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Abstract. We are studying hyperbolic function theory in the total skew-
field of quaternions. Earlier the theory has been studied for quaternion
valued functions depending only on three reduced variables. Our func-
tions are depending on all four coordinates of quaternions. We consider
functions, called α-hyperbolic harmonic, that are harmonic with respect
to the Riemannian metric

ds2α =
dx2

0 + dx2
1 + dx2

2 + dx2
3

xα
3

in the upper half space R
4
+ = {(x0, x1, x2, x3) ∈ R

4 : x3 > 0}. If α = 2,
the metric is the hyperbolic metric of the Poincaré upper half-space.
Hempfling and Leutwiler started to study this case and noticed that the
quaternionic power function xm (m ∈ Z), is a conjugate gradient of a
2-hyperbolic harmonic function. They researched polynomial solutions.
Using fundamental α-hyperbolic harmonic functions, depending only
on the hyperbolic distance and x3, we verify a Cauchy type integral
formula for conjugate gradient of α-hyperbolic harmonic functions. We
also compare these results with the properties of paravector valued α-
hypermonogenic in the Clifford algebra C�0,3.
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1. Introduction

We study quaternion valued twice continuous differentiable functions f (x)
defined in an open subset of the full space R4 satisfying the following modified
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Cauchy–Riemann system

x3

(
∂f0

∂x0
− ∂f1

∂x1
− ∂f2

∂x2
− ∂f3

∂x3

)
+ αf3 = 0,

∂f0

∂xm
= −∂fm

∂x0
for all m = 1, 2, 3,

∂fm

∂xn
=

∂fn

∂xm
for all m,n = 1, 2, 3.

Earlier the theory has been studied for quaternion valued functions depend-
ing only on three reduced variables [5]. In case α = 2, this system was studied
by Hempfling and Leutwiler in [11]. Recently, we verified Cauchy type for-
mulas for these function in [6]. In this paper, we study integral formulas and
operators produced by these formulas. The results are interesting, since we
are building hyperbolic function theory in the full skew field of quaternions.
We also develop the theory of paravector valued α-hypermonogenic func-
tions in the Clifford algebra C�0,3 and find similar integral theorems as in the
quaternionic hyperbolic function theory.

2. Preliminaries

The skew-field of quaternions H is four dimensional associative division alge-
bra over reals with an identity 1. We denote by 1, i, j and k the generating
elements of H satisfying the relations

i2 = j2 = k2 = ijk = −1.

The elements β1 and β are identified for any β ∈ R.
Any quaternion x may be represented with respect to the base

{1, i, j,k} by

x = x0 + x1i + x2j + x3k

where x0, x1, x2 and x3 are real numbers. The real vector spaces R
4 and H

may be identified.
We denote the upper half space by

R
4
+ = {(x0, x1, x2, x3) | xm ∈ R, m = 0, 1, 2, 3 and x3 > 0}

and the lower half space by

R
4
− = {(x0, x1, x2, x3) | xm ∈ R, m = 0, 1, 2, 3 and x3 < 0} .

We recall that the hyperbolic distance dh(x, a) between the points x and a
in R

4
+ is dh(x, a) = arcosh(λ(x, a)) where

λ(x, a) =
(x0 − a0)

2 + (x1 − a1)
2 + (x2 − a2)

2 + x2
3 + a2

3

2x3a3

=
‖x − a‖2 + ‖x − a∗‖2

4x3a3

=
‖x − a‖2

2x3a3
+ 1 =

‖x − a∗‖2

2x3a3
− 1,
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and

a∗ = (a0, a1, a2,−a3) ,

‖x − a‖ =
√

(x0 − a0)
2 + (x1 − a1)

2 + (x2 − a2)
2 + (x3 − a3)

2
,

(see a proof for example in [12]). Similarly, we may compute the hyperbolic
distance between the points x and a in R

4
−.

The following simple calculation rules

‖x − a‖2 = 2x3a3 (λ(x, a) − 1) , (2.1)

‖x − a∗‖2 = 2x3a3 (λ(x, a) + 1) , (2.2)

‖x − a‖2

‖x − a∗‖2 =
λ(x, a) − 1
λ(x, a) + 1

= tanh2

(
dh (x, a)

2

)
, (2.3)

are useful.
We recall that the hyperbolic ball Bh (a, rh) with the hyperbolic center a

in R
4
+ and the radius rh is the same as the Euclidean ball with the Euclidean

center

ca (rh) = (a0, a1, a2, a3 cosh rh)

and the Euclidean radius re = a3 sinh rh.
The inner product 〈x, y〉 in R

4 is defined as usual by

〈x, y〉 =
3∑

m=0

xmym.

If x = x0 + x1i + x2j + x3k and y = y0 + y1i + y2j + y3k are quaternions
their inner product is defined similarly as in R

4 by

〈x, y〉 =
3∑

m=0

xmym.

The elements

x = x0 + x1i + x2j

are called reduced quaternions. The set of reduced quaternions is identified
with R

3.
The involution ( )′ in H is the mapping x → x′ defined by

x′ = x0 − x1i − x2j + x3k

and it satisfies

(xy)′ = x′y′

for all quaternions x and y. The reversion ( )∗ in H is the mapping x → x∗

defined by

x∗ = x0 + x1i + x2j − x3k

and the conjugation ( ) in H is the mapping x → x defined by x = (x′)∗ =
(x∗)′, that is

x = x0 − x1i − x2j − x3k.
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These involutions satisfy the following product rules

(xy)∗ = y∗x∗

and

xy = y x

for all x, y ∈ H.
The prime involution may be computed as

x′ = −kxk

for all quaternions x. This formula shows, in fact, that the involution ( )′ is
the rotation around the x3 axes. Similarly, the formulas

x = −kx∗k,

x∗ = −kxk,

hold for all quaternions x. Hence we have the identities

xk = kx′

and

x∗k = kx

valid for all quaternions x.
The real part of a quaternion x = x0 + x1i + x2j + x3k is defined by

Re x = x0

and the vector part by

Vec x = x1i + x2j + x3k.

if Re x = Re y = 0, the product rule

xy = −〈x, y〉 + x × y

holds, where × is the usual cross product.
The mappings S : H → R

3 and T : H → R are defined by

Sa = a0 + a1i + a2j

and

Ta = a3

for a = a0 + a1i + a2j + a3k ∈ H. Using the reversion, we compute the
formulas

Sa =
1
2

(a + a∗) =
1
2

(a − kak) , (2.4)

Ta = −1
2

(a − a∗) k =
1
2

(ka − ak) . (2.5)

We use the identities

ab + ba = 2aRe b + 2bRe a − 2 〈a, b〉 , (2.6)
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〈a, b〉 =
ab + ba

2
= Re

(
ab

)
(2.7)

and
1
2

(
abc + cba

)
= 〈b, c〉 a − [a, b, c] (2.8)

valid for all quaternions a, b and c. The term [a, b, c], called a triple product,
is defined by

[a, b, c] = 〈a, c〉b − 〈a, b〉c.
If Re a = Re b = Re c = 0, then (see [10])

[a, b, c] = a × (b × c).

Notice that the triple product is linear with respect to a, b and c. Moreover,

[a, b, c]∗ = 〈a, c〉b∗ − 〈a, b〉c∗ (2.9)
= 〈a∗, c∗〉b∗ − 〈a∗, b∗〉c∗

= [a∗, b∗, c∗] . (2.10)

3. Hyperregular Functions

We define the following hyperbolic generalized Cauchy–Riemann operators
H l

α(x) and Hr
α(x) for x ∈ Ω\{x3 = 0} as follows

H l
αf (x) = Dq

l f (x) + α
f3

x3
, H

l

αf (x) = D
q

l f (x) − α
f3

x3
,

Hr
αf (x) = Dq

rf (x) + α
f3

x3
, H

r

αf (x) = D
q

rf (x) − α
f3

x3
,

where the parameter α ∈ R and

Dq
l f =

∂f

∂x0
+ i

∂f

∂x1
+ j

∂f

∂x2
+ k

∂f

∂x3
D

q

l f =
∂f

∂x0
− i

∂f

∂x1
− j

∂f

∂x2
− k

∂f

∂x3
,

Dq
rf=

∂f

∂x0
+

∂f

∂x1
i +

∂f

∂x2
j +

∂f

∂x3
k, D

q

rf=
∂f

∂x0
− ∂f

∂x1
i − ∂f

∂x2
j − ∂f

∂x3
k.

When there is no confusion, we abbreviate Dq
l f by Dqf and H l

α by Hα.

Definition 3.1. Let Ω ⊂ R
4 be open. A function f : Ω → H is called α-

hyperregular, if f ∈ C1 (Ω) and

H l
αf (x) = Hr

αf (x) = 0

for any x ∈ Ω\{x3 = 0}.

We emphasize that a function is α-hyperregular provided that it is con-
tinuous differentiable in the total open set Ω ⊂ R

4 and satisfies the preceding
equation for all x with x3 �= 0.

Computing the components of H l
αf (x) and Hr

αf (x), we obtain
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Proposition 3.2. [6] Let Ω ⊂ R
4 be open and a function f : Ω → H continu-

ously differentiable. A function f is α-hyperregular in Ω if and only if
∂f0
∂x0

− ∂f1
∂x1

− ∂f2
∂x2

− ∂f3
∂x3

+ α f3
x3

= 0, if x3 �= 0,

∂f0
∂xm

= −∂fm

∂x0
for all m = 1, 2, 3,

∂fm

∂xn
= ∂fn

∂xm
for all m,n = 1, 2, 3.

Our operators are connected to the hyperbolic metric via the hyperbolic
Laplace operator as follows.

Proposition 3.3. [6] Let Ω ⊂ R
4 be open, x ∈ Ω\{x3 = 0} and f : Ω → R a

real twice continuously differentiable function. Then

xα
3 H l

αH
l

αf(x) = xα
3 Hr

αH
r

αf(x) = Δαf(x)

where the operator

Δα = xα
3

(
Δ − α

x3

∂

∂x3

)

is the Laplace–Beltrami operator (see [13]) with respect to the Riemannian
metric

ds2
α =

dx2
0 + dx2

1 + dx2
2 + dx2

3

xα
3

. (3.1)

Definition 3.4. Let Ω ⊂ R
4 be open. A twice continuously real differentiable

function h : Ω → R is called α-hyperbolic harmonic, if

Δαh(x) = 0

for all x ∈ Ω\{x3 = 0}.

We list a couple of simple observations.

Lemma 3.5. Let Ω be an open subset of R4. If h : Ω → R is α-hyperbolic on
Ω and h ∈ C3 (Ω) then the function ∂h

∂x3
satisfies the equation

x2
3Δh(x) − αx3

∂h

∂x3
(x) + αh(x) = 0

for all x ∈ Ω. Moreover, a twice continuously differentiable function h : Ω →
R satisfies the preceding equation if and only if the function x−α

3 h(x) is −α-
hyperbolic harmonic for any x ∈ Ω\{x3 = 0}.
Proof. Assume that x ∈ Ω\{x3 = 0}. We just compute as follows

Δ
(
x−α

3 h
)

+
α

x3

∂h

∂x3
= x−α

3 Δh − 2α

xα+1
3

∂h

∂x3
+ α (α + 1) x−α−2

3 h

+
α

xα+1
3

∂h

∂x3
− α2x−α−2

3 h

= x−α
3

(
x2

3Δh − αx3
∂h

∂x3
+ αh

)
.

�
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Real valued α-hyperbolic functions are especially important, since they
produce α-hyperregular functions.

Theorem 3.6. [6] Let Ω be an open subset of R
4. If h is α-hyperbolic on Ω

then the function f = D
q
h is α-hyperregular on Ω. Conversely, if f is α-

hyperregular on Ω, there exists locally a α-hyperbolic function h satisfying
f = D

q
h.

Theorem 3.7. [6] Let Ω be an open subset of R4. If a twice continuously differ-
entiable function f : Ω → H is α-hyperregular then the coordinate functions
fn for n = 0, 1, 2 are α-hyperbolic harmonic and f3 satisfies the equation

x2
3Δf3(x) − αx3

∂f3

∂x3
(x) + α(x)f3 = 0

for any x ∈ Ω.

The following transformation property is proved in [1,3].

Lemma 3.8. Let Ω be an open set contained in R
4
+ or in R

4
−. A function a

twice continuously differentiable function f : Ω → R is α-hyperbolic harmonic
if and only if the function g (x) = x

2−α
2

3 f (x) satisfies the equation

Δ2g +
1
4

(
9 − (α + 1)2

)
g = 0. (3.2)

4. Cauchy Type Integral Formulas

We recall the Stokes theorem for T and S-parts proved in [6].

Theorem 4.1. Let Ω be an open subset of R
4\ {x3 = 0} and K a 3-chain

satisfying K ⊂ Ω. Denote (ν0, ν1, ν2, ν3) the outer unit normal and the cor-
responding quaternion by ν = ν0 + ν1i + ν2j + ν3k. If f, g ∈ C1 (Ω,H), then∫

∂K

T (gνf + fνg) dσ =
∫

K

T
(
Hr

−αgf + gH l
αf + Hr

αfg + fH l
−αg

)
dm,

where dσ is the surface element and dm the usual Lebesgue volume element
in R

4.

Theorem 4.2. Let Ω be an open subset of R
4\ {x3 = 0} and K a 3-chain

satisfying K ⊂ Ω. Denote (ν0, ν1, ν2, ν3) the outer unit normal and the cor-
responding quaternion by ν = ν0 + ν1i + ν2j + ν3k. If f, g ∈ C1 (Ω,H), then∫

∂K

S (gνf + fνg)
dσ

xα
3

=
∫

K

S
(
Hr

αgf + gH l
αf + Hr

αfg + fH l
αg

) dm

xα
3

,

where dσ is the surface element and dm the usual Lebesgue volume element
in R

4.

The fundamental α-hyperbolic harmonic function, that is the funda-
mental solution of Δα, is the following function (see [4,6,7]).
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Theorem 4.3. Let x and y be points in the upper half space. The fundamental
α-hyperbolic harmonic function is

Eα (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x
α−2
2

3 y
α−2
2

3 Q1
α
2

(λ(x,y))

2ν+1ω3(λ(x,y)2−1)
1
2

, if α ≥ 0,

x
α−2
2

3 y
α−2
2

3 Q1
−α−2

2
(λ(x,y))

2ν+1ω3(λ(x,y)2−1)
1
2

, if α < 0,

where the associated Legendre function is defined by

Q1
ν (λ) =

√
πΓ (ν + 2) λ−ν

2F1

(
ν
2 , ν+1

2 ; 2ν+3
2 ; 1

λ2

)
2ν+1 (λ2 − 1)

and the hypergeometric function by

2F1 (a, b; c;x) =
1

Γ (c)

∞∑
m=0

(a)m (b)m

(c)m

xm

m!

for |x| < 1.

We remark that the fundamental α-hyperbolic harmonic function is
unique up to a harmonic function. The reason why we picked the preced-
ing function is that it leads to nice symmetry properties of a kernel, verified
after the following theorem.

Theorem 4.4. Denote rh = dh (x, y), t = α−2
2 and define

gα (rh) =

√
πΓ (ν + 2) cosh−ν rh 2F1

(
ν
2 , ν+1

2 ; 2ν+3
2 ; 1

cosh2 rh

)
2ν+1

,

where

ν =
{

α
2 , if α ≥ 0,
−α−2

2 , if α < 0.

The α-hyperregular kernel is the function

hα (x, y) = D
x

(Eα (x, y))

= x
α−2
2

3 y
α+4
2

3 wα (x, y) s (x, y)

= x
α−2
2

3 y
α+4
2

3 s (x, y) vα (x, y)

where

wα (x, y) = −tαgα (rh) k
x − Sy

y3

+ sinh rhg′
α (rh) − (t + 2) gα (rh) cosh rh,

vα (x, y) = −tαgα (rh)
x − Sy

y3
k

+ sinh rhg′
α (rh) − (t + 2) gα (rh) cosh rh,

and

s (x, y) =
(x − cy (rh))−1

x3‖x − cy (rh) ‖2
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is 2-hyperregular with respect to x.

The function s (x, y) is the kernel computed in [2] and in [3].
Clearly, the function hα (x, y) is not symmetrical with respect to x and

y. However, it has the following symmetry properties.

Proposition 4.5. The function hα has the properties

S (hα (y, x)) = −S (hα (x, y)) ,

yα
3 Th−α (x, y) = −x−α

3 Thα (y, x) ,

and

yα
3 Th−α (y, x) = −x−α

3 Thα (x, y)

for all x and y outside the hyperplane
{
(u0, u1, u3, u3) ∈ R

4 | u3 = 0
}
.

Proof. Denote

Fα (x, y) = x
α−2
2

3 y
α−2
2

3 Gα (λ (x, y)) .

If m = 0, 1, 2, then

∂Fα (x, y)
∂xm

= x
α−2
2

3 y
α−2
2

3 G′
α (λ ((x, y)))

∂λ (x, y)
∂xm

= x
α−2
2

3 y
α−2
2

3 G′
α (λ (x, y))

xm − ym

x3y3

= −x
α−2
2

3 y
α−2
2

3 G′
α (λ (y, x))

ym − xm

x3y3

= −∂Fα (y, x)
∂ym

The last properties follow from the tedious calculations

yα
3 ∂x3F−α (x, y) + x−α

3 ∂y3Fα (x, y) = 0,

yα
3 ∂y3F−α (x, y) + x−α

3 ∂x3Fα (x, y) = 0

which are done in [7]. �

We recall the integral formulas for S- and T -parts verified in [6].

Theorem 4.6. Let Ω and be an open subsets of R4
+ (or R4

−). Assume that K is
an open subset of Ω and K ⊂ Ω is a compact set with the smooth boundary.
Let (ν0, ν1, ν2, ν3) be the outer unit normal and denote the corresponding
quaternion by ν = ν0 + ν1i + ν2j + ν3k. If f is α-hyperregular in Ω and
a ∈ K, then

Sf (a) = −1
2

∫
∂K

S (hα (x, a) νf + fνhα (x, a))
dσ

xα
3

=
∫

∂K

S [hα (x, a) , ν, f ]
dσ

xα
3

−
∫

∂K

Shα (x, a) 〈ν, f〉 dσ

and
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Tf (a) = −aα
3

2

∫
∂K

T (h−α (x, a) νf + fνh−α (x, a)) dσ

= aα
3

(∫
∂K

T [h−α (x, a) , ν, f ] dσ −
∫

∂K

Th−α (x, a) 〈ν, f〉 dσ

)
.

If we combine these formulas we obtain a new formula.

Theorem 4.7. Let Ω and be an open subsets of R4
+ (or R4

−). Assume that K is
an open subset of Ω and K ⊂ Ω is a compact set with the smooth boundary.
Let (ν0, ν1, ν2, ν3) be the outer unit normal and denote the corresponding
quaternion by ν = ν0 + ν1i + ν2j + ν3k. If f is k−hyperregular in Ω and
a ∈ K , then

f (a) =
∫

∂K

R (x, a, ν, f) dσ +
∫

∂K

hk (a, x) 〈ν, f〉 dσ

xα
3

where

R (x, a, ν, Sf) = − 〈
x−α

3 Shα (a, x) , Sf
〉
Sν + 〈aα

3 Sh−α (a, x) , Sf〉 Tνk

+
〈
x−α

3 Shα (a, x) , Sν
〉
Sf − aα

3 Tha
−α(a, x)TνSf

and

T (R (x, a, ν, Tfk)) = 〈aα
3 Sh−α (a, x) , Sf〉 Tν + 〈aα

3 Sh−α (a, x) , Sν〉 Tf.

Proof. We combine the preceding integral formulas using the formula

f (a) = Sf (a) + Tf (a) k.

We introduce the following notation

B = −
∫

∂K

x−α
3 Shα (x, a) 〈ν, f〉 dσ −

∫
∂K

aα
3 Th−α (x, a) k 〈ν, f〉 dσ

= −
∫

∂K

(
x−α

3 Shα (x, a) + aα
3 Th−α (x, a) k

) 〈ν, f〉 dσ.

Applying the symmetry properties of the kernels we deduce

B =
∫

∂K

(
x−α

3 Shα (a, x) + x−α
3 Thα (a, x) k

) 〈ν, f〉 dσ

=
∫

∂K

x−α
3 hα (a, x) 〈ν, f〉 dσ.

Applying the properties (2.4) and (2.5), we obtain

R (x, a, ν, f) = S
([

x−α
3 hα (x, a) , ν, f

])
+ T ([aα

3 h−α (x, a) , ν, f ]) k

=
1
2

([
x−α

3 hα (x, a) , ν, f
]
+

[
x−α

3 hα (x, a) , ν, f
]∗)

+
1
2

(
[aα

3 h−α (x, a) , ν, f ] − [aα
3 h−α (x, a) , ν, f ]∗

)

=
1
2

[
x−α

3 hα (x, a) + aα
3 h−α (x, a) , ν, f

]

+
1
2

[
x−α

3 hα (x, a) − aα
3 h−α (x, a) , ν, f

]∗
.
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Hence

R (x, a, ν, f) = R (x, a, ν, Sf) + R (x, a, ν, Tfk) .

Using the definition of the triple product we infer

R (x, a, ν, Sf) =
1
2

〈
x−α

3 hα (x, a) + aα
3 h−α (x, a) , Sf

〉
ν

− 1
2

〈
x−α

3 hα (x, a) + aα
3 h−α (x, a) , ν

〉
Sf

+
1
2

〈
x−α

3 hα (x, a) − aα
3 h−α (x, a) , Sf

〉
ν′

− 1
2

〈
x−α

3 hα (x, a) − aα
3 h−α (x, a) , ν

〉
Sf

=
〈
x−α

3 hα (x, a) , Sf
〉
Sν − 〈aα

3 h−α (x, a) , Sf〉 Tνk

− 〈
x−α

3 hα (x, a) , ν
〉
Sf

=
〈
x−α

3 Shα (x, a) , Sf
〉
Sν − 〈aα

3 Sh−α (x, a) , Sf〉 Tνk

− 〈
x−α

3 Shα (x, a) , Sν
〉
Sf + xα

3 Th−α(x, a)TνSf.

Using the symmetry properties, we obtain

R (x, a, ν, Sf) = − 〈
x−α

3 Shα (a, x) , Sf
〉
Sν + 〈aα

3 Sh−α (a, x) , Sf〉 Tνk

+
〈
x−α

3 Shα (a, x) , Sν
〉
Sf − aα

3 Tha
−α(a, x)TνSf.

In order to shorten the notations, we abbreviate g = Tfk. Then we simply
compute

R (x, a, ν, g) =
1
2

〈
x−α

3 hα (x, a) + aα
3 h−α (x, a) , g

〉
ν

− 1
2

〈
x−α

3 hα (x, a) + aα
3 h−α (x, a) , ν

〉
g

+
1
2

〈
x−α

3 hα (x, a) − aα
3 h−α (x, a) , g

〉
ν′

+
1
2

〈
x−α

3 hα (x, a) − aα
3 h−α (x, a) , ν

〉
g

=
〈
x−α

3 hα (x, a) , g
〉
Sν − 〈aα

3 h−α (x, a) , g〉 Tνk

− 〈aα
3 h−α (x, a) , ν〉 g

=
〈
x−α

3 Thα (x, a) k, g
〉
Sν − 〈aα

3 Th−α (x, a) k, g〉 Tνk

− 〈aα
3 h−α (x, a) , ν〉 g.

Symmetry properties imply that

R (x, a, ν, g) = 〈aα
3 Sh−α (a, x) , Sν〉 g − aα

3 Th−α (a, x) TfSν.

�

Corollary 4.8. Let Ω be an open subsets of R
4
+ (or R

4
−). Assume that K is

an open subset of Ω and K ⊂ Ω is a compact set with the smooth boundary.
Let (ν0, ν1, ν2, ν3) be the outer unit normal and denote the corresponding
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quaternion by ν = ν0 + ν1i + ν2j + ν3k. If f is k-hyperregular in Ω and
a ∈ K, then the functions

r1 (a) =
∫

∂K

R (x, a, ν, f) dσ

and

r2 (a) =
∫

∂K

hk (a, x) 〈ν, f〉 dσ

xα
3

are α-hyperregular and f = r1 + r2.

Theorem 4.9. Let Ω be an open subsets of R
4
+ (or R

4
−). Assume that K is

an open subset of Ω and K ⊂ Ω is a compact set with the smooth boundary.
Let (ν0, ν1, ν2, ν3) be the outer unit normal and denote the corresponding
quaternion by ν = ν0 + ν1i + ν2j + ν3k. If f : ∂K → H is a continuous
function then the function

r2 (a) =
∫

∂K

hα (a, x) 〈ν, f〉 dσ

xα
3

is α-hyperregular for all a ∈ K.

Theorem 4.10. Let Ω be an open subsets of R4
+ (or R

4
−). Assume that K is

an open subset of Ω and K ⊂ Ω is a compact set with the smooth boundary.
Let (ν0, ν1, ν2, ν3) be the outer unit normal and denote the corresponding
quaternion by ν = ν0 + ν1i + ν2j + ν3k. If f : ∂K → H is a continuous
function, then the function

Sr1 (a) =
∫

∂K

S (R (x, a, ν, f)) dσ

is k-hyperbolic harmonic for all a ∈ K and

Tr1 (a) =
∫

∂K

T (R (x, a, ν, f)) dσ

satisfies the equation

x2
3Δh − αx3

∂h

∂x3
+ αh = 0

and a−α
3 Tr1 is −α-hyperbolic harmonic.

We consider the Teodorescu and Cauchy type operators in subsequent
papers. Also the case a ∈ R

4
+\K involves some technical assumptions and

left for later work.

5. Comparison of α-Hyperregular and α-Hypermonogenic
Functions

The universal real Clifford algebra C�0,3 is a real associated algebra with a
unit 1 and is generated by e1, e2 and e3 satisfying the relation

eset + etes = −2δst1,
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where δst is the usual Kronecker delta and s, t = 1, 2, 3. We denote r1 briefly
by r ∈ R.

The elements

x = x0 + x1e1 + x2e2 + x3e3

for x0, x1, x2, x3 ∈ R are called paravectors. The real number x0 is the real
part of the paravector x.

The main involution in C�0,3 is the mapping a → a′ defined by e′
s = −es

for s = 1, . . . , 3 and extended to the total algebra by linearity and the product
rule (ab)′ = a′b′. Similarly the reversion is the mapping a → a∗ defined by
e∗
s = −es for s = 1, . . . , 3 and extended to the total algebra by linearity and

the product rule (ab)∗ = b∗a∗. The conjugation is the mapping a → a defined
by a = (a′)∗ = (a∗)′

.
Any element w in C�0,3 may be written as

w = w0 + w1e1 + w2e2 + w3e3 + w12e12 + w13e13 + w23e23 + w123e123,

where emn = emen for 1 ≤ m < n ≤ 3 and e123 = e1e2e3. The element
e123,denoted by I, is commuting with all elements and (e1e2e3)

2 = 1.
We recall that C�0,1 may be identified with the field of complex numbers.

The universal Clifford algebra C�0,2 may be identified with the quaternions,
by setting i = e1, j = e2 and k = e1e2. This identification we used in the
first section when we defined involutions.

We generalize the imaginary part of a complex number to C�0,3 by
decomposing any element a ∈ C�0,3 as

a = b + ce3

for b, c ∈ C�0,2. The mappings P : C�0,3 → C�0,2 and Q : C�0,3 → C�0,2 are
defined in [9] by

Pa = b, Qa = c.

In order to compute the P - and Q- parts we use the involution a → â defined
by êi = (−1)δs3 ei for s = 1, 2, 3 and extended to the total algebra by linearity
and the product rule âb = âb̂. Then we obtain the formulas

Pa =
1
2

(a + â) (5.1)

and

Qa = −1
2

(a − â) e3. (5.2)

The following calculation rules [9] hold

P (ab) = (Pa) Pb + (Qa) Q (b′) , (5.3)
Q (ab) = (Pa) Qb + (Qa) P ′ (b)

= aQb + (Qa) b′. (5.4)

Note that if a ∈ C�0,3, then

a′e3 = e3â
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Moreover if a ∈ C�0,2 then

ae3 = e3a
′. (5.5)

We consider functions f : Ω → C�0,3, defined on an open subset Ω of
R

4, and assume that its components are continuously differentiable. The left
Dirac operator (also called the Cauchy–Riemann operator) in C�0,3 is defined
by

Dlf =
3∑

s=0

es
∂f

∂xs

and the right Dirac operator by

Drf =
3∑

s=0

∂f

∂xs
es.

Their conjugate operators Dl and Dr are defined by

Dlf =
3∑

s=0

es
∂f

∂xs
, Drf =

3∑
s=0

∂f

∂xs
es.

The modified Dirac operators M l
α, M

l

α, Mr
α and M

r

α , introduced in
[8,9], are defined in {(x0, x1, x2, x3) ∈ Ω | x3 �= 0} by

M l
αf (x) = Dlf (x) + αQ′f

x3
, M

l

αf (x) = Dlf (x) − αQ′f
x3

,

Mr
αf (x) = Drf (x) + αQf

x3
, Mα

r
f (x) = Drf (x) + αQf

x3
,

where (Qf)′ = Q′f . The operator M l
2 is also abbreviated by M .

Definition 5.1. Let Ω ⊂ R
4 be open. A function f : Ω → C�0,3 is called left

α -hypermonogenic if f ∈ C1 (Ω) and

M l
αf (x) = 0

for any x ∈ {x ∈ Ω | x3 �= 0}. The right α-hypermonogenic functions are
defined similarly. The 2-left hypermonogenic functions are called hypermono-
genic functions. A twice continuously differentiable function f : Ω → C�0,3 is
called α-hyperbolic harmonic if M

l

αM l
αf = 0.

Computing the components of M l
αf (x) and Mr

αf (x), we obtain

Theorem 5.2. Let Ω ⊂ R
4 be open and a function f : Ω → C�0,3 continuously

differentiable. If f is paravector valued then f is α-hypermonogenic in Ω if
and only if

∂f0
∂x0

− ∂f1
∂x1

− ∂f2
∂x2

− ∂f3
∂x3

+ α f3
x3

= 0, if x3 �= 0,

∂f0
∂xm

= −∂fm

∂x0
for all m = 1, 2, 3,

∂fm

∂xn
= ∂fn

∂xm
for all m,n = 1, 2, 3.

Applying Proposition 3.1 we obtain the result.
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Theorem 5.3. Let Ω ⊂ R
4 be open and a function f = (f0, f1, f2, f3) : Ω →

R
4 continuously differentiable. Then the function f0 + f1i + f2j + f3k is α-

hyperregular in Ω if and only if the f0+f1e1+f2e2+f3e3 is α-hypermonogenic
in Ω.

We recall the Cauchy type formula for α-hypermonogenic functions.

Theorem 5.4. [7] Let Ω be an open subset of R4
+ and K ⊂ Ω be a smoothly

bounded compact set. Denote (ν0, ν1, ν2, ν3) the outer unit normal and the cor-
responding paravector by ν = ν0+ν1e1+ν2e2+ν3e3. If f is α-hypermonogenic
in Ω and a ∈ K, then

f(a) =
∫

∂K

(
x−α

3 ha
α(a, x)P (νf) + aα

3 ha
−α(x, a)e3Q

′(νf)
)
dσ

where

hα(a, x) = D
a
Eα(a, x)

and hα(a, x) and aα
3 h−α(a, x)e3 are the α-hypermonogenic kernels with

respect to a.

Using this formula we may verify the formula also for paravector valued
functions. Before this, we present three preliminary results.

Lemma 5.5. Let a ∈ Ω → C�0,3. Then

P (a∗) = (P (a))∗
,

Q (a∗) = Q (a)

and

(Q
′
(a∗))∗ = Q (a) .

Proof. Assume that a ∈ C�0,3. Since

a = Pa + Qae3

and e3Qa = Q′ae3 then

a∗ = (Pa)∗ + e3 (Qa)∗

= (Pa)∗ +
(
(Qa)∗)′

e3.

Noticing that
(
(Qa)∗)′

= Qa we conclude

P (a∗) = (Pa)∗

and therefore

Q (a∗) = Qa.

The last formula follows from if we take ( )∗ and ( )′ from the both side of
the equation. �

Lemma 5.6. Let a, b be paravectors in C�0,3. Then Q (ab) is a paravector.
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Proof. We just compute

Q (ab) = Qab′ + aQb.

Since a, b are paravectors, the elements Qa and Qb are scalars, completing
the proof. �

Lemma 5.7. Let Ω ⊂ R
4 be open. A function f : Ω → C�0,3 is left α-

hypermonogenic if and only if f∗is right α-hypermonogenic.

Proof. Assume that f is left α-hypermonogenic then

M l
αf (x) = x3D

lf (x) + αQ′f (x) = 0.

Since (a∗)′ = a, we infer

0 =
(
M l

αf (x)
)∗

= x3D
rf∗ + α (Q′f (x))∗

= x3D
rf∗ + α

(
Qf (x)

)
.

Using the previous lemma we obtain

Mr
αf∗ (x) = x3D

rf∗ + αQf∗ (x) = 0.

Hence f∗ is right α-hypermonogenic. Similarly, we verify that if f is right
α-hypermonogenic then f is left α-hypermonogenic. �

Theorem 5.8. Let Ω be an open subset of R
4
+ and K ⊂ Ω be a smoothly

bounded compact set. Denote (ν0, ν1, ν2, ν3) the outer unit normal and the
corresponding paravector by ν = ν0 + ν1e1 + ν2e2 + ν3e3. If f is right α-
hypermonogenic in Ω and a ∈ K, then

f(a) =
∫

∂K

(
P (fν)x−α

3 hα(a, x) + Q(fν)e3a
α
3 h−α(a, x)

)
dσ,

where hα(a, x) and e3a
α
3 h−α(a, x) are right α-hypermonogenic with respect to

the variable a.

Proof. If f is right α-hypermonogenic then f∗ is left α-hypermonogenic and
therefore

f∗(a) =
∫

∂K

(
x−α

3 hα(a, x)P (νf∗) + aα
3 h−α(a, x)e3Q

′(νf∗)
)
dσ.

Taking ( )∗ from the both sides we obtain

f(a) =
∫

∂K

(
x−α

3 P (νf∗)
)∗

h∗
α(a, x) + (Q′(νf∗))∗

e3a
α
3 h∗

−α(a, x)dσ.

where h∗
α(a, x) = (hα(a, x))∗. Applying the previous lemma, we infer

(Q′(νf∗))∗ = Q(νf∗) = Q(fν)

and

(P (νf∗))∗ = P (fν),

since f and ν are paravectors. Hence we have

f(a) =
∫

∂K

(
x−α

3 P (fν)h∗
α(a, x) + (Q(fν)) e3a

α
3 h∗

−α(a, x)
)
dσ.
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Since ha
α is a paravector we infer

f(a) =
∫

∂K

(
x−α

3 P (fν) (hα) (a, x) + (Q(fν)) e3a
α
3 (h−α) (a, x)

)
dσ

completing the proof. �

Theorem 5.9. Let Ω be an open subset of R
4
+ and K ⊂ Ω be a smoothly

bounded compact set. Denote (ν0, ν1, ν2, ν3) the outer unit normal and the
corresponding paravector by ν = ν0 + ν1e1 + ν2e2 + ν3e3. Then, if f is a
paravector valued α-hypermonogenic in Ω and a ∈ K,

f(a) =
∫

∂K

(
hα(a, x) 〈ν, f〉 +

[
Phα(a, x), Pν, Pf

]) dσ

xα
3

−
∫

∂K

aa
3

([
h−α(a, x), Pν,Qfe3

]
+ [h−α(a, x), Qνe3, Pf ]

)
dσ.

Proof. If f is a paravector valued α-hypermonogenic in Ω and a ∈ K, then

f(a) =
1
2

∫
∂K

(
x−α

3 P (fν)hα(a, x) + Q(fν)e3a
α
3 h−α(a, x)

)
dσ

+
1
2

∫
∂K

(
x−α

3 hα(a, x)P (νf) + h−α(a, x)e3a
α
3 Q′(νf)

)
dσ,

Since P (νf) = PνPf + QνQ′f and f is a paravector we obtain

1
2

∫
∂K

x−α
3 hα(a, x)P (νf) + x−α

3 P (fν)hα(a, x)dσ

=
1
2

(∫
∂K

x−α
3 hα(a, x)PνPf + x−α

3 PfPνhα(a, x)
)

dσ

−
∫

∂K

x−α
3 hα(a, x)QνQfdσ

=
∫

∂K

x−α
3 hα(a, x) 〈ν, f〉 dσ −

∫
∂K

x−α
3

[
hα(a, x), Pν, Pf

]
dσ

=
∫

∂K

x−α
3 hα(a, x) 〈ν, f〉 dσ +

∫
∂K

x−α
3

[
hα(a, x), Pν, Pf

]
dσ.

Similarly we compute

1
2

∫
∂K

h−α(a, x)e3a
α
3 Q′(νf) + Q(fν)e3a

α
3 (h−α) (a, x)dσ

=
1
2

∫
∂K

h−α(a, x)aα
3 PνQfe3 + Qfaα

3 e3Pνaα
3 (h−α) (a, x)dσ

+
1
2

∫
∂K

h−α(a, x)aα
3 Qνe3Pf + Pfaα

3 Qνe3 (h−α) (a, x)dσ

= −
∫

∂K

aa
3

[
h−α(a, x), Pν,Qfe3

] −
∫

∂K

aα
3

[
ha

−α(a, x), Qνe3, Pf
]
dσ,

completing the proof. �



   97 Page 18 of 19 S.-L. Eriksson, H. Orelma Adv. Appl. Clifford Algebras

Acknowledgements

Open access funding provided by University of Helsinki including Helsinki
University Central Hospital.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.
0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References
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