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Curved spacetime theory of inhomogeneous Weyl materials
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We show how the universal low-energy properties of Weyl semimetals with spatially varying time-reversal
(TR) or inversion (I) symmetry breaking are described in terms of chiral fermions experiencing curved-
spacetime geometry and synthetic gauge fields. By employing Clifford representations and Schrieffer-Wolff
transformations, we present a systematic derivation of an effective curved-space Weyl theory with rich geometric
and gauge structure. To illustrate the utility of the formalism, we give a concrete prescription of how to fabricate
nontrivial curved spacetimes and event horizons in topological insulators with magnetic textures. Our theory
can also account for strain-induced effects, providing a powerful unified framework for studying and designing
inhomogeneous Weyl materials.
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Introduction. Semimetals and quantum liquids with linear
dispersion near degeneracy points exhibit emergent relativis-
tic physics at low energies. Topological Dirac and Weyl
semimetals [1–19] have proven to be particularly fertile
condensed-matter playgrounds to study the interaction of chi-
ral fermions with gauge fields. These systems display the rich
physics of quantum anomalies discovered originally in the rel-
ativistic setting [20–22]. In translationally invariant systems,
the twofold band touching in Weyl semimetals can be asso-
ciated with a conserved Berry charge which is topologically
protected. Moreover, even in the presence of spatially varying
perturbations, the low-energy properties can be understood
in terms of Weyl particles experiencing artificial gravity and
gauge fields [23]. The condensed-matter setting allows for
remarkable opportunities in engineering synthetic gauge fields
and geometries that mimic and generalize the phenomenology
of high-energy physics [16,24–34].

A popular starting point for geometry and gauge-field
engineering in semimetals is a strain-distorted tight-binding
model [35–41]. This description, case specific to a particular
lattice and orbital structure, can often be regarded as a formal
device to obtain a long-wavelength theory. While being a
powerful method for fabricating synthetic gauge fields, strain
engineering has the limitation of producing effective geome-
tries that are small perturbations from flat space. To obtain
more general three-dimensional (3d) geometries, Ref. [23]
proposed a new method of fabricating spatially varying TR-
and I-breaking textures. Semiclassical dynamics of carriers
then reflect the interplay of effective curved geometry and
Berry curvature effects. The purpose of the present work is to
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establish a general and fully quantum-mechanical description
of inhomogeneous Weyl semimetals. By employing Clifford
representations and Schrieffer-Wolff (SW) transformations
[42], we systematically consider generic TR- and I-breaking
patterns and provide a controlled derivation of the low-energy
Weyl Hamiltonian HW = V σ 0 + ei

a(ki − KW,i − i
2 eb

i ∂ je
j
b)σ a.

Here σ a denotes the set of Pauli matrices supplemented by
a unit matrix. The effective geometry is encoded in the frame
fields ei

a while the effective gauge field receives contributions
from the spatial variation of the Weyl point KW,i and the frame
fields. Our theory can also account for strain-induced effects
and provides a unified low-energy description of inhomoge-
neous Weyl semimetals.

The obtained low-energy theory has a number of remark-
able consequences. In general, spatially varying TR- and I-
breaking textures give rise to frame fields and metric tensors
that mix time and space components. In contrast to mere
curved space geometries realized by strain engineering, we
obtain nontrivial spacetime geometries. Also, the spectral tilt
of the Weyl dispersion can be tuned by TR- and I-breaking
textures. To demonstrate this effect in detail, we consider 3d
topological insulators with magnetic textures. Strikingly, vari-
ous magnetic textures give rise to Weyl semimetal phases with
a spatial interface between type I and type II regions. We show
that the effective geometry near the interface emulates the
Schwarzschild metric at a black-hole event horizon. Our work
provides powerful tools to analyze and design the properties
of inhomogeneous Weyl materials.

Inhomogeneous Weyl systems. The starting point of our
theory of inhomogeneous Weyl systems is a generic four-band
parent state with both time-reversal and inversion symmetry
intact. By introducing spatially varying TR- or I-breaking
fields, the parent state is driven to an inhomogeneous Weyl
semimetal phase. The minimal model for the parent states is
characterized by the Hamiltonian [23]

H0 = n(k)I + κi(k)γi + m(k)γ4, (1)
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where the repeated indices are implicitly summed over, I is
the identity matrix, and γμ with μ = 1, 2, 3, 4 denotes the four
γ matrices satisfying anticommutation relations {γμ, γν} =
2δμν . The parameters n(k) and m(k) are even functions of the
momentum while κi(k) is odd. Therefore, γ1,2,3 are odd under
both TR and I, while γ4 is even. The fifth γ matrix is defined
as γ5 = γ1γ2γ3γ4, which is odd under both TR and I.

To write down the most general 4 × 4 Hamiltonian,
we introduce ten additional matrices, γi j = −i[γi, γ j]/2. It
is convenient [13,23] to separate the ten matrices into
three vectors b = (γ23, γ31, γ12), b′ = (γ15, γ25, γ35), and p =
(γ14, γ24, γ34) and one scalar ε = γ45. The transformation
properties of the four groups can be easily deduced from their
constituent γ matrices, and it turns out that b and b′ break
TR symmetry, while p and ε break I symmetry. The general
4 × 4 Hamiltonian with TR- and I-breaking terms can thus be
written as

H = H0 + u · b + w · p + u′ · b′ + f ε, (2)

where the functions u, w, u′, and f characterize the symmetry-
breaking fields which are position dependent. Because r is
even under TR but odd under I, w and f should be even
functions of r to break the inversion symmetry. If u and u′
are not even functions of r, the inversion symmetry is also
broken. But since u and u′ fields always break time-reversal
symmetry irrespective of their r dependence, we label them as
time-reversal symmetry-breaking terms. In general, we regard
TR- and I-breaking terms as smooth functions of position r
and assume that r and k are conjugate variables [ri, k j] =
iδi j . Elastic deformations and strain typically induce spatial
dependence in H0 [35–40]. While we are mainly considering
inhomogeneous TR and I breaking, we will discuss below how
strain is included in our formalism in the continuum limit.

TR-breaking case. Here we derive an effective curved-
space Weyl equation for inhomogeneous TR-breaking sys-
tems in two opposite limits, vanishing mass (m = 0) and large
mass. Physically these correspond to metallic and insulating
parent states. We consider the u(r) · b term which corresponds
to 3d magnetization or any field which transforms as mag-
netization under TR and spatial rotations. The unit matrix
term n(k) can be set as zero since it only shifts the energy.
For the m(k) = 0 case, the Hamiltonian can be readily block
diagonalized. Defining two sets of Pauli matrices σi and τi (σ0

and τ0 are the 2 × 2 unit matrix) and working in the chiral
representation γi = τ3 ⊗ σi, γ4 = τ1 ⊗ σ0, the Hamiltonian
splits to two blocks

H±
W = [ui(r) ± κi(k)]σi = d±

i (k, r)σi. (3)

The local Weyl point are determined by d±
i = ui(r) ±

κi(KW ) = 0. Thus, u(r) gives rise to an axial gauge field while
the frame fields can be straightforwardly obtained as indicated
[by Eq. (8)] below.

The complementary regime of nonzero mass gives rise
to rich geometric and gauge structure. It is convenient
to parametrize the symmetry-breaking fields as u(r) =
u(r)[sin θ (r) cos φ(r), sin θ (r) sin φ(r), cos θ (r)]. To derive
an effective Weyl Hamiltonian, we first rotate the fields
along the z direction by applying a unitary transforma-
tion, W †(r)u · bW (r) = u(r)b3. This is achieved by choos-
ing W = exp (−iφb3/2) exp (−iθb2/2). The Hamiltonian

after the transformation becomes

H ′ = 1
2

{
Ei

aγ
a, κi(k − ω)

} + m(k − ω)γ4 + uγ12. (4)

The anticommutator structure results from the noncommuta-
tivity of position and momentum. Here Ei

a with i and a running
from 1 to 3 are frame fields defined through W †γiW = Ei

aγ
a.

Using the frame fields, we can define a metric gi j = Ei
aE j

b ηab

with η being the Minkowski metric, η = diag(−1, 1, 1, 1).
The indices i, j, k can be raised or lowered by gi j or its
inverse gi j , and a, b, c are raised or lowered by ηab or ηab.
It is easy to verify that Ei

aEb
i = δb

a and Ei
aEa

j = δi
j . The spin

connection ω = iW †∂rW can be written in terms of the frame
fields as ωi = ωab

i γab = −Ea
j ∇iE jbγab/4, with ∇ being the

covariant derivative on the manifold. Alternatively, ω can also
be viewed as a SU(2) gauge connection ωi = ω

j
i b j . Equation

(4) describes a Dirac electron moving in a curved space [43]
in the presence of time-reversal symmetry-breaking field u.
The elegant gauge structure of Eq. (2) is discussed in detail in
the Supplemental Material (SM) [44]. While the Dirac equa-
tion still describes flat space gi j = δi j , it contains redundant
high-energy bands. The curved space geometry and gauge
fields emerge as we project the four-band Dirac Hamiltonian,
Eq. (4), to the two-band low-energy Weyl Hamiltonian. If
the symmetry-breaking field u is constant, this can be done
exactly by a momentum-dependent unitary transformation.
However, for the position-dependent fields we are interested
in, this method is no longer exact since the momentum and
position do not commute with each other. There will be
additional terms related to the derivatives of the fields that
mix the high- and low-energy degrees of freedom, and in
general it is impossible to perform the block diagonalization.
However, in the large-mass limit and slowly varying fields, we
can derive an effective low-energy theory in a controlled way
by employing the SW transformation.

First, we expand Eq. (4) to the first order in derivatives of
the symmetry-breaking field. This yields

H ′ ≈ κ̃i(k, r)γi + m(k)γ4 + uγ12 + u′
ib

′
i + f γ45, (5)

where κ̃i = {κi(k), Ei
a(r)}/2, u′

i = ∂k j mωi
j , and f =

∂k j κiω
a
j E

i
a. Choosing a particular representation γ1 = τ0 ⊗ σx,

γ2 = τ0 ⊗ σy, γ3 = τx ⊗ σz, and γ4 = τz ⊗ σz, the terms
proportional to γ1,2,4, b3, and b′

3 are block diagonal.
Employing the SW transformation, we seek matrix S such
that the unitary equivalent Hamiltonian eSH ′e−S is block
diagonal. In the SM, we explicitly write S in the lowest order
in the large-mass limit u′

i/m, κ ′
3/m � 1. The transformed

Hamiltonian is block diagonal, yielding an effective Weyl
Hamiltonian

HW = da(k, r)σ a, (6)

with di=1,2 = κ̃i − f u′
i/(2m) − f u′

i/(2u), d3 = −m + u −
(κ̃2

3 + f 2)/(2m) + (u′2
1 + u′2

2 )/(2u), and d0 = u′
3 + f κ̃3/m.

The Weyl points are determined by di=1,2,3 = 0, and due to
the inversion symmetry, if KW is a Weyl point, −KW will
also be a Weyl point. The higher order corrections to Eq. (6)
are proportional to ∂2

k κi(∂ru)2, ∂2
k m(∂ru)2, which are always

small for smooth u and vanish completely for H0 with a linear
dispersion. Expanding the Hamiltonian around KW , we arrive
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at our main result,

HW ≈ V σ 0 + ei
a

(
ki − KW,i − i

2
eb

i ∂ je
j
b

)
σ a, (7)

where i = 1, 2, 3 and a = 0, 1, 2, 3. The Weyl point depends
on the position and can be interpreted as U (1) vector poten-
tial, and V = d0(KW ) − i

2 eb
0∂ je

j
b acts as an effective scalar

potential. The potentials acquire corrections from the frame
fields, ensuring the Hamiltonian Hermitian. The frame fields
are defined through

ei
a(r) = ∂da

∂ki

∣∣∣∣
KW

, (8)

with additions e0
0 = −1 and e0

1,2,3 = 0. We obtain from the
frame fields the emergent metric gμν = eμ

a eν
bη

ab. Explicitly,

g00 = −1, g0i = ei
0, gi j = −ei

0e j
0 + ei

ae j
a. (9)

It should be stressed that, as indicated by the effective metric
tensor with space and time mixing terms g0i, the emergent
geometry of Eq. (7) is fundamentally different from the in-
homogeneous strain-induced metrics that do not contain the
mixing terms. The dispersion relation of the Weyl fermion can
be determined by gμν pμ pν = 0 with p = (ω, k), which gives

ω = ei
0ki ±

√
ei

l e
j
l kik j . (10)

If |ei
0el

i | < 1, it is a type I Weyl semimetal, and if |ei
0el

i | > 1
we obtain a type II Weyl semimetal with overtilted Weyl cone.
Remarkably, as shown below, this fact can be employed in
engineering a spatial interface between type I and type II Weyl
semimetals. The interface between type I and type II Weyl
semimetals, which could simulate properties of the black
hole horizon, may be designed experimentally by controlling
the magnetic texture. This could open a method to study
Hawking radiation [45–47] and quantum chaos [48–51] in
Weyl semimetals.

To conclude this section, we outline how things would
have changed had we considered the other TR-breaking triplet
u′ · b′ instead of u · b. In this case, we can use essentially
the same method to derive a two-band model, but in general
this leads to a nodal line semimetal [13] instead of a Weyl
semimetal. While interesting, this case is not relevant for
Weyl-type behavior and is postponed to the SM.

I-breaking case. The derivation of the curved-space Weyl
Hamiltonian can be extended to I-breaking systems. Sev-
eral Weyl materials that break inversion (but preserve TR)
symmetry have be observed [15–17]. In general, a spatially
varying I-breaking term w(r) · p can be treated similarly as
the TR-breaking case. This has been carried out in the SI
where we obtain an I-breaking variant of Eq. (6). The essential
difference from the TR-breaking case is that the role of the
mass term m is played by κ̃1 or κ̃2. Thus, the controlling
parameter in this situation is κ̃1 (or κ̃2) instead of m. Assuming
κ̃1 sufficiently large, which is also a required to obtain Weyl
points in this case, we can find a SW transformation to block
diagonalize H ′ and obtain a two-band Hamiltonian. Finally,
analogously to the u′ · b′ term, the f γ45 term as a sole I-
breaking term leads to a nodal line semimetal as shown in the
SM.

Application I: Engineering tilts and horizons. Here, we
illustrate the power and utility of the developed formal-
ism by proposing concrete systems with spatial interface
between type I and type II Weyl fermions. We consider
a simple parent model with κi = ki and m(k) = m which
could be realized in 3d TR-invariant insulators with magne-
tization texture [23] or in the topological insulator–magnet
heterostructures [12]. The TR-breaking field, representing,
for example, 3d magnetization, is parametrized as u =
u(r)(sin θ cos φ, sin θ sin φ, cos θ ) with spatially varying an-
gles.

Following the procedure discussed above, we obtain
an effective 2 × 2 Hamiltonian with d1 = kx cos θ cos φ +
ky cos θ sin φ − kz sin θ , d2 = −kx sin φ + ky cos φ, d3 = u −
m − (κ̃2

3 + f 2)/(2m), and d0 = −κ̃3 f /m, where κ̃3 =
kx cos φ sin θ + ky sin φ sin θ + kz cos θ and f = (∂rzφ +
cos φ∂ryθ − sin φ∂rx θ )/2. The products of k- and r-dependent
terms should be understood as symmetrized. For the
lowest-order of the SW transformation to be a good
approximation around the Weyl point, the condition
u − m � m should be satisfied. The Weyl points are
determined by ±KW = ±KW (sin θ cos φ, sin θ sin φ, cos θ )
with KW =

√
2m(u − m) − f 2. For simplicity, we assume

that 2m(u − m) − f 2 > 0 such that there always exist two
well-separated Weyl points. Expanding around KW , we obtain
the linearized Weyl Hamiltonian with the frame fields being
e0

0 = −1, ei
0 = − f /m(sin θ cos φ, sin θ sin φ, cos θ ), ei

1 =
(cos θ cos φ, cos θ sin φ,− sin θ ), ei

2 = (− sin φ, cos φ, 0),
and ei

3 = −KW / f ei
0. After straightforward calculations,

we find ei
0ex

i = ei
0ey

i = 0 and ei
0ez

i = f /KW . Therefore, if
| f /KW | < 1, the node is of type I, if | f /KW | > 1, it is of type
II, and the interface between the type I and type II regions,
i.e., the event horizon, is determined by | f /KW | = 1. In the
SM, it is shown that in a suitable local basis the metric is
analogous to the Schwarzschild metric near the horizon in the
Gullstrand-Painlevé coordinates [45,52,53].

Having worked out the general case, we now study a
special case with u as a constant, φ = 0, and θ = r/ξ with r =√

x2 + y2 + z2. Correspondingly, we find f = y/(2rξ ). This
magnetic texture is slowly varying in the length scale much
smaller than ξ . Since 0 � | f | � 1/(2ξ ), there always exists
a type I region, and to have a type II region, the condition
4m(u − m)ξ 2 < 1 should be satisfied. The event horizon is
determined by y2 = 4ξ 2m(u − m)r2, which defines a conical
surface; see Figs. 1(a) and 1(b). Clearly, the interface can be
tuned when it is possible to manipulate ξ . Thus, the horizon
may be tuned experimentally, providing a way to simulate
the Hawking radiation using Weyl semimetals [45–47]. As
depicted by Figs. 1(c) and 1(d), different shapes of the event
horizon can also be realized; see the SM for more details.

Application II: Inclusion of strain effects. As noted above,
there exists a significant body of literature on strain-induced
artificial gauge fields and synthetic geometry [35–41]. In these
treatments, the strain effects manifest at the level of the TR-
and I-preserving parent state Hamiltonian H0 which becomes
position dependent. In this respect, the strain engineering can
be viewed as complementary to the studied case with spatially
dependent TR- and I-breaking fields. However, here we show
how to incorporate the strain effects to a unified theory of
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FIG. 1. Magnetic textures and the corresponding event hori-
zons. [(a), (b)] u = u(sin r/ξ, 0, cos r/ξ ) with u/m = 11/10 and
mξ = √

2. The horizon is a conical surface defined by x2 + z2 =
y2/4. [(c), (d)] u = (−u||y/

√
x2 + y2, u||x/

√
x2 + y2, u3), where

u|| = u0 exp (−√
x2 + y2/ξ ), u3/m = 10/9, u0/u3 = 1/9, and mξ =

9/70. The horizon is a cylinder surface with the radius about 0.232ξ .
The values of the coordinates in both plots are given in the units
of ξ .

inhomogeneous Weyl systems in the continuum limit. In the
presence of small strain, the spatial metric is related to the
strain tensor ui j as gi j = δi j + 2ui j , and the frame fields can be
chosen as Ē i

a = δi
a − δa jui j [35]. Employing these frame fields

Ē i
a and the corresponding spin connection ω̄, the four-band

Dirac Hamiltonian in the presence of strain- and TR-breaking
field u(r) · b can be written in a Hermitian form as (we assume
κi = ki and m(k) = m)

H0 = 1
2

{
Ē i

aγ
a, ki − ω̄i

} + mγ4 + u(r) · b. (11)

This prescription can be understood as a momentum-
dependent minimal substitution [26] accounting for strain.
The strain-induced gauge fields [37,54] are encoded in the
frame fields and the spin connection [35,55]. Using the same
unitary transformation W as previously, we can rotate u · b
along the z direction, and the Hamiltonian after rotation

becomes

H ′ = 1
2

{
Ẽ i

aγ
a, ki − ω̃i

} + mγ4 + u(r)b3, (12)

where Ẽ i
a = Ē i

bEb
a and ω̃ = W †ω̄W + ω are the new frame

fields and the modified spin connection containing the com-
bined effects of strain and inhomogeneous TR breaking. In
the SM, we show that the spin connection transforms exactly
in agreement with the modification of the frame fields. Thus,
after inclusion of strain effects, Eq. (12) takes mathematically
the same form as Eq. (4) without strain. We can proceed with
the projection to the low-energy space precisely as before to
obtain an effective Weyl Hamiltonian of form Eq. (7), now
accounting for the strain and inhomogeneous TR-breaking
texture.

Summary and outlook. By employing Clifford representa-
tions and Schrieffer-Wolff transformations, we carried out a
controlled derivation of quantum-mechanical low-energy the-
ory for chiral fermions in Weyl semimetals with smooth TR-
and I-breaking textures. The resulting effective Weyl Hamil-
tonian, describing carriers experiencing an effective curved
spacetime, provides a unified approach also in the presence
of strain. To illustrate the utility of the developed formalism,
we proposed a concrete prescription to realize a spatial type
I–type II interface in magnetic topological insulators. This
interface is mathematically analogous to an event horizon
of a black hole and may provide an experimental access to
exotic high-energy phenomena. The developed low-energy
theory is applicable to a wide variety of inhomogeneous Weyl
semimetals and provides a powerful framework for analyzing
and designing these systems.

An interesting avenue for future work is the generalization
of our theory to time-dependent TR- and I-breaking textures
that give rise to nonstationary geometries and gauge fields.
Another intriguing problem concerns the connections between
different geometric responses in Weyl semimetals. As high-
lighted in the present work, low-energy carriers respond to
magnetization through the change of effective geometry. This
is analogous to elastic deformations in response to stress.
Furthermore, thermal transport coefficients are also related
to effective geometry through gravitational response [31,56].
These facts lead us to speculate on possible novel connections
between seemingly distinct (magnetic, elastic, and thermal)
response properties.
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