions of X (gene 1) would be
[29]:
TX(I) ~ Ei(kl, k3)

with E{Tx(l)} =k kst (2)
Var {Tx(l)} = k172 + k‘372

where €7 (A1, -+, A\,) represents a hypoexponential distribution (i.e. a sum of exponential distributions)
with rates A1, -- -, \,. Similarly, the production intervals for gene 2 would be 7y (1) ~ E (kay ka).

These distributions are of low noise, as measured by the coefficient of variation (standard deviation over
the mean), as this quantity equals unity for Poissonian production (exponential production intervals). More
specifically, the noise is determined by the ratio of k; and k3. Regardless of the mean, it is minimized for
steps of equal duration and maximized when a single step is rate-limiting. The dynamics of an individual
gene is unaffected by the step order (i.e. interchanging k; and k3 has no effect on 7x1).

Regardless of the configuration, the mean and variance of the production intervals are linked to that of
the produced RNAs. In the long-term (infinite time), the mean and variance of produced RNA per unit time
are [37]:

Hnz = lim M = E[Tz]71
o Var? Z(t)] ®)
Nz pz = lim ————= = Var[r/] E[rz] "

i.e. the mean number of RNAs produced per unit time (uz) equals the inverse interval mean, while the Fano
factor (variance over the mean) of the RNA numbers (1z) equals the squared coefficient of variation of the
production intervals. The cell phenotype is also affected by other processes, such as RNA degradation and
dilution due to cell division. Regardless, the mean and noise of the produced RNA numbers are directly
linked to the phenotype (details in supplement) [38], so we expect our results to hold qualitatively in the
presence of other processes.

2.2 Cells, plasmids, chemicals, and growth conditions

We used E. coli strain BW25113 (lacI™ rrnBri1g AlacZwiyie hsdR514 AaraBAD apss ArhaBADyprs) [39],
which contains the constitutive promoters Pjacr and Parac producing, respectively, Lacl repressors [40] and
AraC repressors. As this strain does not contain the tetR gene responsible for encoding TetR repressors, any
gene downstream to a Pieta promoter is expressed constitutively.

We constructed five target systems on a single-copy pBELO plasmid. The first plasmid features the
P1acoszo1 promoter controlling the production of an RNA molecule coding for a red fluorescent mCherry
protein followed by 48 binding sites for the MS2-GFP protein (mCherry-48BS). The other four systems are
modified versions of the first, with the Pj,c0301 promoter being replaced by the following promoters: (i)
Ppap promoter; (i) Placosoi-teta dual-tandem promoter; (iii) Placoso1-sap dual-tandem promoter; and (iv)
Plac0301-1ac0301 dual-bidirectional promoter. All strains aside from its target system also contain either a
medium-copy plasmid pZA25 with the reporter gene P,,,-MS2-GFP or a low-copy plasmid pZS12 with the
reporter gene P,.-MS2-GFP. These plasmids are responsible for producing the fusion protein MS2-GFP,
both producing an abundance of MS2-GFP when activated as detailed below. The reporter plasmids were
generously provided by Orna Amster-Choder (Hebrew University of Jerusalem, Israel) [41], and Philippe
Cluzel (Harvard University, USA) [42], respectively. The activity of the promoters P1ac0301, Plac0301-tetA,
and Pi1ac0301-1ac0301 is regulated by the repressor Lacl and the inducer isopropyl 3-D-1-thiogalactopyranoside
(IPTG). Meanwhile, the activity of Ppap is regulated by the repressor AraC and the inducer L-arabinose.
Finally, the activity of Pl.c0301-BaD is regulated by both repressors (Lacl and AraC) and both inducers
(IPTG and L-arabinose).

Cells were grown overnight in lysogeny broth (LB) medium supplemented with appropriate antibiotics
(34 pg/ml of chloramphenicol, 50 pg/ml of ampicillin, and 50 pg/ml of kanamycin) with shaking at 250 rpm.



We made subcultures, by diluting the stationary-phase culture into fresh M9 medium supplemented with glyc-
erol (0.4% final concentration) and the appropriate antibiotics. Cells were left in the incubator until reaching
ODgog of about 0.25. For the pZA25-P,,.-MS2-GFP reporter plasmid activation, 0.4% of L-arabinose was
added to the culture, which was then incubated at 37 °C for 60 minutes. Cells containing the pZS12-Py,-
MS2-GFP reporter plasmid were incubated in the same way and were activated with 1 mM IPTG. Next,
for the activation of P1,c0301, P1aco301-teta, and Placo301-1ac0301 target plasmids, specific concentrations of
IPTG (either 5 uM or 1 mM) were added to the culture. For activating the Pgap or Pi.cos01-BAD target
plasmids, 0.1% of L-arabinose was added. For the latter, similar concentrations of IPTG (5 uM or 1 mM)
were added as well. Inducer-activated cells were then left in the incubator for 90 minutes, prior to microscopy
observation.

2.3 Microscopy and image analysis

Cells were visualized using a Nikon Eclipse (Ti-E, Nikon) inverted microscope equipped with a 100x Apo
TIRF (1.49 NA, oil) objective. Cells and fluorescent spots within were imaged by Highly Inclined and
Laminated Optical sheet (HILO) microscopy, using an EMCCD camera (iXon3 897, Andor Technology), a
488 nm argon laser (Melles-Griot), and an emission filter (HQ514/30, Nikon). Phase-contrast images were
acquired by a CCD camera (DS-Fi2, Nikon). The software for image acquisition was NIS-Elements (Nikon,
Japan). An example of each channel is shown in Figure 1.

We performed time-lapse fluorescence and phase-contrast imaging of the cells (the latter for cell segmen-
tation and lineage construction). For this, 8 nl of cells were placed on a microscope slide between a coverslip
and a M9 glycerol agarose gel pad. During image acquisition, cells were constantly supplied with fresh media
containing IPTG and L-arabinose, at the same concentration as when in liquid culture, by a micro-perfusion
peristaltic pump (Bioptechs) at 0.3 ml/minute. Images were captured for 5 hours, once per minute in the
case of fluorescence and once per 5 minutes in the case of phase-contrast. During image acquisition, cells
were kept in a temperature-controlled chamber (FCS2, Bioptechs) at optimal temperature (37 °C).

Time series microscopy images were processed as in [43] by, first, aligning consecutive images so as to
maximize the cross-correlation of fluorescence intensities. Next, we annotated manually the region occupied
by each cell in the time series. Afterwards, the location, dimension, and orientation of each cell in each
frame is obtained by principal component analysis, assuming that fluorescence inside the cell is uniform
[44]. Cell lineages were then extracted using CellAging, based on overlapping areas in consecutive frames
[44]. Next, the intensity of each cell is fit with a surface (quadratic polynomial of the distance from the
cell border) in least-deviations sense [45]. This surface represents the cellular background intensity which is
subtracted to obtain the foreground intensity. Next, the foreground intensity is fit with a set of Gaussian
surfaces, in least-deviations sense, with decreasing heights until the heights are in the 99% confidence interval
of the background noise (estimated assuming a normal distribution and using median absolute deviation)
[45]. The Gaussians represent fluorescent RNA spots, and the volume under each represent the total spot
intensity. Finally, as MS2-GFP-tagged RNA lifetimes are much longer than cell division times [46], the
cellular foreground intensity will be an increasing curve, with each jump corresponding to the appearance of a
novel tagged RNA. The moments when a jump occurs are estimated using a specialized curve fitting algorithm
[27]. The intervals between jumps in individual cells correspond to time intervals between consecutive RNA
production events.

3 Results and discussion

3.1 Analytical distributions of production time intervals

From the perspective of the production kinetics of X alone, the reaction system of Equation (1) is equivalent
to:
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Figure 1: Example images of live F. coli expressing GFP-tagged RNAs. (a) Phase contrast image of the live
E. coli with the P1.c0301-teta construct taken after 1 hour of induction with 1 mM IPTG induction at 37 °C.
(b) HILO image visualizing the abundant GFP inside the same E. coli cells and the target RNA bound by
an array of GFPs appearing as bright spots.

which is potentially a highly noisy process [47, 29]. While the expression of gene 1 might not be noisy on its
own, its expression is perturbed by the transcription machinery occupying the shared promoter region for
expression of gene 2, introducing (random) temporal gaps in the expression.

Let G(-) denote the distribution of consecutive productions of X in Equation (4). The mean and variance
of the time intervals between the productions of X are given by [29]:

TX g(k4ak27klyk3)
E[Tx] = (1 + %) k‘171 + k371

2
Var[rx] = <(1 + ﬁ—) +28 ,’g) T

while, due to the symmetry of the model, the production intervals of Y are 7y ~ G(ks, k1, k2, kq).

By comparing Equation (2) with Equation (5) we find that, regardless of the parameters, in a bidirectional
configuration, the mean and variance of the time intervals between RNA productions of each gene are
increased. Consequently, while 7x (1) is always sub-Poissonian, 7x can exhibit either sub- or super-Poissonian
behavior.



RNA production according to the model is exemplified in Figure 2 (b), and the expected interval distri-
bution in Figure 2 (c¢). While the production intervals of each gene are often somewhat regular, as indicated
by the bulk of the distribution, large outliers are present due to the temporal gaps, which coincide with the
transcriptional activity of the other gene (see Figure 2 (b)).
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Figure 2: Model schematic and simulated examples. (a) Schematic of gene-pair in a head-to-head configu-
ration: genes 1 and 2 produce RNAs X and Y, respectively. The shared promoter can be in three-states:
free, or occupied for transcription initiation of gene 1 or 2. (b) Produced RNA numbers over time in a
single Monte Carlo simulation. The dots denote the moments when RNAs were produced. (c¢) Distribu-
tion of intervals between consecutive productions of X in 10,000 simulations. The parameter values are
(k1. ko, k3, kg)=(1,1,1,1). Here, 7x and 7x ) have a mean (variance) of 3 (7) and 2 (2), respectively.

As the marginals shown in Equation (5) fail to capture the co-expression of the two genes, further analysis
is necessary. The time between consecutive productions by either gene, i.e. a jump in X (¢t)+Y (¢), is (detailed
in the supplement):

Tx+y Ng(kl +k2)+g+<k ko k37k4)
E[7x,v]= <1+k3+k >(k1+k2) ' (6)

k1 ko ki ka k1 ko -
Var[TX+Y] (1+<k3 k4) +2 ks k3 +2 k4 k4> (k1+k2)

where £(\) is an exponential distribution with rate A and ¥ (py, -+ ,pn_1, A1, + , An) is a hyperexponential
distribution with mixing probabilities p1,--- ,p, and rates A1,--- , A,. Again, this distribution can feature



either sub- or super-poissonian behavior, depending on its parameter values. By combining Equation (3),
(5), and (6), one can determine the asymptotic covariance and the (Pearson) correlation pxy between the
produced RNA numbers X (¢) and Y (¢) (detailed in the supplement).

3.2 Noise and correlation in the transcription kinetics of genes in a head-to-
head configuration

Based on the above, we first analyzed how the noise and correlation in the transcription kinetics of a head-to-
head configuration depends on the dynamics of the individual genes. For this, the parameterization A, qi2,
¢13, g24 was found to be insightful. Here, A = iy, is a timescale parameter (mean total production rate)
and q;; = k; / k; denote ratios of rates of two reactions. Further, gi2 controls the bias, i.e. the expression ratio
of each gene: for large (small) g1, gene 1 (gene 2) is expressed more frequently. Finally, ¢13 and ¢a4 control
the relative durations of closed and open complex formation, which equal 1 /(1 + ¢13) and ¢13 / (1 + q13),
respectively, for gene 1. Specifically, if ¢13 > 1 (g13 < 1), then k; > k3 and the gene is limited at the open
(closed) complex formation.

The mean RNA numbers are controlled by the bias and the scale: pux = A" g2 /(14 qi2) and py =
A71/(1+ g12). As such, the stage at which the transcription kinetics of each gene is rate-limited does not
affect the mean number of produced RNAs. Meanwhile, the noise and correlation exhibit complex behavior,
which can be divided into a few regions. The regions and their properties are shown in Table 1 (and
Table S1). The noise of each gene and the correlation coefficient are shown in Figure 3 and Figure 4 (a),
and their analytical forms in the supplement.

Table 1: Noise and correlation in RNA production kinetics in the different regions of the parameter space of
head-to-head configuration. Here, ~1~ (~17) denotes weakly sub- (super-) Poissonian behavior (noise of
about 1), while ~1 denotes that both behaviors are possible. Finally, < 1* indicates that < 1 holds at least
for one of the genes, possibly for both.

Region Condition Noise nx  Noise 5y Correlation pxy
A Goa >1,q24 > q13 >1 ~1- >0
A Q13 > qoa, 13 >1  ~ 17 > 1 >0
B 7135 24 < 1 ~1 ~1 ~ 0
C q13 ~ qaa > 1 <17 < 1* <0
D Qi3 ~ 1, gy <1 <1 ~ 1t <0
D q13 <1, qaa~1 ~ 1T <1 <0
E q13 ~ qog ~ 1 < 1* < 1* <0

Region A: For ¢o4 > 1, o4 > ¢13, the expression of gene 2 is most limited at the open complex formation,
while that of gene 1 is more symmetric. As such, the promoter region is mostly occupied, and gene 1 must
express either fast or rarely. In the former case, there is a burst of production of proteins X after each Y,
so the expression of the two genes is positively correlated, and while gene 2 is Poissonian, solely controlled
by its open complex formation process, gene 1 is highly noisy as the geometric burst of RNA is separated
by the gaps created by the other gene. In the latter case, the expression of gene 1 is controlled by uniform
random productions and the correlation vanishes. Specifically, in the latter case, the noise of gene 1 is 142 g1
(super-Poissonian) and gene 2 is Poissonian. The correlation for large ¢4 is \/1/7, which is maximal for the
configuration, while for small g2 the correlation vanishes. The part ¢13 > 24, 13 > 1 is symmetric. Note
that the bias g1 controls the upper bounds for noise and correlation.

Region B: Here, both genes are limited at the closed complex formation. Thus, the promoter region is
rarely occupied, as the expression is limited by an RNAP finding the gene and initiating transcription. This
causes the expression of both genes to be Poissonian, as each is limited by a single step, and uncorrelated,
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Figure 3: Noise in the RNA production in a head-to-head configuration as a function of their relative

durations of closed and open complex formations. (a) gene 1 and (b) gene 2. The black curves denote unity,
and g2 =2.

as their activities do not interfere at the promoter region.

Region C: Both genes are limited at the open complex formation, which makes them to alternate in
occupying the shared promoter region. The noise is set by the bias g1, which determines the gene more
disturbed by the activity of the other. Specifically, the noise of gene 1 equals 1/2+¢15 /2 and the noise of
gene 2 equals 1/24¢q127! /2. As the genes inhibit each other by competing for the shared promoter region,
the expression patterns are anticorrelated.

Region D: For q13 ~ 1, g24 < 1, gene 2 is limited during the closed complex formation, so it does not
block the shared promoter area. Meanwhile, gene 1 is limited at both stages, making its RNA production to
be sub-Poissonian. The expression of gene 2, originally Poissonian, becomes affected by periods of inactivity
as gene 1 employs the promoter, increasing the noise, as controlled by the bias, yielding noise of 1+q12 71 /2.
The correlation is negative, as gene 1 inhibits the expression of gene 2. The part ¢13 < 1, gaq4 ~ 1 is
symmetric.

Region E: Both genes have similar closed and open complex formation durations, resulting in low noise
in a non-bidirectional configuration. If their closed complex formation durations are similar (i.e. g1o ~ 1),
both genes are of low noise (~ 7/9) and their expression is anticorrelated (~ —2/7), as they alternate in
activity. Otherwise, one is of low noise (~5/9), unaffected by the configuration, while the other is of high
noise, with its expression being disturbed by the frequent gaps caused by the other. Specifically, the noise
is 5/94+2q12 /9 for gene 1 and 5/9+2¢1271 /9 for gene 2. The correlation is negative, with a maximum of
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Figure 4: Correlation and total noise (tandem configuration) as a function of the relative durations of closed
and open complex formation. (a) Correlation between the RNA production kinetics of two head-to-head

genes. (b) Noise of RNA production of a gene with two initiation sites. The black curves denote zero or
unity, and g2 =2.

—2/7 at q12=1, and minima of —1/1/10 at g12 — 0 and g2 — oo.

In summary, for coupled gene activity, one (or both) genes must not be limited at the closed complex
formation alone. When coupled, both genes are low noise only if both feature similar relative closed-to-open
complex durations. In this case, their expression is likely anticorrelated, which may have further implications
if the genes are involved in regulating the same or complementary processes. If the relative closed-to-open
complex durations differ, one is of high noise and the other of low noise, while their expression is, surprisingly,
positively correlated. While our analysis lacks processes following the transcription initiation, the presence
of e.g. first-order degradation pulls the noise toward unity and the correlation toward zero, leaving the
conclusions qualitative useful.

3.3 Noise in a gene with two initiation sites

Next, we consider the dynamics of a common RNA product controlled by a promoter with two TSSs (see
Figure S1 (c)). This is common in E. coli [48] and more so in, e.g. plant mitochondria [49]. The configuration
is readily accommodated by our model, by considering the dynamics of X + Y. As the mean and variance
of X +Y follow the mean and covariance of (X,Y’), the results can be derived from those obtained in the



previous section.

Figure 4 (b) shows the noise for X + Y, representing the RNAs produced through either TSS. The noise
is low only if both T'SSs exhibit production dynamics with low noise, i.e. in the regions C, D, or E. Compared
to individual TSSs, the RNA number fluctuations are lower, being suppressed by the negative correlation.
If one TSS exhibits highly noisy production (region A), the RNA numbers become highly noisy, regardless
of the dynamics of the other T'SS. Finally, in region B, the production is exponential-like, as multiple T'SSs
only increase the RNAP to promoter binding affinity, which makes their dynamics indiscernible from that of
a single TSS. This suggests that low noise tandem architectures exert selection pressure on both promoter
components.

3.4 Model predictions for empirical validation

To validate our predictions, we observed transcription in live E. coli at the single-RNA level in various
constructs. Three of the constructs feature synthetic genes whose production is controlled by a single
promoter (specifically Placo301, Pteta, and Ppap (see Figure S1 (a)). The remaining constructs feature
pairs of genes sharing promoter elements. One of these constructs is Pi.c0301-1ac0301, With overlapping
lacO301 promoters in the opposite strands (see Figure S1 (b)), with the reporter being on a single side.
In the other two constructs, the expression is controlled by a Placo301-teta O @ Placoso1-sap dual-tandem
promoters (see Figure S1 (c)). In all these, the expression of the lacO301 promoter is modulated by the
IPTG concentration, an inducer for the lac promoter[50]. Meanwhile, aTc concentration is held constant
at 15 ng/ml, in order to trigger full expression of the tetA promoter. Similarly, L-arabinose concentration
is held constant at 0.1%, to trigger full expression of the BAD promoter. In all cases, RNA production
dynamics was measured by time-lapse microscopy imaging using MS2-GFP tagging (see methods).

Using our models, we aim to predict the behavior of the gene pairs sharing promoter elements, given
knowledge of the behavior of the constituent genes not involved in gene pair interactions (i.e. operating
as isolated promoters). More specifically, we test whether, from the measured dynamics of RNA produc-
tion of Plac0301, Pteta [26], and Ppap, one can predict the kinetics of P1ac0301-1ac0301; Plac03o1-teta, and
P1ac0301-BAD-

For this, we first extracted the number of RNAs in each cell in the first and the last frame of the time
series for all the constructs in each condition (see Figure 5 (b) and (c), respectively). These data were used to
estimate the mean and standard deviation the production intervals, and the most likely (maximum likelihood
fit) model of Equation (S1) for the single promoters, through the relations of Equation (S6). The estimated
intervals are shown in Table 2, along with the model parameters of Equation (S1) where applicable. A Wald
test testing for a specific mean and standard deviation was used to compute a p-value to confirm that the
model predicts the mean and variance of the RNA distributions. The measurement data and the resulting
model fits are exemplified for the Pi..0301-teta construct induced with 1000 pM of IPTG in Figure 5. We
also extracted the intervals from the full time series for several of the constructs (about 120 frames, one every
minute) to verify that the production time intervals can be correctly estimated from the RNA distributions
(see Table S2 and Figure 5 (a)). The RNA counts and the time intervals are given in ESM file 2 and 3,
respectively, and constitute the raw measurement data after the image analysis, as opposed to the model fits
show in Table 2, Table 3, and Table 4.

The results in Table 2 indicate that changing IPTG concentration alters the noise of the lacO301 promoter
in addition to changing its mean expression rate, which is expected to be due to changes in the open-to-closed
complex duration ratio, and is in agreement with previous reports [28]. The p-values indicate that there is
no evidence that any of the models fit the measurements poorly.

Next, using the above parameters (i.e. k1 and k3 in Table 2), we constructed the models for the dual
promoters through Equation (5) and Equation (6). The obtained models are shown in Table 3. The predicted
mean and standard deviation show an agreement with the measured behavior of the dual promoter constructs,
while the noise and correlation indicate that that promoters operate at different regions of the open-to-closed
complex ratio space (these values cannot be directly measured with our system, but can be inferred from the
model fit). The results indicate that the model predicts the behavior of the dual-promoter measurements
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Figure 5: Measured production time intervals and RNA distributions in the first and last frame of the
time series along with model predictions for the Pjac0301-teta construct induced with 1000 pM of IPTG. (a)
Production time interval distribution in 39 cells and the corresponding model predictions using a model with
interactions during transcription initiation (model; see Table 3) or a model with no interactions (null model;
see Table 4), (b) RNA distribution in 65 cells 1 min after induction (these data are used only for predicting
the subsequent RNA distribution in (c)), and (¢) RNA distribution in 115 cells 146 min after induction,
along with the model predictions.

well, and that the noise is modulated by the change in the coordination between the two promoters in the
dual promoter construct.

As our methodology cannot identify which of the steps correspond to ki~ and k3! in Table 2, we also
considered the alternative step ordering. The dual-promoter model fits had a p-values <3.964 x 10~3 in for
the lacO301-tetA construct at 5 pM IPTG, and p-values <4.614 x 103 for the lacO301-BAD construct at
1000 pM IPTG, indicating that the alternatives are not likely for lacO301 at 5 pM and BAD. The step order
for lacO301 at 1000 uM IPTG and tetA cannot be resolved from these data, but the alternatives result in
a qualitatively similar dual-promoter models and p-values >0.116. For the constructs containing these two
promoters, we report the most likely models, all suggesting the order specified in Table 2. These findings
are also supported by prior evidence using a different methodology|[28].

The fact that the measurements fall into the different regions of operation (see Figure 4 and Table 1) is
apparent in Figure 6, Figure 7, and Figure 8. Namely, the high IPTG condition falls into region E for the
lacO301-1acO301 and lacO301-tetA, and into region D for the lacO301-BAD construct. At low IPTG, the
lacO301-1acO301 transits into region C, as both promoters are modulated by the changes in the inducer
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Table 2: Estimated RNA production intervals for each of the promoter constructs. The table shows the
promoter, induction, estimated paramater of model Equation (S1) for the single promoters, the estimated
mean, standard deviation (sd), and noise (coefficient of variation) of the RNA production intervals, and the
p-value of the test of model versus data.

Promoter IPTG (M) k1 ' (s) k3 ' (s) Mean (s) Sd(s) Noise P-value
lacO301 1000 362.3 737.3 1099.6 821.5  0.558 0.446
lacO301 5 25.8 1236.8 1262.6 1237.0 0.960 0.273
tetA - 287.4 385.5 672.9 4809  0.511 0.075
BAD - 1036.7  333.7 1370.4 1089.1 0.632 0.059
lacO301-tetA 1000 - - 702.2 638.8  0.828 0.604
lacO301-tetA 5) - - 1111.6 1089.1 0.960 0.164
lacO301-lacO301 1000 - - 1659.3 1437.0 0.750 0.112
lacO301-1acO301 5 - - 2205.9 2119.3 0.923 0.971
lacO301-BAD 1000 - - 866.8 612.9  0.500 0.099
lacO301-BAD 5 - - 1274.7 1248.9 0.960 0.698

Table 3: Models derived for the dual promoters from the individual promoter fits of Table 2 using the model
with interactions during transcription initiation. The table shows the promoter/induction scheme, the mean
and standard deviation (sd) of the RNA production intervals and the correlation between the RNA numbers
assuming the derived models, and the p-value of the test of model versus data.

Promoter IPTG (pM) Mean (s) Sd (s) Noise Correlation P-value
lacO301-lacO301 1000 1836.9 1685.2 0.842 —0.188 0.168
lacO301-1acO301 5 2499.3 2486.5 0.990 —0.010 0.931
lacO301-tetA 1000 701.4 616.1 0.772 —0.166 0.603
lacO301-tetA 5 1190.4 12129 1.038 +0.172 0.123
lacO301-BAD 1000 901.3 7314  0.659 —0.070 0.141
lacO301-BAD 5 1240.0 1230.9 0.985 +0.105 0.620

concentration, while the lacO301-tetA and lacO301-BAD transit into (opposite directions) of region A. This
explains the widely different noise levels in the estimated and measured intervals (see Table 2 and Table S2),
which are well predicted by our models in each case (compare with Table 3).

Finally, we verified that a model with no interactions between the two promoters would not explain
the measurements. For this, we attempted to predict the mean, noise, and intervals in a dual-promoter
measurement using independent expression from the constituent promoters (i.e. Equation (S4)) as predicted
from the single-promoter measurements. The results in Table 4 show that the associated model fails to
explain the observed dual-promoter behavior, and the apparent mismatch is exemplified in Figure 5. Note
that the models are also unaffected by the (k1,ks) identifiability problem. While the mean and noise of
the system consisting of two independent promoters trivially follow from their independent components, the
time intervals of the combined production do not. In particular, the intervals are not independent. We also
considered the possibility that while the promoters might have interactions, their expression levels may be
altered by the other promoter utilizing the same finite pool of RNA polymerases. For this, we assumed that
the number of RNA polymerases modulate the closed complex formation rate (i.e. k1 = R 151 where 1231 is the
per-polymerase closed complex formation rate, and R represents an RNA polymerase), which will cause a
slight reduction of the closed complex formation rate, as determined by the closed to open-to-closed complex
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Figure 6: Noise of RNA production of one side of a dual promoter as a function of the relative durations
of closed and open complex formation and the expression ratio of the promoters. The black curves denote
unity and g12 = 2 (see Figure 3), and the markers the predictions for the measurements, circles representing
the validated ones (see Table 3).

duration ratio of the other promoter. Any of these models (all R and all step orders) failed to explain the
behavior of our dual-promoter measurements as well. The effects are most extreme for R = 2, but we verified
that models for other R have no better fit. Our model is recovered at R = 1 and the independent model
without polymerases is recovered at R = oo.

We conclude that our model of closely-spaced promoters that assumes interactions between the promoters
is the one that well predicts the measurements in each setting, for both the head-to-head and tandem
constructs, while a model with no interactions cannot explain the observed measurements. Relevantly, our
models reveal that the observed changes arise from changes in the coordination between the two coupled
transcription start sites of our synthetic constructs.

4 Conclusion

We analyzed a stochastic model of two genes in a head-to-head configuration as a function of whether each
gene is rate-limited during the closed and/or open complex formation. Compared to individual genes, in
the bidirectional configuration, the transcription activity is slower and noisier in both genes, as each gene
interferes with the activity of the other, allowing two genes with sub-Poissonian dynamics to exhibit super-
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Figure 7: Predicted correlation between the RNA productions initiated by each start site of the dual promoter
as a function of the relative durations of closed and open complex formation and the expression ratio of the
promoters. The black curves denote zero and g2 = 2 (see Figure 4 (a)), and the markers the predictions for

the measurements.

Table 4: Null models derived for the dual independent promoters from the individual promoter fits of Table 2.
The table shows the promoter/induction scheme, and the mean and standard deviation (sd) of the RNA
production intervals assuming the null models, and the p-value of the test of model versus data for maximally
(R = 2) and minimally (R = co) RNA polymerase starved null models.

Promoter IPTG (pM) Mean (s) Sd (s) Noise P-val. R=2 P-val. R= 00
lacO301-1acO301 1000 1099.6 821.5 0.558 4.116 x 10~*  6.601 x 10~°
lacO301-1acO301 5 1262.6 1237.0 0.960 9.981 x 1072  8.386 x 1073
lacO301-tetA 1000 417.5 303.5 0.529 2127 x 1073 4.267 x 10~*
lacO301-tetA 5 439.0 358.5  0.667 7.289 x 107° 5.049 x 10~¢
lacO301-BAD 1000 610.1 468.9  0.591  6.325 x 107%  1.456 x 1077
lacO301-BAD ) 657.1 588.7  0.803 3.464 x 1073 5.124 x 104

Poissonian dynamics when coupled. Importantly, provided information on the kinetics of the constituent
promoters when not sharing promoter elements, the models were shown to be able to predict well the behavior
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Figure 8: Noise of RNA production of the dual promoter as a function of the relative durations of closed
and open complex formation and the expression ratio of the promoters. The black curves denote unity and

q12 = 2 (see Figure 4 (b)), and the markers the predictions for the measurements, circles representing the
validated ones (see Table 2 and Table 3).

of the pairs of the same genes when sharing promoter elements, implying that they capture accurately the
effects of the complex interference caused by the shared promoter region.

We found that for such prediction to be accurate, the models have to account for the two-rate-limiting
step kinetics of active transcription in F. coli. In particular, the time-length of such rate limiting steps,
namely the closed and open complex formations, controls not only the expression rate and noise of each gene
(as in isolated genes, see e.g. [24]), but also the kinetics of the temporal gaps caused by the transcription
events of the opposite gene. This programs the behavior intricately: a similar rate-limiting step structure
combined with a rate-limiting open complex formation is required for both genes to feature low noise;
otherwise one tends to be highly noisy. Also, orderly systems tend to exhibit strong negative correlation,
while the genes alternate expression, but the correlation can be lost or become positive if the open-to-closed
complex formation time-lengths are incompatible. As such, not only the mean and variance of the durations
of each stage, but also the mechanistic underpinnings, affect the dynamics of closely-spaced gene-pairs,
implying that promoters with seemingly identical dynamics in isolation may differ widely in their dynamics
in a closely-spaced configuration. Relevantly, as shown, the results generalize to the behavior of individual
genes with multiple transcription initiation sites.

Overall, these results suggest that, in E. coli, the kinetics of the rate-limiting steps in active transcription
needs to be considered for dissecting the dynamics of pairs of genes sharing promoter elements. In this
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regard, we find it to be striking that pairs of closely-spaced promoters, by tuning the kinetics of their closed
and open complex formation (which are sequence dependent and, thus, evolvable) tunes the orderliness of
the whole gene-pair. This new knowledge provides an important route to follow in the engineering of pairs of
closely-spaced promoters with desired dynamics and contributes to a better understanding of the dynamics
of natural pairs of closely spaced genes and their potential role in the gene expression programs of E. coli.
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