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ABSTRACT Electrocardiogram (EKG) based classification of out-of-hospital cardiac arrest (OHCA)
rhythms is important to guide treatment and to retrospectively elucidate the effects of therapy on patient
response. OHCA rhythms are grouped into five categories: ventricular fibrillation (VF) and tachycardia
(VT), asystole (AS), pulseless electrical activity (PEA), and pulse-generating rhythms (PR). Clinically
these rhythms are grouped into broader categories like shockable (VF/VT), non-shockable (AS/PEA/PR),
or organized (ORG, PEA/PR). OHCA rhythm classification is further complicated because EKGs are
corrupted by cardiopulmonary resuscitation (CPR) artifacts. The objective of this study was to demonstrate
a framework for automatic multiclass OHCA rhythm classification in the presence of CPR artifacts. In total,
2133 EKG segments from 272OHCA patients were used: 580 AS, 94 PR, 953 PEA, 479 VF, and 27 VT. CPR
artifacts were adaptively filtered, 93 features were computed from the stationary wavelet transform analysis,
and random forests were used for classification. A repeated stratified nested cross-validation procedure was
used for feature selection, parameter tuning, and model assessment. Data were partitioned patient-wise. The
classifiers were evaluated using per class sensitivity, and the unweighted mean of sensitivities (UMS) as a
global performance metric. Four levels of clinical detail were studied: shock/no-shock, shock/AS/ORG,
VF/VT/AS/ORG, and VF/VT/AS/PEA/PR. The median UMS (interdecile range) for the 2, 3, 4, and
5-class classifiers were: 95.4% (95.1-95.6), 87.6% (87.3-88.1), 80.6% (79.3-81.8), and 71.9% (69.5-74.6),
respectively. For shock/no-shock decisions sensitivities were 93.5% (93.0-93.9) and 97.2% (97.0-97.4),
meeting clinical standards for artifact-free EKG. The UMS for five classes with CPR artifacts was 5.8-points
below that of the best algorithms without CPR artifacts, but improved the UMS of latter by over 19-points
for EKG with CPR artifacts. A robust and accurate approach for multiclass OHCA rhythm classification
during CPR has been demonstrated, improving the accuracy of the current state-of-the-art methods.

INDEX TERMS Out-of-hospital cardiac arrest (OHCA), electrocardiogram (EKG), cardiopulmonary
resuscitation (CPR), adaptive filter, stationary wavelet transform (SWT), random forest (RF) classifier.

I. INTRODUCTION
Out-of-hospital cardiac arrest (OHCA) is a leading cause
of death in the industrialized world. In Europe the esti-
mated annual average incidence of ambulance treated cases
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is 41 (range 19-104) per 100 000 persons [1]. Patients in
cardiac arrest lose their cardiac and respiratory function,
and die within minutes if not treated. Treatment consists of
highly time-sensitive interventions such as: recognition, call
for help, cardiopulmonary resuscitation (CPR), defibrillation,
and post-resuscitation care. Bystanders and lay rescuers can
provide CPR to maintain an artificial perfusion of the vital
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organs through chest compressions, and mouth to mouth
breaths for ventilations. Defibrillation by an automated exter-
nal defibrillator (AED) can be used to revert lethal ventricular
arrhythmia and restore the normal function of the heart. Upon
the arrival of the medicalized ambulance, specialized treat-
ment becomes available including continued high-quality
CPR and defibrillation, but also add intravenous pharma-
cological treatment (adrenaline and anti-arrhythmic drugs),
airway management, and assisted ventilation. If spontaneous
circulation is restored, the patient is transported to a hospital
for in-hospital treatment and post-resuscitation care [2].

Knowing the patient’s cardiac rhythm during resuscitation
is important for two reasons. First, awareness of the patient’s
rhythm may contribute to guide therapy. International guide-
lines describe treatment pathways based on cardiac rhythm
and elapsed time, i.e., rhythm analysis every 2 minutes with
defibrillation attempts for ventricular fibrillation (VF) or
tachycardia (VT), and consideration of intravenous drugs
such as adrenaline every 3-5 minutes for all non-perfusing
rhythms [2]. Second, in retrospective analyses, the rhythm
transitions of the patient during CPR provide important
information about the interplay between therapy and patient
response [3]–[5]. This may contribute to identify therapeutic
interventions or treatment patterns that improve OHCA sur-
vival. One of the limiting factors for such analyses is the lack
of datasets with cardiac rhythm annotations due to the manual
labor involved. Thus, there is a need for automatic methods
for cardiac rhythm annotation. InOHCA rhythms are grouped
into five categories [6], [7]: VF, VT, asystole (AS), pulseless
electrical activity (PEA), and pulse-generating rhythms (PR).
Often, PEA and PR are called organized rhythms (ORG),
or rhythms presenting visible QRS complexes in the electro-
cardiogram (EKG) [8]. PEA is characterized by a disassocia-
tion between themechanical (contraction of themyocardium)
and electrical (QRS complexes) activities of the heart, which
leads to no palpable pulse [4].

OHCA rhythm classification algorithms are based on the
analysis of the EKG, and in most cases address 2-class clas-
sification problems. A typical example is AED shock advice
algorithms [9]–[11], designed to discriminate shockable
(VF/VT) from nonshockable rhythms (AS/ORG). Depending
on the clinical context a finer detail is needed. VT treat-
ment may benefit from synchronized electrical cardioversion
[12]. Another clinically relevant problem is the detection
of spontaneous circulation or pulse, which is framed as a
PEA/PR discrimination algorithm once ORG rhythms are
identified [8], [13], [14]. So there is clearly a need for differ-
ent levels of detail in OHCA cardiac rhythm classification.
Five-class OHCA rhythm classification using the EKG was
introduced by Rad et al., [7], [15] using features obtained
from the discrete wavelet transform (DWT) sub-band decom-
position of an artifact-free EKG. Most OHCA rhythm clas-
sification algorithms consist of an EKG feature extrac-
tion stage followed by a machine learning classifier. EKG
feature extraction has been approached in the time [16],
[17], frequency [18], [19], time-frequency [15], [20], [21],

and complexity domains [22], [23]. The machine learn-
ing approaches explored in the classification stage include
K-nearest neighbors [15], [24], support vector machines
[10], [25], [26], artificial neural networks [13], [19], [27], and
ensembles of decision trees [11], [14].

OHCA rhythm classification is further complicated by
the presence of CPR artifacts in the EKG. Interruptions in
CPR to classify the rhythm lead to interrupted perfusion of
vital organs and lowers chances of survival [28]. Efforts
have been made to develop accurate OHCA rhythm analysis
methods during CPR [29]. The most popular approach is
the suppression of the CPR artifact using adaptive filters
[30]–[32], followed by an EKG feature extraction stage on
the filtered EKG. These approaches have been successfully
demonstrated to discriminate shockable (Sh) from nonshock-
able (NSh) rhythms both during manual CPR [33] and piston
driven mechanical CPR [21]. In fact, an improved feature
extraction based on the stationary wavelet transform (SWT)
sub-band decomposition has yielded improved classification
results for shock/no-shock decisions during mechanical CPR,
and is the basis for feature extraction in this work. However,
there are no studies on multiclass OHCA rhythm classifica-
tion during CPR. In fact, when 5-class OHCA rhythm classi-
fiers developed using artifact-free EKG were tested during
CPR their performance substantially degraded [15], [27].
So there is a need to develop algorithms for multiclass OHCA
rhythm classification during CPR.

This study introduces new methods for multiclass OHCA
rhythm classification during CPR, using features obtained
from the SWT analysis of the EKG after filtering CPR arti-
facts. The scope of the algorithms is gradually increased
from 2-class to 5-class rhythm classification to address
the different levels of clinical detail needed depending
on the application. The following classification problems
were studied: Sh/NSh, Sh/AS/ORG, VF/VT/AS/ORG, and
VF/VT/AS/PEA/PR. The paper is organized as follows.
The study dataset and its annotation are described in
Section II; feature engineering including CPR artifact fil-
tering is described in Section III; Section IV describes the
architecture used for the optimization and evaluation of the
classification algorithms. Finally, results, discussion, and
conclusions are presented in Sections V-VII.

II. DATA COLLECTION AND PREPARATION
Data were extracted from a large prospective OHCA clinical
trial designed tomeasure CPR-quality, and conducted in three
European sites between 2002 and 2004: Akershus (Norway),
Stockholm (Sweden) and London (UK) [34], [35]. Prototype
defibrillators based on the Heartstart 4000 (Philips Medical
Systems, Andover, Mass) were deployed in 6 ambulances at
each site. The defibrillators were fitted with an external CPR
assist pad that measured compression depth [36]. The raw
data for our study consisted of the EKG and transthoracic
impedance obtained from the defibrillation pads, and the
compression depth. All signals were originally sampled at
500Hz, and then downsampled to a sampling frequency of
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FIGURE 1. One 20-s segment from the dataset corresponding to a patient with an organized rhythm (ORG). In the first 5 s there is no
artifact and the ORG rhythm is visible, in the last 15 s the CPR artifact conceals the patient’s rhythm. After filtering ŝekg is obtained (middle
panel), and the underlying rhythm is again visible in the artifacted interval. The bottom panel shows the compression depth signal with the
chest compression instants (tk ) highlighted using vertical red lines.

fs = 250Hz (Ts = 4ms) for this study. A notch and a Hampel
filter were used to remove powerline interferences and spiky
artifacts, respectively. Chest compression instants (tk ), were
automatically marked in the depth signal using a negative
peak detector for depths exceeding 1 cm (see Fig. 1).
All recordings were annotated for the original study into

the five OHCA rhythm types, by consensus between an
experienced anesthesiologist trained in advanced cardiac life
support and a biomedical engineer specialized in resuscita-
tion [34]. VF was defined as an irregular ventricular rhythm
with peak-to-peak amplitudes above 100µV and a fibrillation
frequency above 2Hz. Regular ventricular rhythms with rates
above 120min−1 were annotated as VT. AS was annotated in
rhythms with peak-to-peak amplitude below 100µV and/or
rates below 12min−1, and ORG rhythms when the heart rate
was above 12 min−1. ORG rhythms were further classified
into PEA or PR by assessing the presence of blood flow,
indicated by clinical annotations of pulse done during resus-
citation, or by the presence of fluctuations in the thoracic
impedance aligned with the QRS complexes [13], [34].

For this study, we automatically extracted 20-s segments
with the following characteristics: unique rhythm type, ongo-
ing compressions during a 15-s interval, and a 5-s interval
without compressions either preceding or following chest
compressions (see Fig. 1). The interval during compres-
sions was used to develop and evaluate the OHCA rhythm
classifiers, and the interval without compression artifacts to
confirm the original rhythm annotation. All automatically
extracted segments were reviewed by 3 experienced biomedi-
cal engineers to discard segments with low signal quality and
noise, and to certify by consensus that the original annota-
tions in the dataset were correct. The final dataset contained

2133 segments from 272 patients, whereof 580 were AS
(139 patients), 94 PR (31), 953 PEA (167), 479 VF (103),
and 27 VT (11).

III. FEATURE ENGINEERING
Feature engineering consisted of 3 stages. First, chest com-
pression artifacts were removed using an adaptive filter.
Then, a multi-resolution analysis of the EKG was per-
formed using wavelet transforms, from which the denoised
EKG and its sub-band decomposition were obtained. Finally,
high-resolution features were extracted from the denoised
EKG and its sub-band components. In what follows n is the
sample index, so t = n · Ts.

A. CPR ARTIFACT FILTER
CPR artifacts were suppressed using a state-of-the-art method
based on a recursive least squares (RLS) filter [32] that
estimates the CPR artifact, scpr(n), as a quasiperiodic interfer-
ence [31]. The fundamental frequency of the artifact, ω0(n),
is the instantaneous frequency of the chest compressions. The
CPR artifact is represented as a truncated Fourier series of N
harmonically related components of frequencies ω` = ` · ω0
and slowly time-varying Fourier coefficients [31]:

scpr(n) = A(n)
N∑
`=1

a`(n) cos(ω`n)+ b`(n) sin(ω`n)

= A(n)2T(n)8(n) (1)

where

8(n = [cos(ω1n) sin(ω1n) . . . cos(ωNn) sin(ωNn)]T (2)

2(n) = [a1(n) b1(n) . . . aN (n) bN (n)]T (3)
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and A(n) = 1 during compressions, and A(n) = 0 oth-
erwise. The time-varying coefficients of the RLS filter are
the in-phase (a`) and quadrature (b`) components in vector
2(n). The instantaneous frequency of the compressions was
derived from the tk instants obtained from the depth signal
(see Fig. 1):

ω0(n) = 2π
1

tk − tk−1
tk−1 ≤ nTs < tk (4)

The RLS coefficients were adaptively estimated to min-
imize the mean square error between the corrupted EKG,
scor, and the estimated artifact, ŝcpr, at the frequency of the
harmonics. The error signal of the RLS filter is thus the
filtered EKG, ŝekg, which is used to identify the underlying
rhythm. The RLS update equations are [37]:

ŝekg(n) = scor(n)− A(n)2T(n− 1)8(n) (5)

F(n) =
1
λ

[
F(n−1)−

F(n−1)8(n)8T(n)F(n−1)

λ+8T(n)F(n−1)8(n)

]
(6)

2(n) = 2(n−1)+ F(n)8(n)ŝekg(n) (7)

The gain matrix and coefficients vector were initialized to
F(0) = 0.03 · I2N and 2(0) = 0, where I2N is the 2N × 2N
identity matrix. The forgetting factor of the RLS algorithm,
λ, and the number of harmonics, N , were set to 0.998 and 4,
as recommended in [32].

B. STATIONARY WAVELET TRANSFORM
EKG multiresolution analysis was done using the SWT,
which differs from the standard DWT in that at each decom-
position level the low-pass (approximation) and high-pass
(detail) components are not downsampled. Instead, the fil-
ters are upsampled so all detail and approximation coeffi-
cients have the length of the original signal, producing a
translation-invariant representation [38].

Each EKG segment was decomposed into its sub-bands
using a pair of quadrature mirror lowpass (hj) and highpass
(gj) filters, which for level 0 are related by:

g0(L − 1− n) = (−1)nh0(n), (8)

where L is the length of the filters. At stage j the filters were
those of stage 0 upsampled by a 2j factor, hj(n) = h0(n)

↑ 2j
.

The detail, dj(n), and approximation, aj(n), coefficients were
recursively obtained through convolution (∗):

a0(n) = ŝekg(n) (9)

aj(n) = hj−1(n) ∗ aj−1(n) (10)

dj(n) = gj−1(n) ∗ aj−1(n) (11)

The time-reversed version of the decomposition filters, that
is h(n) = h(L − 1− n), were recursively used to reconstruct
the original signal [38]:

aj−1(n) = 1
2

(
hj(n) ∗ aj(n)+ gj(n) ∗ dj(n)

)
(12)

from j = J , . . . , 1.
EKG features were extracted using a 2048-sample analysis

interval (8.192 s) of ŝekg centered in the 15 s during chest

compressions (see Fig. 1). A Daubechies 4 mother wavelet
and J = 7 decomposition levels were used to generate a7
and d7, . . . , d1. Only detail coefficients d3−d7 were used for
feature extraction, which is equivalent to retaining the spec-
tral components in the 0.98− 31.25Hz band. Soft denoising
was applied to d3 − d7 with a universal threshold rescaled
by the standard deviation of the noise [39]. The denoised
d3 − d7 coefficients were used to obtain the denoised EKG,
ŝden, by recursively applying eq. (12). The whole decomposi-
tion and denoising (reconstruction) processes are illustrated
in Fig. 2 for two rhythms, a VF and an ORG.

C. FEATURE EXTRACTION
Ninety three features were extracted from ŝden and d3 − d7.
These features quantify the most distinctive characteristics
of OHCA rhythm subtypes, and encompass the collective
knowledge of over 25 years of active research in the field
(over 250 features from the available literature were initially
analyzed). In what follows, feature naming is that of the orig-
inal papers, and the MATLAB code for feature calculation is
available from (https://github.com/iraiaisasi/
OHCAfeatures). The features grouped by analysis domain
are:
• Time domain (5 features). These were only extracted
from ŝden and include: bCP [18], x1, x2 [33], and
the mean and the standard deviation of the heart rate
(MeanRate and StdRate) obtained from the QRS
detections of a modified Hamilton-Tompkins algorithm
[14], [40].

• Spectral domain (6 features). Including the classical x3,
x4, x5 [33], VFleak [41], and two new features,
Enrg, the relative energy content of the signal in the
4-8Hz frequency band, and SkewPSD, the skewness of
the power spectral density of the EKG. All features were
computed from ŝden.

• Complexity analysis (14 features), including CVbin
and Abin [42] of ŝden, and two measures of entropy
for ŝden and d3 − d7. The entropy measures were
the sample entropy (SampEn) of the signal, and the
Shannon entropy (ShanEn) of the sign of the first
difference [43].

• Statistical analysis (54 features). Nine features were
calculated to characterize the statistical distribution of
the signal amplitude: interquartile ranges (IQR) [15],
mean and standard deviation of the absolute value of
the amplitudes (MeanAbs and StdAbs) and slopes
(MeanAbs1 and StdAbs1), Skewness (Skew), Kurto-
sis (Kurt) [11], and the Hjorthmobility and complexity
(Hmb and Hcmp) [44]. All the features were computed
for ŝden and d3 − d7.

• Phase space features (14 features). Taken’s time-delay
embedding method [45] with a delay of τ = 2 samples
was used to create a two-dimensional phase space rep-
resentation for ŝden and d3 − d7 [46]. An ellipsoid was
fitted in the phase-space using the least squares criterion,
and its major axis (EllipPS), and the skewness of
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FIGURE 2. SWT sub-band decomposition and denoised EKG reconstruction for the 8.192-s analysis interval of the filtered EKG, ŝekg. The
left panel corresponds to an organized rhythm (ORG) and the right panel to a ventricular fibrillation (VF).

the distance distributions in the phase space (SkewPS)
were computed. Then a recurrence quantification anal-
ysis (RQA) was used to extract and quantify the tran-
sition structures of the system dynamics in the phase
space. Two RQAmeasures were computed only for ŝden,
the length of the longest diagonal line (RQA1), and the
recurrence period density entropy (RQA2) [47].

The dataset can thus be represented as a set of
instance-label pairs {(x1, y1), ..., (xN , yN )} where yi are the
class labels (for instance {0, 1} for a Sh/NSh classification
problem), the feature vector xi ∈ RK contains the values of
the K = 93 features for EKG segment i, and N = 2133 is the
number of EKG segments in the database.

IV. CLASSIFIER TRAINING AND EVALUATION
A repeated quasi-stratified nested cross-validation (CV)
architecture was used [21], [48], with an outer 10-fold CV
for feature selection and model assessment, and an inner
5-fold CV for classifier parameter optimization. First, for
each training set of the outer CV, features were selected using
recursive feature elimination (RFE) [49]. Then, these fea-
tures were used in the inner CV to optimize the parameters of
the classifier. Finally, the classifier was trained and assessed
in the outer loop. Data were always partitioned patient-wise

and in a quasi-stratified manner, by forcing the prevalence of
each rhythm in each fold to be at least 70% of the prevalence
of that rhythm in the whole set. In this way patient-wise and
stratified sampling could be done simultaneously.

Confusion matrices were used to evaluate the performance
of the classifiers [15], and four classification problems
were addressed: Sh/NSh (2-class), Sh/AS/ORG (3-class),
VF/VT/AS/ORG (4-class), andVF/VT/AS/PEA/PR (5-class).
For each class i the sensitivity (Sei) was computed, and the
unweighted mean of all sensitivities (UMS) was used as
summarizing metric:

Sei =
TPi

TPi + FNi
, UMS =

1
P

P∑
i=1

Sei (13)

where TPi and FNi are the true positives and false negatives
for class i, and P is the number of classes. The nested CV
procedure was repeated 50 times to estimate the statistical
distributions of Sei and UMS, and to obtain the stacked
confusion matrices for each classification problem.

A. CLASSIFIER
Random forest (RF) classifiers [50] were used to decide the
EKG rhythm class. An RF is an ensemble of B decision
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FIGURE 3. Stacked confusion matrices for 50 runs of the nested CV procedure for the different models. The mean sensitivities for
each class and model are shown in the diagonals (mean and median sensitivities are slightly different, see table 1).

trees {T1(x), ...,TB(x)} that produces B nearly uncorrelated
predictions

{
ŷ1 = T1(x), ..., ŷB = TB(x)

}
of the rhythm type

for the EKG segment. Training an RF classifier comprises:
• Generating B training subsets from the original train-
ing data by bootstrapping (i.e., random sampling with
replacement). We choose each training subset to have
the same size as the original training data.

• A classification tree is grown for each training subset by
choosing the best split among a randomly selected subset
ofmtry features in each node. The criterion to choose the
split was to minimize the cross-entropy.

• The recursive binary splitting continues until each ter-
minal node has fewer than some minimum number of
observations, lsize.

• The decision of classifier, ŷj = FRF (xj), is obtained by
the majority vote of the B trees.

Once the models were trained, the predictions in the valida-
tion sets were obtained by comparing the predictions of the
model ŷj to the labels assigned by the clinicians yj, to obtain

the confusion matrix of the model and the metrics derived
thereof.

We considered three parameters of the RF classifier: B,
mtry, and lsize. The number of trees was initially fixed to
B = 500. This choice is not critical, a sufficiently large
number stabilizes the accuracy and further increasing B does
not overfit the model [50]. The number of predictors per
split was set to the default value

√
K . The minimum num-

ber of observations per leaf, lsize, controls the depth of the
trees, and was identified as critical in our preliminary tests.
We optimized lsize in the inner CV by doing a grid-search in
the range 1 ≤ lsize ≤ 200 with the UMS as the objective
function. Finally, uniform prior probabilities for each class
were assigned during training to address the class imbalance.

B. FEATURE SELECTION
Feature selection was based on an RFE approach using the
permutation importance as a ranking criterion [51]–[53].
Permutation importance is a built-in characteristic of the RF
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FIGURE 4. Median UMS and Se per class in the 50 repeats of the 10-fold outer CV, as a function of lsize.

classifier that ranks feature importance by permuting the
values of the feature in the training data and assessing the
out-of-bag error. Large errors mean the feature is important
for classification. At each iteration of the RFE algorithm,
features were ranked and the least important 3% of the fea-
tures were removed. The process was continued until Kcl
features were left for classification. The values decided for
the different models were: Kcl = 25 for 2-class, Kcl = 30 for
3-class, Kcl = 35 for 4-class, and Kcl = 40 for 5-class.

V. RESULTS
The results reported in this section are those obtained after
running the RFE feature selection algorithm in the 10-fold
outer CV untilKcl features were left, and fitting the classifiers
with the optimal parameters determined in the 5-fold inner
CV. The process was repeated in 50 random repetitions of
the nested CV procedure, there are thus 50 estimates of the
metrics for the whole dataset and 500 algorithmic runs on the
validation folds in the outer CV. The metrics are reported as
median (interdecile range, IDR) for those 50 evaluations.

A detailed analysis of the classification results for the
different class models are shown in Table 1 and Fig. 3.
Fig. 3 shows the confusion matrices obtained stacking the
predictions from the 50 random repetitions of the nested
CV procedure, and provide all the information needed to
accurately calculate the performance metrics for each rhythm
type and classifier. The median (IDR) of the sensitivities and
UMS for each classifier are shown in Table 1. The clinical
relevance of the classification results and classification errors
is addressed in section VI, the discussion.
As reference, we also computed the classification results

when the features were selected exclusively on the feature’s
permutation importance. That is, the RFE algorithm was
substituted by a single feature ranking based on importance
from which the Kcl most important features were selected.
Using a single feature ranking based on importance the
median (IDR) UMS for the 2, 3, 4 and 5-class classifiers were
95.3% (95.0-95.5), 87.3% (86.9-87.6), 81.1% (79.5-82.3),
and 67.8% (65.7-70.0), respectively. The classification results
for 2, 3, and 4 classes were similar to those obtained using
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TABLE 1. Median UMS and sensitivity per class for different classifiers.
The metrics are reported as median (IDR) for the 50 runs of the nested CV
procedure.

FIGURE 5. The median UMS (5-class) in the 50 random repetitions, as a
function of the number of trees, B, and the number of features per
split, mtry .

RFE feature selection, but an advanced feature selection
approach combining feature importance and sequential fea-
ture elimination boosted the 5-class classification results by
4-points.

A. SELECTION OF PARAMETERS
The most critical parameter in our RF classifiers was the
minimum number of observations in the terminal nodes, lsize,
which gives a compromise between bias and variance by con-
trolling how shallow the classification trees are. Larger values
of lsize produce shallower trees. Fig. 4 shows, for the different
classifiers, the median value of the performance metrics for
the evaluations of the 50 repeats of the 10-fold outer CV as a
function of lsize. In the cases where class imbalance is smaller
(2 and 3 class) deeper trees increase the UMS, however when
the class imbalance is large (4 and 5 class) shallower trees
produce better results (see Fig. 4). The median (IDR) value
of the optimal lsize for the 2 and 3-class classifiers were
3 (1.0-7.0) and 3 (1.0-5.0), but increased considerably to

FIGURE 6. Selection probability for the 40 most selected features in the
500 runs of feature selection (outer loop).

80 (30.0-150.0) and 125 (50.0-200.0) for the cases of 4 and
5-classes.

Fig. 4 also shows that the sensitivity for the classes with
lower prevalence (VT and PR) increases with shallower trees.
In the 4-class classifier the sensitivity for VT increased by
more than 40 points when lsize was raised from 1 to 100, while
the sensitivities of the most prevalent classes (AS, ORG, and
VF) decreased very slightly. A similar behavior was observed
for the sensitivities of VT and PR in the 5-class problem,
although in this case the sensitivity of PEA, the rhythm that
borders PR and VT, decreased considerably from 83.1%
to 25.1%. PEA sensitivity could be better addressed using
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FIGURE 7. Two examples of misclassified segments for the 3-class classifier. In the top panel an AS is classified as ORG, while the bottom
panel shows an ORG misclassified as AS.

multimodal analysis by adding information on perfusion from
other signals like pulse oximetry, invasive blood pressure,
brain oximetry or expired CO2 when available [54], [55].
Changing the number of trees, B, and the features per

split, mtry, had less impact on classification. Fig. 5 shows
the median UMS of the 50 random repetitions of the
5-class classifier for different choices of B and mtry, with
lsize = 125. The figure shows that our preliminary design
choices were sound, the UMS stabilizes for B > 250 and
the effect of mtry on the classification results was small
with the median UMS varying between 70.9% and 72.6%.
So the default mtry =

√
K value was a very acceptable

choice.

B. FEATURE SELECTION AND RELEVANCE
Feature design is key in classical machine learning. In our
approach, we introduced the SWT for multi-resolution anal-
ysis because it allows a better amplitude and statistical char-
acterization of the features than the classical DWT used by
Rad et al. [15]. In addition soft denoising produced a recon-
structed signal from which many classical OHCA rhythm
classification features could be better estimated. Fig. 6 shows
the 40 features with the highest probability of selection (the
most important features) for each classification problem.
These probabilities were estimated by counting the num-
ber of times the features were selected in the 500 runs
of feature selection algorithm (50 repeats of 10-fold outer
CV). For the 2-class problem the most relevant features

are a mixture of those derived from the detail coefficients
and from the denoised signal and correspond to complex-
ity, frequency, time, and statistical domains. For the 3 and
4-class classifiers, features derived from the phase-space
reconstruction of the signals were also relevant. Finally, for
the most challenging 5-class classifier, the RQA analysis was
also needed to improve classification results. Features like
VFleak, SampEn (d3) and IQR (d7) were selected in all
feature selection runs corresponding to the 2, 3 and 4-class
classifiers and SampEn (d3) was also selected in all the runs
of the 5-class classifier. These results are consistent with
our previous findings on shock/no-shock decisions during
mechanical CPR [21]. Although CPR artifacts present very
different characteristics during mechanical and manual CPR,
features derived from the SWT decomposition of the filtered
EKG seem to be very robust and independent of the filtering
residuals, thus are able to capture the distinctive characteris-
tics of OHCA rhythms.

VI. DISCUSSION
The relevance of the detailed classification results presented
in Table 1 and Fig. 3 is better understood in the context of
the clinical importance of each classification problem, and by
providing illustrative examples of the classification errors that
show the limitations of our approach. For the Sh/NSh 2-class
problem, the median UMS was 95.4%, with median sensi-
tivity for the shockable and nonshockable rhythms of 93.5%
and 97.2%, respectively. This is a very important problem
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FIGURE 8. An example of a VT classified as VF by the 4-class classifier.

FIGURE 9. Two examples of misclassified PEA/PR rhythms. The last five seconds (clean intervals) of both panels show the difficulty of
pulse assessment based only on the EKG.

since it addresses shock advice decisions during CPR. Shock
advice algorithms for defibrillators are normally tested on
artifact-free data. In that scenario, the American Heart Asso-
ciation requires a minimum sensitivity for shockable and
nonshockable rhythms of 90% and 95%, respectively [56].
Our solution is above those requirements. Morevover, our
results improve by over 1.5-points the UMS reported for
the most accurate shock/no-shock algorithms during manual
chest compressions [33], [57].

A finer classification of NSh rhythms includes the distinc-
tion between AS and ORG rhythms, which can be impor-
tant to determine pharmacological treatment, or the effect
of adrenaline use and dosage during CPR [58]. The UMS
for the 3-class classifier was above 87.5%, and shockable

rhythms had a sensitivity of 93.9%. However, the distinction
between AS/ORG during CPR was difficult, 13% of AS
were incorrectly classified as ORG whereas a 10.8% of ORG
rhythms were classified as AS. These finding are in line with
those reported by Kwok et al., who on a limited set of patients
demonstrated the first 3-class rhythm classification algorithm
during CPR [20]. In scenarios without CPR artifact the dis-
tinction between AS/ORG is simple and can be addressed
using energy and heart-rate measures [33]. During chest
compressions spiky filtering residuals may be confounded as
QRS complexes during AS (Fig. 7, top panel). Conversely,
CPR artifact filtering may reduce R-peak amplitudes
in ORG rhythms producing erroneous AS classifications
(Fig. 7, bottom panel).
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Classifying shockable rhythms into VT or VF may allow
synchronized electrical cardioversion on VT, to avoid the
R on T phenomenon that may induce VF. However, the
sensitivity for VT dropped considerably in the 4-class prob-
lem, 19.7% of VT was classified as VF and 6.3% as ORG.
VT rhythms can be confounded as ORG (narrower monomor-
phic VT) or VF (more irregular Torsades de Pointes). CPR
artifacts further complicate the problem since filtering resid-
uals may resemble an irregular VF during VT (see Fig. 8).
In any case, the median UMS for the 4-class problem was
80.6%, more than 55-points higher than the 25% value
expected for a random guess.

In the 5-class problem, most of the errors were caused by
the PEA/PR distinction (presence of pulse in ORG rhythms).
Pulse assessment using only the EKG is hard, and deter-
mination of pulse during OHCA frequently relies on addi-
tional surrogate variables of perfusion like pulse oximetry
signals, invasive blood pressure measurements, or expired
CO2 [55], [59]. Fig. 9 shows two representative examples
of the difficulty of determining pulse using only the EKG.
However, our 5-class classifier had a median UMS of 71.9%
during CPR, which is only 5.8-points lower than the 5-class
OHCA rhythm classifier on artifact-free EKG proposed by
Rad et al. [15]. Furthermore, when Rad et al.used their algo-
rithms to annotate complete OHCA episodes (no data prun-
ing), the UMS during artifact-free segments was 75%, but
dropped to 52.5% in intervals during chest compressions,
even after filtering the CPR artifact [27]. Our architecture
would therefore substantially improve the accuracy of 5-class
classifiers during CPR.

VII. CONCLUSIONS
A robust methodology for OHCA rhythm classification dur-
ing CPR has been presented. The approach consists of an
adaptive CPR artifact suppression filter, followed by fea-
ture extraction based on the SWT multiresolution analy-
sis of the EKG, the features are finally fed to a random
forest to classify the cardiac rhythm. The approach was
successfully demonstrated for 2, 3, 4 and 5-class OHCA
cardiac rhythm classification, addressing the most impor-
tant clinical scenarios for rhythm assessment during CPR.
Our method improved the state-of-the-art methods in the
extensively studied 2-class shock/no-shock decision scenario,
meeting the criteria of the American Heart Association for
artifact-free EKG. To the best of our knowledge, we intro-
duced the first general framework for multi-class OHCA
rhythm classification during CPR with increasing levels of
clinical detail, and our approach substantially improved the
accuracy of 5-class OHCA cardiac rhythm classifiers during
CPR.
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