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Impropriety-Based Multiantenna Spectrum Sensing
with I/Q Imbalanced Radios
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Abstract—Direct conversion radios are widely recognized as
the most appealing approach for reducing the hardware cost
as well as power consumption in upcoming communication
systems. However, such radios are known to entail gain and phase
uncertainties along the analog inphase/quadrature (I/Q) paths. In
this article, we address the effects of the transmitter (TX) and
receiver (RX) I/Q errors or mismatches on the improperness of
the transmitted and received signals, respectively. We analytically
show how the properness of a transmitted signal and the
receiver thermal noise can be destroyed, respectively, under the
transmitter and receiver I/Q errors, given that the corresponding
ideal signals are proper under perfect I/Q balance. Then, we
address the spectrum sensing problem in cognitive radio systems,
through modelling it as a composite binary hypothesis testing
task, and apply the likelihood ratio test (LRT) approach to solve
it. To this end, we propose three impropriety-based multiantenna
spectrum sensing algorithms under the transmitter and receiver
I/Q uncertainties. The principle of invariance is exploited to
examine the potential constant false alarm rate (CFAR) behavior
of the proposed detectors. We analytically prove that all the pro-
posed sensing methods posses CFAR behavior against the noise
variance uncertainty, while only two of them have CFAR property
against the receiver I/Q mismatch values. The achievable sensing
performance of the proposed methods is then analyzed through
extensive numerical experiments, and the devised alternative
detectors are mutually compared. Finally, analytical solutions are
derived to quantify the improvement/degradation in the effective
received signal SNR under I/Q imbalanced radios.

Index Terms—Spectrum sensing, cognitive radio, improper/
proper random signals, I/Q imbalance, likelihood ratio test,
CFAR property, invariance, multiantenna receivers.

I. INTRODUCTION

It is commonly understood and agreed that the radio fre-
quency (RF) spectrum is used relatively inefficiently [1]- [2].
This is mainly stemming from the heavily varying demands
and requirements of the so called primary users (PUs), which
typically use only subsets of the licensed spectrum. Therefore,
cognitive radio (CR) is widely considered as a promising
and effective approach to enhance the spectrum utilization
efficiency and thus to potentially relax the problem of spectrum
scarcity [1]- [4]. The basic idea of CR is to allow secondary
users (SUs) to dynamically deploy the temporally or geo-
graphically unused spectral resources of the primary users
(PUs). To do this, SUs need to conduct reliable spectrum
sensing to determine whether or not a certain spectral resource
is being utilized by PUs. If SUs detect unused spectral
resources, they can opportunistically pursue cognitive channel
access and radio transmission. In these cases, there is no
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interference between SUs and PUs, realizing an interweave
spectrum sharing mode [5], [6]. If all the spectral resources are
utilized by the PUs, SUs can either collect more information in
terms of, e.g., channel responses and power levels, to realize
overlay spectrum sharing or alternatively, conduct cognitive
transmissions and realize underlay spectrum sharing strategy
[5], [6]. All of these infer that the spectrum sensing is a keying
problem and task in CR systems and networks. For clarity, we
note that opportunistic sensing based channel access schemes
are best suited for delay-tolerant traffic scenarios.

A. Related Work

In the existing literature, tremendous amount of work and
efforts have been invested in the development of accurate
and reliable spectrum sensing algorithms, see, e.g., [7]- [14].
Most of the existing works do not, however, consider the
practical impairments associated with the analog baseband
and radio frequency (RF) circuits. Good example of such
impairments are the so-called in-phase/quadrature (I/Q) errors
observed in the direct-conversion radio transmitters (DCT) and
receivers (DCR) [15], [16], stemming from the relative gain
and phase uncertainties along the analog I and Q paths [17]-
[21]. Such mismatches arise due to the deficiencies of the
analog baseband and RF front-end modules of a transceiver,
such as filtering, mixing and amplification stages, as well as
data converter interfaces, and cannot be avoided in practical
circuit solutions and implementations.

Existing literature has showed that RX I/Q imbalance can
induce impropriety in both modulated signals and noise [22]-
[24]. In this article, we obtain closed-form analytical ex-
pressions for the level or degree of impropriety of both the
transmitted signal as well as the received signal components
under I/Q imbalanced radios. The derived expressions then
allow us to assess and quantify the effects of the TX and
RX I/Q imbalances on the impropriety degree of the different
received signal components.

When it comes to spectrum sensing in CR systems, the
performance degradation stemming from the TX and RX
I/Q imbalances has been investigated in [25]- [31]. Most of
the existing works have treated improper signals due to RX
I/Q imbalance as proper ones to deduce spectrum sensing
algorithms [25]- [31]. In our previous work [32], we addressed
the improper features of the modulated waveform and observ-
able noise, but utilized a digital calibration stage to mitigate
the receiver I/Q uncertainties. Such approach essentially re-
circularizes the processed received signal, and thus ordinary
detector can be applied. While the work in [32] serves as the
background and starting point, this article addresses a more
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challenging and generic case of co-existing joint transmitter
and receiver I/Q uncertainties and also assumes that we
are dealing with a non-calibrated receiver. Hence, also the
spectrum sensing algorithms need to be redesigned.

Our aim in this article is to exploit the improper features of
the observed signal at received side, arising from the coexisting
transmitter and receiver uncertainties, to improve the spectrum
sensing capabilities in CR networks. To facilitate that, and to
enhance the spectrum sensing reliability, we assume that mul-
tiple antennas are deployed at SUs. To this end, we specifically
address a Single-Input Multiple-Output (SIMO) opportunistic
radio access scenario with specific emphasis on the spectrum
sensing task within a given frequency channel. Towards that
end, we pursue detectors that posses the so called constant
false alarm rate (CFAR) characteristics, while also assume
different noise variances in the individual receiver chains of the
multiantenna sensing RX, for generality. For clarity, we state
that our work focuses on non-cooperative spectrum sensing,
while various cooperative sensing and cooperative spectrum
sharing methods also exist in the literature, see, e.g., [14] and
the references therein.

B. Main Contributions
This article considers the non-cooperative spectrum sensing

task in a single-channel SIMO CR configuration when both
the TX and RX radios suffer from I/Q imbalances. Differently
from previous works, we consider the received signal compo-
nents (both signal and noise) as improper signals. The main
contributions of this article can be summarized as follows:
• The received signal model under the coexisting joint

transmitter and receiver I/Q uncertainties is developed,
serving as the basis for spectrum sensing. We observe that
I/Q imbalances can, in general, induce improper features
in both the modulated waveform and observable noise.
We then analytically quantify the impropriety degree of
the received signal as a function of the transmitter and
receiver I/Q mismatch values. Under realistic levels of
I/Q errors, we show that the degree of impropriety is low
when we use a proper signal modulation for transmission,
while it may be high for improper or maximally improper
signals.

• The spectrum sensing task under I/Q imbalances is for-
mulated as a composite binary hypothesis testing prob-
lem, and solved through a likelihood ratio test (LRT)
approach. Specifically, we devise three spectrum sensing
algorithms based on different assumptions about the
impropriety or propriety of the desired and noise signals.
However, a substantial body of this work focuses on
the design of spectrum sensing algorithms to exploit the
potential improper features of the observed signal.

• The principle of invariance is exploited to examine
the potential CFAR behavior of the proposed detec-
tors against noise variance uncertainty (NVU) as well
as against receiver I/Q mismatch values. The obtained
analytical results show that all the proposed sensing
methods posses CFAR behavior against the noise variance
uncertainty, while two of them have CFAR property also
with respect to the receiver I/Q error characteristics.

• Building on the general model for transceiver I/Q un-
certainties described in [33], we obtain a closed-form
analytical expression for the received signal-to-noise ra-
tio (SNR) under I/Q imbalanced radios. The effective
received SNR is shown to be a product of the input
SNR and the TX and RX SNR factors, revealing the
impacts of the transmitter and receiver I/Q amplitude and
phase uncertainties on the detection performance and its
potential improvement/degradation.

• The performance of the proposed detectors is analyzed
and mutually compared. The results show that it is not
necessary to take into account the impropriety nature of
the received signals when the degree of impropriety is
small. However, if the underlying signal modulations are
improper, large performance gains are available if the
impropriety of desired signal and noise are taken into
account in designing the spectrum sensing algorithms.

• The performance of the proposed method is also com-
pared, in terms of the receiver operating characteristics
(ROC) curves, against known state-of-the-art reference
methods [9], [10], [34] and [35], that do not consider
the potential improper nature of the signals. The results
clearly demonstrate the benefits of the proposed methods.

C. Paper Organization and Notations
The rest of this article is organized as follows. In Section II,

selected preliminaries about improper/proper random variables
are first reviewed. Then, the essential received signal model in
the considered SIMO CR scenario under coexisting transmitter
and receiver I/Q errors is developed and described. In Section
III, the fundamental spectrum sensing task is formulated as
a composite binary hypothesis testing problem, building on
the derived received signal models. In addition, it is discussed
and addressed how the I/Q mismatches impact the properness
of the transmitted and received signals and observable noise.
Then, three new spectrum sensing algorithms are proposed and
derived, addressing different cases and assumptions about the
proper/improper nature of the received signal and noise terms.
The CFAR properties of the proposed detectors are analytically
addressed in Section IV. Finally, extensive numerical examples
are provided and analyzed in Section V, while the concluding
remarks are then provided in Section VI.

In the following, (.)T , (.)∗, and (.)H denote the transpose,
complex conjugate and the Hermitian (conjugate transpose),
respectively. All vectors and matrices are denoted by bold
lower case and bold upper case letters, respectively. For a
square matrix A, |A| denotes the determinant, while [A]m,n
refers to its mnth element. Similarly, for vector a, am repre-
sents its mth element. diag(a) refers to a square matrix with
the elements of a along its main diagonal and zeros everywhere
else, while Diag(A) denotes a square matrix of the diagonal
elements of A along its main diagonal and zeros everywhere
else. Ik is the identity matrix of size k. 0m×n represents the
all-zeros matrix of size m×n, while 1m×n represents the all-
ones matrix of size m×n. The operators E{.}, <{.}, ∗, ⊗ and
� denote the expectation, the real part, the convolution, the
Kronecker product and the Hadamard product, respectively.
Finally, the imaginary unit is defined as j =

√
−1.
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II. PROBLEM FORMULATION

A. Basics and Preliminaries

Consider a complex-valued random vector x ∈ CM with
zero-mean whose ordinary covariance matrix is defined as
R = E{xxH} while the complementary covariance matrix
(sometimes also referred to as the relation function or pseudo-
covariance) is defined as R̃ = E{xxT } [36].

Definition 1. The complex random vector x is proper if R̃ = 0
and improper if R̃ 6= 0 [36].

Definition 2. The general probability density function (pdf) of
a zero-mean improper Gaussian random vector x is given by
[36]:

f(x) =
1

πM |R|1/2
exp{−1

2
xHR−1x} (1)

where x = [xT ,xH ]T ∈ C2M denotes the augmented obser-
vation vector while R represents the augmented covariance
matrix given by

R =

[
R R̃

R̃∗ R∗

]
∈ C2M×2M (2)

For proper/circular complex Gaussian random vector x, (1)
reduces to

f(x) =
1

πM |R|
exp{−xHR−1x} (3)

This is followed form the fact that a complex random vector x
is defined proper iff x and its conjugate x∗ are uncorrelated
implying R̃ = 0.

B. Signal Model

The basic considered system model with a single-antenna
PU transmitter and a multi-antenna SU sensing receiver, with
M antennas and receiver chains, is shown in Fig. 1(a). All
associated transmit and receive chains are assumed to be
subject to I/Q imbalances, as indicated in the figure. Now, as-
suming that the PU transmitter is active, the sampled baseband
equivalent received signal corresponding to the m-th antenna
branch at the SU side can be written as

rm[n] = hms[n] + wm[n], (4)

for n = 1, ..., N , with N denoting the number of available
samples corresponding to the sensing window. In (4), hm
denotes the flat fading [7], [28] complex baseband equivalent
channel from the PU transmit antenna to the m-th receiving
antenna of the SU, while s[n] denotes the transmitted complex
baseband signal. Additionally, quasi-static assumption is de-
ployed [7] meaning that the channel variables hm stay constant
over the sensing window while can vary from sensing window
to another. Also, the distribution of the noise wm[n] is assumed
to be circularly symmetric complex Gaussian (CSCG) with
zero mean.

Based on the frequency-independent model of [33], the
transmitted signal s[n] impaired by TX I/Q imbalance can be
represented as [32], [33]

s[n] = kt1p[n] + kt2p
∗[n], (5)

(a)

(b)

Fig. 1. In (a), the considered SIMO cognitive radio system is shown, while
(b) illustrates a model of a direct-conversion receiver under I/Q imbalance.

where p[n] denotes the ideal complex baseband equivalent
transmit signal. From (5), one can observe that p[n] is subject
to distortion by the so called image signal p∗[n], arising due to
the TX I/Q imbalance. Let φti, φ

t
q and ati, a

t
q denote the phase

and gain deviations of the I and Q channels relative to the
nominal ones. As a result, the TX I/Q imbalance coefficients
kt1 and kt2 read

kt1 = 0.5atie
jφt

i(1 + ηte
j∆φt), (6)

kt2 = 0.5atie
jφt

i(1− ηtej∆φt), (7)

where ηt and ∆φt are the gain and phase mismatches between
the I and Q paths, i.e., ηt =

atq
ati

and ∆φt = φtq−φti. In a similar
manner, the RX I/Q imbalance impacts the basic received
signal model in (4) through the following transformation [33]

ym[n] = kr1,mrm[n] + kr2,mr
∗
m[n], (8)

where rm[n] refers to the received complex baseband equiv-
alent signal under perfect RX I/Q balance. In (8), kr1,m and
kr2,m are the I/Q imbalance coefficients of the m-th receiver
defined as

kr1,m = 0.5ari,me
−jφr

i,m(1 + ηrme
−j∆φr

m), (9)

kr2,m = 0.5ari,me
jφr

i,m(1− ηrme+j∆φr
m), (10)

where φri,m, φrq,m and ari,m, arq,m denote the phase and gain
deviations of the I and Q channels, compared to the nominal
ones, respectively. Thus, ηrm and ∆φrm represent the RX gain
and phase mismatches between the I and Q paths, i.e., ηrm =
arq,m
ari,m

and ∆φrm = φrq,m−φri,m. From (8), one can deduce that
the received signal is also subject to its own image which in
this case contains both the PU signal, after having traveled
through the channel, as well as noise.



4

Let now y[n] = [y1[n], . . . , yM [n]]T represent the array
observation at SU RX. Then, based on (8) and (4) we can
write

y[n] = Hs[n] + v[n], (11)

in which H = [k1 � h,k2 � h∗], h = [h1, . . . , hM ]T and
ki = [kri,1, . . . , k

r
i,M ]T for i = 1, 2. In above, the observable

noise vector v[n] reads v[n] = k1w[n] + k2w∗[n], where w[n]
denotes the array thermal noise whose elements are statisti-
cally independent and identically distributed (i.i.d.) circularly
symmetric complex Gaussians, specifically w[n] ∼ CN (0,Σ).
The noise variance σ2

i can in practice differ from σ2
j for i 6= j

due to the receiver calibration uncertainties. Additionally, the
exact noise variances are generally unknown. In (11), the
augmented transmit signal vector s[n] = [s[n], s∗[n]]T reads

s[n] =

[
kt1p[n] + kt2p

∗[n]
kt1
∗
p∗[n] + kt2

∗
p[n]

]
∈ C2×1 (12)

In what follows, we use similar underline-based notations for
augmented vector and matrix variables.

III. SPECTRUM SENSING AND IMPROPRIETY

In the following, we denote the augmented array observation
as y[n] = [y[n]T ,y[n]H ]T . The corresponding augmented
received signal matrix is, in turn, defined as Y = [YT ,YH ]T =
[y[0], .., y[N − 1]], where Y = [y[1], . . . , y[N ]] denotes an
M × N matrix of the received signal samples. Now, the
spectrum sensing task can be interpreted and written as a
composite binary detection problem, with the corresponding
hypotheses reading{

H0 : y[n] = v[n],
H1 : y[n] = Hs[n] + v[n].

(13)

In above hypothesis H1, the extended array channel H is
defined as

H =

[
k1 � h k2 � h∗
k∗2 � h k∗1 � h∗

]
(14)

In (13), the null hypothesis H0 stands for the absence of the
PU signal while the alternate hypothesis H1 corresponds to
the PU signal being present.

In the following, we first show that the noise vector v[n]
and the desired signal vector s[n] are both improper. Therefore,
both the ordinary and the complementary covariance matrices
are needed to fully characterize the second-order statistics of
the received signal components. Then, we solve the considered
spectrum sensing problem through the likelihood ratio test
(LRT) approach. In this work, in the detector developments,
we consider the amplitude and phase mismatches of the in-
volved indiviudal radio transmitters and receivers as unknown
but deterministic constants.

A. Impropriety of Observed Noise and Signal Terms

Let v[n] = [v[n]T ,v[n]H ]T denote the augmented vector
of the nth column of the noise matrix V, given by

v[n] =

[
k1w[n] + k2w∗[n]
k∗1w∗[n] + k∗2w[n]

]
∈ C2M×1 (15)

Based on (1), we have

f(v[n]) =
1

πM |Rv|1/2
exp{−1

2
v[n]HR−1

v v[n]} (16)

where Rv = E{v[n]v[n]H} corresponds to the augmented
noise covariance matrix. Based on (15), combined with
straight-forward derivations, the augmented covariance can
expressed as

Rv =

[
(k1k

H
1 + k2k

H
2 )�Σ 2k1k

T
2 �Σ

2k∗1kH2 �Σ (k∗1kT1 + k∗2kT2 )�Σ

]
(17)

where we have utilized the fact that the physical array noise
is circular or proper. Since Σ = diag(σ2

1 , ..., σ
2
M ), Rv can be

rewritten as

Rv =

[
diag(z) diag(u)

diag(u∗) diag(z)

]
(18)

where z = [z1, ..., zM ]T and u = [u1, ..., uM ]T , with

zm = 0.5ari,m(1 + ηrm
2)σ2

m (19)

um = 0.5ari,m(1− 2jηrm sin(∆φrm)− ηrm
2)σ2

m (20)

for m = 1, ...,M .
From (20), it can be observed that the augmented covariance

matrix of observed noise is not diagonal when the RX side
radios are subject to I/Q imbalances. In general, to measure
and quantify the degree of impropriety of a complex noise
vector v[n], several functions have been proposed to be
plausible [37], such as

ξv = 1− |Rv|
|R′v|

(21)

where

R′v =

[
diag(z) 0M,M

0M,M diag(z)

]
(22)

If ξv = 0, the observable array noise v[n] is said to be
proper/circular, while for ξv = 1, we have maximally im-
proper/noncircular noise. Using now the fact that∣∣∣∣[ A B

C D

]∣∣∣∣ = |A|
∣∣D−CA−1B

∣∣ , (23)

assuming that A−1 exist, we can re-express (21) as

ξv = 1− |IM − diag(z)−1diag(u∗)diag(z)−1diag(u)| (24)

Combining our results so far, we can obtain

ξv = 1−
M∏
m=1

d2
m (25)

where

dm =
2ηrm cos(∆φrm)

1 + ηrm
2 (26)

It is thus seen that ξv depends on the number of receive
antennas as well as the gain and phase mismatches across
the different RX chains. As expected, an array sensing device
combined with zero I/Q errors in all the associated receivers
corresponds to ηrm = 1, ∆φrm = 0, for all m, and thus



5

0
.1

0.1

0
.2

0.2

0.20.3

0.3

0
.3

0.3 0.40.4

0
.4

0.4

0.5
0.5

0
.5

0.5

0.6
0.6

0
.6

0.7

0.7

0
.7

0.8

0.8

0
.8

0.9

0.9

0
.9

11

1
1

0 0.5 1 1.5 2

0

0.5

1

1.5

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (∆φr1,∆φ
r
2) = (2,−3) degrees

0
.1

0
.2

0
.2

0
.3

0
.3

0.4

0.4

0
.5

0.5

0.5

0
.6

0.6

0.6

0.7

0.7
0.7

0.7
0.8

0.8 0.8

0.8

0.9

0
.9

0.9

0
.9

0.9

11

1

1 1

1
1

-100 -50 0 50 100

-100

-50

0

50

100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) (ηr1 , η
r
2) = (0.9, 1.15)

Fig. 2. Level of impropriety ξv of the observed baseband noise as a function
of (a) (ηr1 , η

r
2) and (b) (∆φr1,∆φ

r
2) for M = 2.

ξv = 0, while the worst case phase mismatch of ∆φrm = π/2
yields ξv = 1. In addition, it can be observed that the level
of impropriety increases as the number of receive antennas
increases since dm ≤ 1. Therefore, the multi-antenna receiver
configuration is effectively increasing the level of impropriety
of the observed baseband noise. In Fig. 2, the impropriety
measure ξv is visually illustrated as a function of (a) (ηr1, η

r
2)

and (b) (∆φr1,∆φ
r
2) for M = 2.

Similarly, we adopt for analysis purposes an assumption that
the I/Q impaired transmit signal vector s[n] is expressible as
an improper Gaussian with zero mean, implying thus

f(s[n]) =
1

π2|Rs|1/2
exp{−1

2
s[n]HR−1

s s[n]} (27)

where Rs = E{s[n]s[n]H} partitions as

Rs =

[
[Rs]1,1 [Rs]1,2
[Rs]1,2

∗
[Rs]1,1

]
(28)

By using (12) together with some manipulations, it can be
shown that

[Rs]1,1 = σ2
s [n](|kt1|2 + |kt2|2 + 2<{kt1kt2

∗
ρp}), (29)

[Rs]1,2 = σ2
s [n](kt1

2
ρp + 2kt1k

t
2 + kt2

2
ρ∗p) (30)

where σ2
s [n] = E{|p[n]|2} while ρp denotes the complex

correlation coefficient defined as ρp = E{p[n]2}
E{|p[n]|2} = ξpe

ψp ,
with ξp ≤ 1. In general, the level of impropriety/noncircularity
of the ideal transmit signal p[n] is measured by ξp. Specifically,
if ξp = 0, the signal is said to be proper or circular, while if
ξp = 1, the signal is maximally improper or noncircular. For
example, the BPSK signal, 8-PSK signal and 8-QAM signal
have degrees of impropriety of 1, 0 and 2/3, respectively [36].
Similarly, for the actual transmitted signal s[n], the complex
correlation coefficient ρs can be defined as

ρs =
[Rs]12

[Rs]11
(31)

By substituting now (29) and (30) into (31), we can establish
that

ρs =
kt1

2
ρp + 2kt1k

t
2 + kt2

2
ρ∗p

|kt1|2 + |kt2|2 + 2<{kt1kt2
∗
ρp}

(32)

In Fig. (3), the absolute value of ρs as a function of ηt and
∆φt is plotted for both 8-PSK and 8-QAM signals. It is seen
that the worst possible TX I/Q imbalance case of |ηt− 1| u 1
and ∆φt = ±π/2 result in |ρs| = 1. From Fig. (3), it is also
seen that the improperness on the transmitted signal can be
strengthened through the TX I/Q imbalance. For instance, the
degree of impropriety of the 8-PSK is equal to 0.4 with TX I/Q
imbalances of ∆φt = 11◦ and ηt = 0.7, while it is zero with
perfect TX I/Q balance. In this case, the worst possible TX
I/Q imbalance results in ρs = 0.9. Overall, we conclude that
an improper transmitted signal arises under TX I/Q imbalance
even when the ideal transmitted signal is proper.

B. Proposed Spectrum Sensing Techniques

In what follows, we assume that the primary user modulated
waveform s and the observable noise v[n] are mutually inde-
pendent. As a result, the received augmented signal vector y[n]
can be characterized through an improper complex Gaussian
distribution with zero mean, i.e., y[n] ∼ CN (0,Q), where{

H0 : Q = Rv,

H1 : Q = HRsH
H + Rv,

(33)

To now solve the spectrum sensing problem, we deploy a
likelihood ratio test (LRT) based approach to decide whether
the primary user signal is absent or present. Based on [38]-
[41], we define the LRTs as follows:

Definition 3. The LRT for testing H0 : θ ∈ Θ0 versus H1 :
θ ∈ Θc

0 is

T (Y) = sup
Θ0

{L(Y; Q)} − sup
Θ
{L(Y; Q)}

H0

≷
H1

η. (34)

The first and second parts in the above test statistics refer
to the suprema of the log-likelihood function (LLF) of the
observation matrix, which are computed for the parameters
corresponding to the null hypothesis, denoted as Θ0, and
for the all possible parameters, denoted by Θ = Θ0 ∪ Θc

0,
respectively. η, in turn, refers any non-positive number [41].
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Fig. 3. Level of impropriety ρs of the transmitted signal as a function of
transmitter amplitude and phase mismatches for different signals.

Next we express the LLF corresponding to N i.i.d. random
vectors drawn from the complex Normal distribution expressed
as CN (0,Q). The LLF can be written as

L(Y; Q) = −2MN ln(π)− N

2
ln(|Q|)− 1

2
tr
(
Q−1YYH

)
,

(35)

Our previous developments clearly showed that the observed
baseband noise and the observed signal term are both im-
proper. However, the fact that these signals are improper does
not necessarily imply that it can be utilized to enhance the
detection performance of spectrum sensing algorithms. To ex-
amine and address this issue systematically, we consider next
the following three scenarios or spectrum sensing problems
(SSPs):

• SSP1: In the first spectrum sensing problem, we take into
account the improper nature of both the desired signal and
the observable noise to derive a new spectrum sensing
algorithm. Thus, in this case, we have Θ0 = {Rv} where
the matrix Rv has block-diagonal structure as shown in
(18). Additionally, Θ1 = {Q} where we do not use any
specific structure for the augmented covariance matrix
Q under H1 hypothesis other than it is assumed to be
positive definite.

• SSP2: In the second spectrum sensing problem, we
consider the improper nature of the desired signal while
consider the observable noise as proper when deriving
the spectrum sensing algorithm. In this case, we have
Θ0 = {Rv,0}, in which {Rv,0} is given in (22) and
Θ1 = {Q}.

• SSP3: In the third spectrum sensing problem, neither the
improper nature of the desired signal nor the noise is
taken into account when devising the spectrum sensing
algorithm. In this case, we have Θ0 = {Rv,0} and
Θ1 = {Q} in which we replace Rs with Rs,0 =
diag([Rs]1,1, [Rs]1,1).

Proposition 1. The LRT statistic T (Y) of the SSP1 can be
expressed compactly as

T1(Y) =∣∣∣∣[ 1
2NDiag(YYH + Y∗YT ) 1

NDiag(YYT )
1
NDiag(Y∗YH) 1

2NDiag(YYH + Y∗YT )

]∣∣∣∣∣∣∣∣[ YYH YYT

Y∗YH Y∗YT

]∣∣∣∣ .

(36)

Proof. The derivation of the above test statistic is given in
Appendix A. Let ζ1 be the decision threshold of the proposed
Improper Signal and Improper Noise LRT, abbreviated as
IS+IN-LRT. The hypothesis H1 is accepted if T1(Y) is greater
than ζ1; otherwise the null hypothesis H0 is accepted.

Proposition 2. The LRT statistic T (Y) of the SSP2 has the
following compact form

T2(Y) =∣∣∣∣[ 1
2NDiag(YYH + Y∗YT ) 0M,M

0M,M
1

2NDiag(YYH + Y∗YT )

]∣∣∣∣∣∣∣∣[ YYH YYT

Y∗YH Y∗YT

]∣∣∣∣ .

(37)

Proof. This statistic is obtained under the constraint that Rv

has zero off-diagonal blocks. Here, ζ2 is the decision threshold
of the proposed Improper Signal and Proper Noise LRT,
abbreviated as IS+PN-LRT.

Proposition 3. The LRT statistic T (Y) of the SSP3 has the
following compact form

T3(Y) =∣∣∣∣[ 1
2NDiag(YYH + Y∗YT ) 0M,M

0M,M
1

2NDiag(YYH + Y∗YT )

]∣∣∣∣∣∣∣∣[ YYH 0M,M

0M,M Y∗YT

]∣∣∣∣ .

(38)

Proof. Similarly, this statistic can be obtained from (36) under
the constraints that Rv and Rs have zero off-diagonal blocks.
In this case, ζ3 is the detection threshold of the proposed
Proper Signal and Proper Noise LRT, abbreviated as PS+PN-
LRT.
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Additionally, it is noted that the proposed LRT decision
statistics can be rewritten in the following compact form

Ti(Y) =

∣∣YYH � Ni
∣∣∣∣YYH � Di
∣∣ , (39)

where

Ni =
1

N


[

Diag(1M ) Diag(1M )
Diag(1M ) Diag(1M )

]
, i = 1

I2M×2M . i = 2, 3
(40)

and

Di =

 12M×2M , i = 1, 2[
1M×M 0M×M
0M×M 1M×M

]
, i = 3

(41)

Remark 1. We analytically showed that the RX I/Q imbal-
ances can infer improper features in both the desired signal
and noise. In such cases, our problem formulation is different
from classical spectrum sensing problems in the literature
working with proper/ circular noise, e.g., [13], [35] and
references therein.

Remark 2. From [Rv]m,m = 0.5ari,m(1 + ηrm
2)σ2

m for
m = 1, ...,M , we can infer that different RX I/Q imbal-
ance parameters across different RF chains result in different
diagonal elements of matrix Rv . Hence, it is unfeasible to
assume well-controlled false alarm rate or acceptable detec-
tion performance when utilizing classical spectrum sensing
algorithms designed under the assumption of Σ = σ2I and
radios with zero I/Q imbalance, e.g., [7]- [10], [35] and
references therein.

IV. CFAR BEHAVIOR OF THE PROPOSED DETECTORS

In this section, we exploit the principle of invariance to
investigate the potential CFAR behavior of the proposed
detectors against NVU and receiver I/Q errors. In general, the
goal in the invariance theory is to find transformations leaving
the considered hypothesis testing problem invariant [29], [42]-
[45]. In other words, to prove CFAR behavior, we need to find
transformation G that preserves the distribution family of the
data while achieves Ti (GY) = Ti(Y). These are pursued next.

A. CFAR Behavior Against Noise Variance Uncertainty
To address the potential CFAR properties of the proposed

detectors against NVU, let us first define the transformation

G as G =

[
Σ′ 0
0 Σ′

]
, where Σ′ is an unknown diagonal

matrix with positive entries. For this transformation and under
hypothesis H0, the distribution of the transformed date Gy[n]
is of the form CN (0,Q′), where

Q′ =

[
(k1k

H
1 + k2k

H
2 )�Σx 2k1k

T
2 �Σx

2k∗1kH2 �Σx (k∗1kT1 + k∗2kT2 )�Σx

]
(42)

where Σx = Σ′ΣΣ′ is also a diagonal and unknown matrix.
By comparing (17) and (42), we find that the distribution
family of the transformed data does not change. In addition,
we have

Ti(GY) =

∣∣GYYHG� Ni
∣∣∣∣GYYHG� Di
∣∣ (43)

For diagonal matrix G it is easy to show that GYYHG�Ni =
G(YYH � Ni)G and GYYHG � Di = G(ZYH � Di)G,
resulting in Ti (GY) = Ti(Y) for the proposed detectors. All
of these imply that the detection thresholds of the proposed
detectors remain constant even when the different noise vari-
ances across different RF chains change. Thus, this proves the
CFAR behavior against different noise variance uncertainties
across the RF chains.

B. CFAR Behavior Against RX I/Q Imbalance Values

To next investigate the CFARness of the proposed methods
against RX I/Q imbalance parameters, based on (18), we define
the transformation G as

G =

[
diag(e) diag(p)

diag(p∗) diag(e)

]
(44)

where e = [e1, ..., eM ]T and u = [p1, ..., pM ]T . It is not
difficult to show that the transformed data Gy[n] has a same
covariance matrix structure as that of (18). Now, we need to
check the property Ti (GY) = Ti(Y) for i = 1, 2, 3, i.e.,∣∣GYYHG� Ni

∣∣∣∣GYYHG� Di
∣∣ =

∣∣YYH � Ni
∣∣∣∣YYH � Di
∣∣ (45)

For the proposed IS+IN-LRT method, the matrix G is not a
diagonal matrix, however, the structure of matrix N1 allows us
to again get GYYHG�N1 = G(YYH �N1)G. Considering
this and GYYHG � D1 = GYYHG together, we arrive at
T1 (GY) = T1(Y). This means that the IS+IN-LRT detector
has CFAR behavior against the RX I/Q imbalance parameters.
Similarly, since D2 = D1 but N2 6= N1, we arrive at
T2 (GY) 6= T2(Y), implying that the proposed IS+PN-LRT
method does not have CFAR property against the RX I/Q
imbalance parameters. Finally, for the PS+PN-LRT method,

(45) can be reduced to |G
′YYHG′�IM×M |2

|G′YYHG′�1M×M |2 =
|YYH�IM×M |2
|YYH�1M×M |2 ,

where G′ = diag(e). Here, since the matrix G′ is a diagonal
matrix, we get G′YYHG′� IM×M = G′(YYH � IM×M )G′

and G′YYHG′ � 1M×M = G′(YYH � 1M×M )G′, resulting
in T3 (G′Y) = T3(Y). This completes the proof of the
CFAR property of the PS+PN-LRT detector against RX I/Q
imbalance values.

V. NUMERICAL RESULTS AND ANALYSIS

Next, we assess the achievable spectrum sensing perfor-
mance of the proposed methods in different numerical evalua-
tion cases. Firstly, we address the issue of setting the detection
thresholds, in different detector and RX I/Q imbalance cases,
in order to reach the target false alarm probability pfa. Then,
the results of the selected simulation cases are presented and
analyzed, to demonstrate the sensing performance that the
proposed detectors can offer and to obtain technical insight
whether to use proper or improper nature of the desired signal
and noise. Additionally, comparisons against known state-of-
the-art reference methods are presented.
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TABLE I
CONSIDERED RECEIVER RF CHAIN CHARACTERISTICS

Case A B
Number of antennas 4 8

per-antenna noise variances σ2
m (1,-1.7,-0.75,0.5) dB (0,-1,1,0.5,-2,-0.3,0.75,0.25) dB

I branch amplitudes ari,m (-1,0,1,2) dB (-2,0,1,2,-0.75,0.5,1.2,0.25) dB
Amplitude mismatches ηrm (1.1,1.2,1.03,0.9) (0.9,1.5,1.3,1.4,1.1,0.89,1.2,0.8)

Phase mismatches ∆φrm [deg.] (-1,-3,-5,10) (-10,-3,-5,-6,1,0,2,9)

A. False-Alarm Probability Versus Threshold

The false alarm probabilities versus the detection threshold
are evaluated and plotted in Fig. 4 for two different numbers of
receiver antennas and when N = 500. The detector thresholds
are determined by 105 Monte-Carlo (MC) simulation runs to
assure the reliability of the results. In Fig. 4, two fundamental
scerios are addressed, namely (1) the so-called ideal RX (IRX)
case where all receivers have perfect I/Q balance and identical
noise variance across the receiver chains, and (2) the practical
RF receiver case with parameters reported in Table I. From
Fig. 4, it is seen that the IS+IN-LRT and PS+PN-LRT detectors
have the CFAR characteristic with respect to receiver I/Q error
parameters as well as different noise variances across different
RF chains, while the IS+PN-LRT detector does not posses
the CFAR property against the RX I/Q imbalance parameters.
Thus, the obtained numerical results confirm our analytical
CFAR conclusions obtained in Section IV.

B. Detection Probability Versus SNR

Fig. 5 depicts the corresponding detection probabilities of
the different detectors versus SNR at target pfa = 0.01,
M = 4, and N = 500, when the primary user utilizes
(a) a BPSK modulation, (b) an 8-QAM modulation, and (c)
an 8-PSK modulation. Moreover, for each modulation case,
two alternative values of the TX I/Q imbalance parameters
(ati, ηt, φt,∆φt) are evaluated, namely (1, 0.85, 2,−10) and
(1, 1.15,−2, 7). The receiver assumptions follow the ”case
A” defined in Table I. The resulting detection thresholds of
the proposed alternative detection methods are equal to ζ1 =
11.160×10−19, ζ2 = 3.596×10−22 and ζ3 = 2.697×10−22.
A classical Rayleigh fading assumption is adopted for the
PU-SU array channel h such that independent realizations
are randomly generated from zero-mean complex Normal
distribution for the different simulation runs while the channel
is assumed to be fixed during an individual sensing window.
The input signal-to-noise ratio averaged across the receivers
is set according to

SNRi =
P

1
M

∑M
m=1 σ

2
m

(46)

where P = 1
NE(||p||22) is referred to as the transmitted power.

From Fig. 5, we can observe the following. For the BPSK
signal with the maximal impropriety, the detection perfor-
mance of the proposed methods does not depend on the
I/Q imbalance level of the PU transmitter. Furthermore, the
detection performance of the IS+IN-LRT is the highest, while
that of the IS+PN-LRT is ca. 1 dB lower being finally
followed by the PS+PN-LRT detector which performs the

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

10
-22
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0

(a) M = 4 and N = 500

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

10
-43

10
-2
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-1

10
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(b) M = 8 and N = 500

Fig. 4. Monte-Carlo false alarm probabilities as functions of detection
thresholds ζ1

6N
(i.e., α1 = 1

6N
), ζ2 (i.e., α2 = 1) and ζ3 (i.e., α3 = 1) for

the proposed detectors for two scenarios; (1) ideal RX (IRX) with perfect RX
I/Q balance and identical noise variance across receiver chains, (2) practical
RF receivers with parameters reported in Table I.

worst. For the 8-QAM signal, in turn, with the impropriety
degree of 2

3 , the detection performances of the IS+IN-LRT and
PS+PN-LRT are very similar, while the IS+PN-LRT detector is
clearly performing weaker. These observations apply to both
ηt = 0.85 for which ρs = 0.756 and ηt = 1.25 for which
ρs = 0.534. The exact though relatively small differences
between the different ηt cases are mainly due to the fact
that the value of amplitude mismatches less than one can
strengthen the impropriety degree of the transmitted signal (see
Fig. 2). For the 8-PSK signal with the maximal propriety, the
detection performance of the PS+PN-LRT is the best being
then followed by the IS+IN-LRT and IS+PN-LRT. For the
latter two, the levels of impropriety are equal to 0.235 and
0.249 for ηt = 0.85 and ηt = 1.25, respectively. The same
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(c) 8-PSK PU signal

Fig. 5. Detection probabilities versus input SNR for three proposed detectors
at pfa = 0.01, M = 4, N = 500 for three different PU modulation types.
The receiver assumptions follow the case A defined in Table I. The solid lines
correspond to (ati, ηt, φt,∆φt) = (1, 0.85, 2,−10), while the dashed lines
correspond to (ati, ηt, φt,∆φt) = (1, 1.15,−2, 7).

performance assessment is also carried out for M = 8 and the
corresponding results are shown in Fig. 6, where the receiver
assumptions correspond to the ”case B” defined in Table I. As
can be seen, very similar trends can be observed for M = 8
compared to those in Fig. 5 and thus the conclusions are to
many extent similar. Additionally, by comparing the results of
these figures, we can observe that by increasing the number of
receive antennas, the detection performance of the proposed
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(b) 8-QAM PU signal
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(c) 8-PSK PU signal

Fig. 6. Detection probabilities versus input SNR for three proposed detectors
at pfa = 0.01, M = 8, N = 500 for three different PU modulation types.
The receiver assumptions follow the case B defined in Table I. The solid
lines correspond to (ati, ηt, φt,∆φt) = (1, 0.85, 2,−10), while dashed lines
correspond to (ati, ηt, φt,∆φt) = (1, 1.15,−2, 7).

detectors can also be improved accordingly.
Next, to obtain and provide further insight into the TX and

RX radio I/Q imbalance levels, we examine and derive the
effective received SNR, defined as

SNRr =
E
(
||HS||2F

)
E (||V||2F )

. (47)
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Through straight-forward manipulations, this can be written as

SNRr =
E{pHp}

N
∑M
m=1 σ

2
m

(|kt1|2 + |kt2|2 + 2<{kt1
∗
kt2ρp})

× (E{hHh} � kH1 k1 + E{hTh∗} � kH2 k2)

(48)

In (48), we have used the fact that the array channel h and
the actual transmitted signal vector s are uncorrelated as well
as v[n] ∼ CN (0,Σ). Assuming again Rayleigh fading where
h ∼ CN (0, IM ), it can be shown that

SNRr = SNRi × SFt × SFr (49)

where the transmit and receive SNR factors (SFs) denoted as
SFt and SFr, respectively, can be expressed as

SFt = 0.5(1 + η2
t ) + <{0.5ati

2
ρp(1− 2jηt sin(∆φt)− η2

t )}
(50)

SFr =

M∑
m=1

0.5ar2
i,m(1 + ηrm

2) (51)

For reference, in the case of perfect TX and RX, we get
SFt = 1 and SFr = M . As expected, SFt depends on
amplitude mismatch ηt, phase mismatch ∆φt, I channel am-
plitude ati and the level of impropriety of the ideal trans-
mitted signal p. For proper signals with ρp = 0, we have
SFt = 0.5(1+η2

t ). This means that by increasing ηt the receive
SNR is also increased, resulting in some detection performance
improvements, cf. Figs. 5(c) and 6(c). When ρp is real-valued,
we obtain SFt = 0.5

(
1 + (1− ati

2
ρp)η

2
t + ati

2
ρp

)
. In the

case of maximally improper signal with ρp = 1, we get
SFt = 0.5

(
1 + (1− ati

2
)η2
t + ati

2
)

, resulting into SFt = 1

for ati = 1; otherwise it depends on ηt. In Fig. 7, the behavior
of SFt is plotted as a function of ηt for different values of
ati, for both BPSK and 8-QAM signal types. We observe that
by increasing ηt, the SFt is increased for 8-QAM signal (and
8-PSK), while it is decreased for BPSK signal.

C. Detection Probability Versus Level of Impropriety

In order to further assess the effects of the impropriety
degree of the ideal PU transmit signal on the detection
performance, we define a general model [24] of the form

p =
√

1− κ2
ppr + jκppi (52)

where pr and pi are two uncorrelated real-valued vectors both
drawn from N (0, IN ). By changing the value of κp ∈ [0, 1],
we can directly control the level of impropriety of the vector p.
As shown in Fig.8, the vector p becomes proper for κp = 1√

2
,

while it is maximally improper for both κp = 0 and κp = 1.
Fig. 9 shows then the detection probability versus the level

of the impropriety ξp at pfa = 0.01, M = 4 and N = 500
for the three proposed detectors and with TX I/Q imbalance
parameters of (ηt,∆φt) = (0.85,−10). The shown numerical
values are obtained through averaging over 104 independent
runs. In this figure, the corresponding results of using the
BPSK, 8-QAM, and 8-PSK are also shown for comparison
purposes. First, it is seen that the detection probabilities with
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Fig. 7. SFt as a function of ηt for different values of ati .
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Fig. 8. ξp versus κp of the general improper signal model (52).
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Fig. 9. Detection probabilities of the proposed detectors versus degree
of impropriety ξp at pfa = 0.01 for SNRi=-10dB.
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actual modulated signals are very similar to those of the
general improper signal model in (52), as long as the levels
of impropriety are also simlar. Second, as can be seen from
this figure, for ξp > 0.5 the IS+IN-LRT detector outperforms
the others, while the PS+PN-LRT detector performs better for
ξp < 0.5. As a result, we see that for ξp < 0.5 the use of the
fully improper detector (IS+IN-LRT) is unnecessary and will
not improve performance, and thus the fully proper detector
(PS+PN-LRT) may be preferable. Otherwise, the IS+IN-LRT
detector is preferable.

D. Comparison with Existing Multiantenna Spectrum Sensing
Methods

Finally, we pursue and provide performance comparisons
of the proposed methods against well-established state-of-
the-art reference techniques in the spectrum sensing field.
Specifically, we analyze and compare the performance of
the proposed detectors with those of the eigenvalue moment
ratio (EMR) method [9], the separating function estimation
test (SFET)-based method [10], seminal John’s method [34]
and the volume-based (VB) method [35]. In these numerical
evaluations, we again assume M = 4, N = 500 and consider
realistic TX I/Q imbalance parameter values of (ηt,∆φt) =
(0.85,−10). Additionally, the receiver characteristics follow
the ”case A” defined in Table I. Figs. 10 and 11 depict
the Receiver Operating Characteristics (ROC) curves of all
the detectors at input SNR of SNRi = −10 dB, obtained
through extensive Monte-Carlo simulations, corresponding to
the maximally improper signal (κp = 1) and purely proper
signal (κp = 1√

2
), respectively. From Fig. 10, corresponding to

the case of maximally improper signal, it can be seen that the
proposed IS+IN-LRT detector performs clearly better than the
other detectors, being followed in performance by the PS+PN-
LRT, VB, IS+PN-LRT, John’s, SFET and EMR detectors. As
acknowledged already in Remarks 1 and 2, we see a clear
performance degradation of the existing detectors, particularly
those that are devised for proper/circular noise and when a
calibrated or uncalibrated multi-antenna receiver is assumed.
In contract, with purely proper signal, as shown in Fig. 11, the
detection performance of the PS+PN-LRT method is the best,
being followed by those of the VB, IS+IN-LRT, IS+PN-LRT,
John’s, SFET and EMR methods.

VI. CONCLUSIONS

This article addressed the SIMO spectrum sensing task and
problem in a practical scenario where all the involved radios
suffer from I/Q imbalances. To do this, firstly, we modelled
the effect of I/Q imbalances on the actual transmitted signal
as well as the observed PU signal and noise components in
the sensing receiver. We analytically quantified the level of
impropriety the involved signal and noise terms as a function
of the transmitter and receiver I/Q amplitude and phase uncer-
tainties. Then, the spectrum sensing problem was formulated
and solved through the likelihood ratio test (LRT) approach,
resulting in three alternative spectrum sensing algorithms
based on different assumptions about the impropriety/propriety
of the desired and noise signals. Additionally, through the
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Fig. 10. ROC curves of the proposed detectors and that of the John’s,
SFET, EMR and VB ones for M = 4, N = 500, κp = 1, SNRi =
−10dB and when the sensing receiver assumptions follow the case
A defined in Table I.
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Fig. 11. ROC curves of the proposed detectors and that of the John’s,
SFET, EMR and VB ones for M = 4, N = 500, κp = 1√

2
, SNRi =

−10dB and when the sensing receiver assumptions follow the case
A defined in Table I.

invariance theory, we investigated the potential CFAR behavior
of the proposed detectors against noise variance uncertainty as
well as the receiver I/Q mismatch characteristics. Specifically,
it was shown that all proposed detectors are robust against the
noise variance uncertainty, while two out of the three detectors
are also robust against RX I/Q imbalance levels. Finally,
extensive numerical results were provided to demonstrate and
quantify the spectrum sensing performance of the formulated
detectors. The obtained results show that it is not necessary to
take into account the improper nature of the received signal
when the degree of impropriety is small. However, if the
underlying signal modulations are already improper, such as
8-QAM or BPSK, much can be gained in the performance if
the impropriety of desired signal and noise are taken properly
into account in devising the spectrum sensing algorithms. We
also derived a closed-form analytical formula for the effective
received SNR, expressed as a function of the TX and RX I/Q
imbalance values, to quantify and provide further insight on
the improvement/degradation in the detection performance that
the I/Q imbalances of the involved radios can infer. Finally,
performance comparisons against existing spectrum sensing
methods were reported, showing particularly the benefits of
the proposed IS+IN-LRT detector when the level of the
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improperness is large.

APPENDIX A
LRT DERIVATION FOR SSP1

For the first spectrum sensing problem (SSP1), the test
statistic is given by

T1(Y) = sup
Rv

{L(Y; Rv)} − sup
Θ
{L(Y; Q)} (53)

Using (35), the first part of the expression for T1(Y) can be
written as

sup
Rv

{L(Y; Rv)} = sup
Rv

{−2MN ln(π)− N

2
ln(|Rv|)

− 1

2
tr
(
Rv
−1YYH

)
},

(54)

Let us then define and denote the inverse of Rv by Ψ,
expressed as

Ψ =

[
diag(a) diag(b)

diag(b∗) diag(a)

]
(55)

where a = [a1, ..., aM ]T and b = [b1, ..., bM ]T . By using[
A B
C D

]−1

=

[
A# B#

C# D#

]
(56)

where

A# = (A−BD−1C)−1, (57a)

B# = −(A−BD−1C)−1BD−1, (57b)

C# = −D−1C(A−BD−1C)−1, (57c)

D# = D−1 + D−1C(A−BD−1C)−1BD−1, (57d)

the relationships between the elements of Ψ and Rv in (18)
can be expressed as

zm = [(diag(a)− diag(b)diag(a)−1diag(b∗)−1]m,m

=
am

a2
m − bmb∗m

(58)

um = [(diag(a)− diag(b)diag(a)−1diag(b∗)−1]m,M+m

= − bm
a2
m − bmb∗m

(59)

Instead of directly calculating (54), it is more convenient to
work with

sup
Ψ
{L(Y; Ψ)} = sup

Ψ
{−2MN ln(π) +

N

2
ln(|Ψ|)

− 1

2
tr
(
ΨYYH

)
}

(60)

Thus, we need to obtain |Ψ| and tr
(
ΨYYH

)
. Using (23)

and after some algebraic manipulations, we get

|Ψ| =
M∏
m=1

(a2
m − bmb∗m), (61)

and

tr
(
ΨYYH

)
=

M∑
m=1

am[YYH + Y∗YT ]m,m

+

M∑
m=1

bm[Y∗YH ]m,m

+

M∑
m=1

b∗m[YYT ]m,m.

(62)

Thus, we obtain

sup
Ψ
{L(Y; Ψ)} = sup

a,b
{−2MN ln(π) +

N

2

M∑
m=1

ln
(
a2
m − bmb∗m

)
− 1

2

M∑
m=1

am[YYH + Y∗YT ]m,m

− 1

2

M∑
m=1

bm[Y∗YH ]m,m

− 1

2

M∑
m=1

b∗m[YYT ]m,m}.

(63)

Now, we must determine which vectors a and b maximize
the log-likelihood function (LLF). Taking the gradients of the
LLF w.r.t the element of vectors a and b yields

∂L(Y; a,b)

∂am
=
N

2

2am
a2
m − bmb∗m

− 1

2
[YYH + Y∗YT ]m,m

(64)

∂L(Y; a,b)

∂bm
= −N

2

b∗m
a2
m − bmb∗m

− 1

2
[Y∗YH ]m,m (65)

Setting the gradients equal to zero and after using (58) and
(59) we obtain

ẑm =
1

N
[YYH + Y∗YT ]m,m (66)

ûm =
1

N
[Y∗YH ]m,m (67)

It then follows from (66), (67) and (18) that

R̂v =[
1

2N Diag(YYH + Y∗YT ) 1
N Diag(YYT )

1
2N Diag(Y∗YH) 1

2N Diag(YYH + Y∗YT )

]
(68)

By substituting (66) and (67) into (63), using (61) and after
straight-forward manipulations, the first part of (53) can be
expressed as

sup
Rv

{L(Y; Rv)} = −2MN ln(π)− N

2
ln(|R̂v|)−NM (69)
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Following similar analysis steps and derivations, the second
part of (53) can be written as

sup
Q
{L(Y; Q)} = −2MN ln(π)− N

2
ln(|Q|)

− 1

2
tr
(
Q−1YYH

)
= −2MN ln(π)− N

2
ln(
|YYH |
2MN

)−MN

(70)

Substituting (69) and (70) into (53) and after some algebraic
manipulations, the proof is completed.
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