
1

On computational complexity reduction methods for
Kalman filter extensions

Matti Raitoharju and Robert Piché

Abstract—The Kalman filter and its extensions are used in
a vast number of aerospace and navigation applications for
nonlinear state estimation of time series. In the literature,
different approaches have been proposed to exploit the structure
of the state and measurement models to reduce the computational
demand of the algorithms. In this tutorial, we survey existing code
optimization methods and present them using unified notation
that allows them to be used with various Kalman filter extensions.
We develop the optimization methods to cover a wider range
of models, show how different structural optimizations can
be combined, and present new applications for the existing
optimizations. Furthermore, we present an example that shows
that the exploitation of the structure of the problem can lead to
improved estimation accuracy while reducing the computational
load. This tutorial is intended for persons who are familiar
with Kalman filtering and want to get insights for reducing the
computational demand of different Kalman filter extensions.

I. INTRODUCTION

Since its pioneering application to trajectory estimation in
the Apollo program in the 1960’s, the Kalman Filter (KF)
and its nonlinear extensions have been used in a multitude of
aerospace and navigation applications, including inertial nav-
igation, radar systems, and global navigation satellite systems
[18]. KFs are also used in many other application areas, for
example state estimation of a lithium polymer battery [11] or
brain imaging [21].

KF is the optimal Bayesian filter under certain conditions,
which include linearity of models and Gaussianity and white-
ness of noise [22]. Kalman Filter Extensions (KFEs) are
based on approximate linear-Gaussian models that extend the
use of KF to nonlinear models. In the literature, there are
several different types of KFEs, with different demands on
computational resources. The computational complexity of the
KFE increases when the number of estimated state variables
or dimensionality of the measurement vector increases; in
some KFEs even exponentially [25]. The number of state
variables varies depending on the application, for example,
in some positioning applications only 2 position variables
are estimated, but in other positioning applications the state
may also contain variables for the locations of thousands of
landmarks. In many applications the computational resources
are limited, for example, in miniaturized satellites [3].

In this tutorial, we study various methods to reduce the com-
putational load of state estimation with KFEs by exploiting the
structure of the state transition and measurement models. This
tutorial is intended for persons who are familiar with the basics
of KFEs and want to know how to reduce the computational
demand of KFEs. The presented algorithms are such that the
result is exact when applied to a situation where the KF

produces the exact result. This leaves algorithms that are not
optimal in the linear-Gaussian case, such as Ensemble Kalman
Filter (EnKF), out of the scope of this tutorial. However,
some of the given optimizations can still be applied with such
algorithms.

We present the algorithms in a general form so that they
can be applied to as wide a range of problems as possible, but
still in a form that they are easy to implement. Some of the
algorithms in the original sources are given only for a certain
KFE; the general notation used in this tutorial allows the op-
timizations to be implemented for different KFEs. In addition
to surveying the algorithms in the literature, we give some
generalizations of the algorithms and new ways of applying
the optimizations with the KFEs. To our knowledge, there is
no similar unified presentation of optimization methods in the
literature.

A drawback of KFEs is that, because of the Gaussian
approximation on which the algorithm is based, the estimate is
inaccurate when the true posterior is far from normal. Gaussian
Mixture Filters (GMFs) (a.k.a. Gaussian sum filters) use a sum
of normal densities to estimate the probability distributions
and can approximate any probability density function [39].
Because GMFs use several KFEs the computational load is
larger than with algorithms that use only one Gaussian. The
optimizations in this tutorial can be applied also in the GMFs
for state propagation and update of individual components.

For implementations, we assume that a library for basic
linear algebra is available. In many practical applications, the
algorithms can be optimized further by taking the specific
structure of the matrices into account. If the matrices are
sparse, the sparsity can be exploited for optimization either
by hand or by implementing the algorithms with sparsity-
optimized subroutines. These can be found, for example, in
Sparse Basic Linear Algebra Subprograms1 or in Matlab2.
The optimizations in matrix algebra libraries also make it
impossible to provide accurate complexity estimates of the
given algorithms. For example the naive matrix multiplication
for square matrices with n columns has complexity O(n3)
while Strassen’s algorithm has complexity O(n2.807) [17],
[43] and algorithms with smaller complexity exist, although
they are faster only with very large n.

The computation time of algorithms can also be reduced
using parallel computing. The matrix operations can be effec-
tively parallelized in the linear algebra library that handles the
matrix operations. Thus, we do not consider parallelization in

1http://math.nist.gov/spblas/
2http://www.mathworks.com/products/matlab/

http://math.nist.gov/spblas/
http://www.mathworks.com/products/matlab/

2

this tutorial.
The remainder of this tutorial is organized as follows. In

the next section we present the common notations that are
used throughout the tutorial. In Section III the background
of KFEs is presented. Section IV contains linearity based
optimizations of the KFEs. In Section V the solution of the
set of linear equations containing the inverse of the innovation
covariance is optimized. Section VI presents optimizations
based on division of the state into multiple subprocesses.
Section VII gives example applications of the optimization
methods. Section VIII concludes the article.

II. NOTATIONS

In the following list there are the variables that are used
throughout the tutorial. In different sections, there are algo-
rithm specific notations that are explained as they occur.

– Scalars
j number of iterations
m dimension of measurement
n dimension of state (or augmented state)

– Random variables
x state
z augmented state
ε noise
εx state transition noise
εy measurement noise

– Subscripts
i iteration index
t time index

– Functions
f(·) state transition function
g(·) non-specific function
G(·) Matrix valued function
h(·) measurement function
diag(·)diagonal matrix with function arguments on its

diagonal
– Expected values

E [x] expected value of x
Pg(x)x covariance of g(x) and x
µx mean of x

– Other variables
I identity matrix
J matrix that defines the statistically linearized

relationship between state and measurement,
which is the Jacobian matrix in linear systems

K Kalman gain
S innovation covariance
0 zero matrix
1 matrix containing ones

– Acronyms
CKF Cubature Kalman Filter
DD Divided Difference
EKF Extended Kalman Filter
EKF2 Second Order Extended Kalman Filter
EnKF Ensemble Kalman Filter

GF Gaussian Filter
GMF Gaussian Mixture Filter
KF Kalman Filter
KFE Kalman Filter Extension
PDR Pedestrian Dead Reckoning
QKF Gauss-Hermite Quadrature Kalman filter
RBPF Rao-Blackwellized Particle Filter
RUF Recursive Update Filter
SLAM Simultaneous Localization and Mapping
SOKF2 Second Order Polynomial Kalman Filter
S2KF Smart Sampling Kalman Filter
TDoA Time Difference of Arrival
UKF Unscented Kalman Filter

III. BACKGROUND

In discrete-time Bayesian filtering, the state of a dynamical
system is estimated based on noisy measurements. The state
model describes how the n-dimensional state x is propagated
in time. A state model can be expressed as

xt = ft(xt−1, ε
x
t), (1)

where f(·) is the state transition function, xt−1 is the state at
the previous time step, and εxt is the state transition noise. The
state’s distribution is updated using measurements of the form

yt = ht(xt, ε
y
t), (2)

where yt is the realized measurement, h(·) is the measurement
function, and εy is the measurement noise.

To shorten notations we use the augmented state z =

[
x
ε

]
,

where applicable. In the augmented state ε is either state
transition noise or measurement noise, depending on context.
The state and measurement noises are assumed independent
and white. We also assume that all the variables of interest
are in the state. If the state or measurement noises are not
white, they can be modeled using more variables in the state.
In the Schmidt-Kalman filter, the additional noise bias states
are not estimated, instead their effect on the covariance is ap-
proximated. However, the Schmidt-Kalman filter is suboptimal
and we do not treat it in this paper. The interested reader may
refer to [26, p.282]. We omit the time index t when its absence
should not cause confusion.

In general, a KFE can be divided into two parts:
1) Prediction:

µ−xt
= µf(zt−1) (3)

P−xt,xt
= Pf(zt−1)f(zt−1), (4)

where µ−xt
is the predicted mean computed using the

state transition function and posterior of the previous
time step and P−xt,xt

is the predicted covariance.
2) Update:

y−t = µh(z−t) (5)

St = Ph(z−t)h(z−t) (6)

Kt = Px−
t h(z

−
t)S

−1
t (7)

µxt = µ−xt
+K(yt − y−t) (8)

3

Pxt,xt
= P−xt,xt

−KtStK
T
t , (9)

where z−t is the augmented state of predicted state and
measurement noise, y−t is the predicted mean of the
measurement, St is the innovation covariance, Kt is the
Kalman gain, µxt

is the updated mean of the state, and
Pxt,xt is the updated state covariance. In (7), Px−

t h(z
−
t)

refers to the rows of Pz−t h(z−t) that correspond to the
state variables.

The mean and covariance matrices associated to measurement
and state transition functions can be written using expecta-
tions:

µg(z) = E [g(z)] (10)

Pg(z)g(z) = E
[
(g(z)− µg(z))(g(z)− µg(z))T

]
(11)

Pzg(z) = E
[
(z − µz)

(
g(z)− µg(z)

)T]
. (12)

When a function is linear, that is, of the form

g(z) = Jz, (13)

the expectations have analytic form:

µg(z) = Jµz (14)

Pg(z)g(z) = JPzzJ
T (15)

Pzg(z) = PzzJ
T (16)

and the algorithm is the KF.
There are extensions that approximate the expectations

(10)–(12) using analytic differentiation (or integration) of the
functions. For example, the Extended Kalman Filter (EKF)
uses the first order Taylor expansion and the Second Order
Extended Kalman Filter (EKF2) does the linearization based
on the second order Taylor expansion [26]. There are also algo-
rithms that use numerical differentiation to approximate (10)–
(12). In Divided Difference (DD) filters [31] the computation
is based on numerical differentiation of the functions to obtain
a linear model. DD filters use 2n+1 function evaluations. The
Second Order Polynomial Kalman Filter (SOKF2) [25] uses
1
2n

2 + 3
2n + 1 points to fit a second order polynomial to the

function and then computes the analytic covariance matrices
for the polynomial.

One very commonly used and large group of KFEs algo-
rithms approximate expectations (10)–(12) as:

µg(z) ≈
∑

wsi g(χi) (17)

Pg(z)g(z) ≈
∑

wci (g(χi)− µg(z))(g(χi)− µg(z))T (18)

Pzg(z) ≈
∑

wci (χi − z)(g(χi)− µg(z))T , (19)

where χi are so-called sigma-points that are chosen according
to the prior distribution and wsi and wci are associated weights.
Examples of this kind of filters are Unscented Kalman Filter
(UKF) [46], different Cubature Kalman Filters (CKFs) [2], and
Gauss-Hermite Quadrature Kalman filter (QKF) [25].

The selection and number of sigma-points and weights
depend on the algorithm used. The UKF is usually used with
2n + 1 sigma-points. The Gaussian Filter (GF) uses kn + 1
sigma-points, where k > 1 is an integer parameter [24].
CKFs are developed for different orders and they use O(no)

sigma-points, where o is the order of the cubature rule. The
number of sigma-points in QKFs increases exponentially, as
the number of sigma-points is αn, where α > 1 [25]. There are
also algorithms that allow an arbitrary number of points, for
example Smart Sampling Kalman Filter (S2KF) [41], which
uses at least n+ 1 sigma-points.

Algorithms that use (17)–(19) do not compute J explicitly.
In some optimizations J is required and can be computed
using statistical linearization [37]

J = Pg(z)zP
−1
zz . (20)

For nonlinear systems, this cannot be substituted into (15) to
obtain Pg(z)g(z). Because the computation of (20) requires
solving a set of linear equations it should be avoided when
the dimension of z is large.

The computational requirements of the algorithms can be
reduced in several ways. One way is to compute the expected
values numerically only for state variables that are transformed
by a nonlinear function and compute the expectations for
linear parts analytically [10]. The improving of implemen-
tation efficiency using the linear KF update for the linear
state variables is more familiar in particle filtering. Specifically
Rao-Blackwellized Particle Filter (RBPF) solves the estimates
of conditionally linear variables using a KF and rest of the
variables using particles [14]. The dimension of the output
of the nonlinear part can also be reduced to reduce the
computational burden. In (18) the m×m covariance matrix is
updated for every sigma point. Thus, halving the dimension m
of g(·) reduces the operations applied to the covariance matrix
by a factor of four. Such update optimizations are considered
in Section IV.

It is also possible to compute the Kalman gain (7) faster
by exploiting the structure of the innovation covariance (6) as
shown in Section V.

When the state can be divided into decoupled blocks, the
blocks can be updated independently and the global estimate
can be computed only when needed. The updates of the
blocks can be made at different rates. These optimizations are
presented in Section VI.

IV. OPTIMIZATIONS BASED ON THE LINEARITY IN
NONLINEAR FUNCTIONS

A. Partially Linear Functions

In [7], algorithms for treating different setups of UKF were
presented. The algorithms considered different implementa-
tions when the state transition model or measurement model
has one of the following three forms

g(x, ε) = Gx+ ε (21)
g(x, ε) = g1(x) + ε (22)
g(x, ε) = g2(x, ε), (23)

where noise ε is assumed independent of the state. The
algorithms improve in computation efficiency when either or
both of the state and measurement models belong to the first
or second group. If both are in the first group the updates can

4

be computed exactly using the KF. If the function belongs to
the second group then (10)–(12) become

µg(z) = E [g(x)] + µε (24)

Pg(z)g(z) = E
[
(g(x)− µg(x))(g(x)− µg(x))T

]
+ Pεε (25)

Pxg(z) = E
[
(x− µx)

(
g(x)− µg(x)

)T]
(26)

and the approximation can be computed for the dimension of
the state instead of the dimension of the augmented state. This
optimization is widely used among different filters and is often
considered to be the standard model.

In [30] the function is split into a nonlinear g1(·) part that
depends only on a part of the state zn and linear parts

h(z) =

[
g1(zn)
H1z

]
. (27)

The UKF is used for computing the expected values of the
nonlinear part and the correlation between nonlinear and linear
parts.

We generalize the above models to functions of form:

g(z) = Agn (Tz) +Hz, (28)

where T has full row rank. To reduce the required resources in
computation T is chosen to have the minimal number of rows
and g(·) to have the minimal number of elements. Expectations
(10)–(12) are computed for Tz, which should have a smaller
dimension than z.

For computing the update, an algorithm that approximates
expectations (10)–(12) is required. These are usually computed
in the update stage of a KFE. The cross correlation matrix
Pzg(z) (19) is not needed in the normal state propagation, but
the algorithm from the update stage can be used for this.

The transformed augmented state is denoted

z̃ = Tz ∼ N(µz̃ = Tµz, Pz̃z̃ = TPzzT
T). (29)

When expectations µgn(z̃) (10), Pgn(z̃)gn(z̃) (11), and Pz̃gn(z̃)
(12) are known, the expectations for (28) are

µg(z) = Aµgn(z̃) +Hµz (30)

Pg(z)g(z) =
[
A H

] [Pgn(z̃)gn(z̃) PTzgn(z̃)
Pzgn(z̃) Pzz

] [
AT

HT

]
(31)

Pzg(z) =
[
Pzgn(z̃) Pzz

] [AT
HT

]
, (32)

where

Pzgn(z̃) = PzzT
T
(
TPzzT

T
)−1

Pz̃gn(z̃). (33)

This is based on the fact that the cross term Pz̃gn(z̃) describes
the linear dependence of function gn(z̃) and z̃ as in (20):

Pz̃gn(z̃) = Pz̃z̃J
T = TPzzT

TJT . (34)

and the term Pzgn(z̃) is

Pzgn(z̃) = PzzT
TJT . (35)

Solving J from (34) and substituting it into (35) we get (33).
In the update, the matrix with cross terms is required for

state variables only. This can be extracted by

Pxh(z) =
[
I 0

]
Pzh(z) (36)

Algorithm 1: State transition using a partially linear
measurement

Input: xt−1 ∼ N(µxt−1
, Pxt−1xt−1

) // State
estimate from previous time step

εq ∼ N(µεq , Pεqεq), // State transition
noise

Pxt−1εq // cross covariance between
state and state transition noise

f(x, εq) = f(z) = Ag (Tz) +Hz, // State
transition function of given form

Output: x ∼ N(µx− , Px−x−) // Propagated
state

µz =

[
µxt−1

µεq

]
// Augmented mean

Pzz =

[
Pxt−1xt−1

Pxt−1εq

PTxt−1εq Pεqεq

]
// Augmented

covariance
µz̃ = Tµz // Transformed mean
Pz̃z̃ = TPzzT

T // Transformed covariance
Compute µg(z̃),Pg(z̃)g(z̃), and Pz̃g(z̃) using a KFE
Pzg(z̃) = PzzT

T
(
TPzzT

T
)−1

Pz̃g(z̃)
µx− = Aµg(Tz) +Hµz // Predicted mean of

state

Px−x− =
[
A H

] [Pg(z̃)g(z̃) PTzg(z̃)
Pzg(z̃) Pzz

] [
AT

HT

]
// Predicted covariance

when the state variables appear first in the augmented state.
Naturally, in a computationally efficient code (36) is done with
indices, not matrix multiplication.

The algorithm for state transition is given in Algorithm 1
and an algorithm for state update is given in Algorithm 2. Use
of these algorithms is beneficial when the dimension of z̃ is
smaller than z and the matrix inverse in (33) is applied in a
small dimension. Algorithms 1 and 2 are given in a general
form and for applications they can be optimized further by
considering the structures of matrices. Examples of exploiting
the partially linear state are given in sections VII-A,VII-B,
and VII-D.

B. Conditionally Linear Measurements

In [29], a situation where a function can be divided into
nonlinear zn and conditionally linear zl parts

g(z) = gn(zn) +Gn(zn)zl (37)

is considered. In the original article, the distribution of this
nonlinear function is approximated using a modification of the
UKF. The number of sigma-points depends on the dimension
of zn instead of the dimension of the full state.

This algorithm is converted for use with the GF in [5]. Here
we present the algorithm in a general form that allows it to
be used with any KFE that uses weighted points to compute
the expectations, as in (24)–(26), although it cannot be used
with other types of filters e.g. DD or SOKF2.

5

Algorithm 2: Update using a partially linear measure-
ment
Input: x− ∼ N(µx− , Px−x−) // Prior state
εy ∼ N(µεy , Pεyεy), // Measurement noise
Px−εy // cross covariance between state

and measurement noise
h(x, εy) = h(z) = Ag (Tz) +Hz,

// Measurement function of given
form

Output: x ∼ N(µx, Pxx) // Posterior
estimate

µz =

[
µx−

µεy

]
// Mean of the augmented

state

Pzz =

[
Px−x− Px−εy

PTx−εy Pεyεy

]
// Covariance matrix

of the augmented state
µz̃ = Tµz // Transformed mean
Pz̃z̃ = TPzzT

T // Transformed covariance
Compute µg(z̃),Pg(z̃)g(z̃), and Pz̃g(z̃) using a KFE
Pzg(z̃) = PzzT

T
(
TPzzT

T
)−1

Pz̃g(z̃)
µh(z) = Aµg(Tz) +Hµz // Predicted mean of

measurement

Ph(z)h(z) =
[
A H

] [Pg(z̃)g(z̃) PTzg(z̃)
Pzg(z̃) Pzz

] [
AT

HT

]
// Innovation covariance

Pxh(z) =
[
Pzg(z̃) Pzz

]
[1:n,:]

[
AT

HT

]
// State-measurement cross
correlation

K = Pxh(z)P
−1
h(z)h(z) // Kalman Gain

µx = µ−x +K(y − µh(z)) // Posterior mean
Pxx = Px−x− −KPh(z)h(z)KT // Posterior

covariance

In the algorithm the sigma-points are computed for the non-
linear part only and then used for computing the conditional
probabilities of the conditionally linear part:

µzl|χi
= µzl + PzlznP

−1
znzn(χi − µzn) (38)

Pzlzl|χi
= Pzlzl − PzlznP−1znznPznzl . (39)

The matrices in (38–39) are independent of the sigma-point
χi. Thus, PzlznP

−1
znzn and Pzlzl|χi

need to be computed only
once. According to [29], the expectations for a function of
form (37) can be approximated as

Yi =gn(χi) +Gn(χi)µzl|χi
(40)

µg(z) =
∑

wiYi (41)

Pg(z)g(z) =
∑

wi

((
Yi − µg(z)

) (
Yi − µg(z)

)T
+Gn(χi)Pzlzl|χi

G(χi)
T
)

(42)

Pzg(z) =
∑

wi

(([
χi

µzl|χi

]
− µz

)(
Yi − µg(z)

)T
+

[
0

Pzlzl|znGn(χi)
T

])
. (43)

These formulas can be used to compute the expectations for
the nonlinear part g(z̃) in algorithms 1 and 2, if there are
conditionally linear state variables. This is done in the example
in sections VII-B and VII-C.

V. OPTIMIZATIONS RELATED TO THE INVERSE OF THE
INNOVATION COVARIANCE

A. Block Diagonal Measurement Covariance

The formula for the Kalman gain (7) contains the inverse
of the innovation covariance S. When the dimension of the
innovation covariance (i.e. the number of measurements) is
large the computation of the inverse or solving the set of linear
equations is a computationally expensive operation.

When measurements are linear and the measurement co-
variance is diagonal, the Kalman update can be applied one
measurement element at a time and the partially updated state
used as a prior for the next measurement [42]. This kind of
update can be generalized also to block diagonal measurement
covariances and the update can be done by applying one block
at a time. This reduces the computation time when the state
dimension is small, the measurement dimension is large, and
the measurements are independent.

When some measurements are independent and these dif-
ferent measurements contain different state terms, updating
the state using only a part of measurements at once can
be effectively combined with the algorithms presented in
Section IV. The block update does not change the estimate
when the measurement model is linear, but when the model is
nonlinear the linearization is redone in the partially updated
state. This may alter the output of the algorithm. In [34], [35]
application of measurements one element at a time is used to
improve the estimation accuracy by applying the most linear
measurements first. The algorithm for updating by blocks is
given in Algorithm 3.

B. Applying the Matrix Inversion Lemma to Innovation Co-
variance

When the measurements are not independent the block up-
date formula cannot be used. In some situations the innovation

Algorithm 3: Block Update KF

Input: x0 ∼ N(µx,0, Pxx,0) // Prior state
εyi ∼ N(µεyi , Pε

y
i ε

y
i
), 1 ≤ i ≤ n // Measurement

noises
hi(x, ε

y
i), 1 ≤ i ≤ n // Measurement

functions
Output: xn ∼ N(µx,n, Pxx,n) // Posterior

estimate
for i=1 to n do

y−i = µhi(xi−1,ε
y
i)

Si = Phi(z
−
t,i)h(xi−1,ε

y
i)

Ki = Pxhi(z
−
t,i)
S−1i

µx,i = µx,i−1 +K(yi − y−i)
Pxx,i = Pxx,i−1 −KiSiK

T
i

end

6

covariance can be written in the form

S = Ps + UPvU
T , (44)

where Ps is easy to invert, Pv has a small dimension and U
is a transformation matrix.

Using the matrix inversion lemma [42, p. 62] the inverse of
(44) is

S−1 = P−1s − P−1s U
(
P−1v + UP−1s UT

)−1
UTP−1s . (45)

This formula is worth using if the inverse of Ps is easy to
compute or can be computed offline and the dimension of Pv
is smaller than the dimension of Ps. An example of its use is
given in Section VII-D.

VI. OPTIMIZATION BASED ON DIVIDING THE STATE INTO
INDIVIDUAL ESTIMATION PROCESSES

In this section, we study optimizations that can be applied
when the state can be divided into separate subprocesses.
The situation where only part of state variables occur in
the measurements and the part of the state that is not in
measurements does not change in time has been considered in
[12], [20]. In that situation the estimation process can be done
at each time step only for the part of the state that has been
observed and then the whole state is updated only occasionally.

Such algorithms are developed further in [19]. The algo-
rithm given in [19] assumes that the state can be divided into
substates that can be updated individually. The division can be
done when the measurement and state transition models in a
time interval from t0 to t1 are decoupled between the substates.
State blocks x1, x2, . . . are considered to be decoupled if the
state transition and measurement models can be expressed as

ft(x, ε) =

f1,t(x1,t−1, ε
x
1,t)

f2,t(x2,t−1, ε
x
2,t)

...

 (46)

ht(x, ε) =

h1,t(x1,t, ε
y
1,t)

h2,t(x2,t, ε
y
2,t)

...

 , (47)

where noise terms εx and εy are independent. The purpose of
this optimization is to allow to track state variables that are
decoupled from time index t0 to time index t1. Note that there
is no requirement for blocks x1, x2, . . . to be independent at
t0. If the blocks were independent at t0 and models could be
expressed using (46) and (47) in all time instances, then the
system could be solved using a set of independent KFEs.

A similar idea for splitting the state into multiple blocks is
presented in [8], [45] under the name of multiple quadrature
Kalman filtering. In multiple quadrature Kalman filtering,
there is no strict requirement for blocks to be decoupled, which
makes the algorithm applicable to a larger set of problems, but
leads to additional approximations, so we follow [19].

To update block xa from time t0 to t1 a new Gaussian
variable x̄, which is partitioned into two parts x and x̂, is
introduced:

x̄a,t0 =

[
xa,t0
x̂a,t0

]
∼ N

([
µxa,t0

µx̂a,t0

]
,

[
Pxa,t0

xa,t0
Pxa,t0

x̂a,t0

Px̂a,t0
xa,t0

Px̂a,t0
x̂a,t0

])

= N

([
µxa,t0
µxa,t0

]
,

[
Pxa,t0

xa,t0
Pxa,t0

xa,t0

Pxa,t0xa,t0
Pxa,t0xa,t0

])
.

(48)

In the estimation of this, initially degenerate, variable from
time t0 to t1 xa is updated and propagated normally and x̂a
changes only through its dependence on part xa.

In the prediction, state elements belonging to xa are trans-
formed and x̂a remains static:[

xa,t
x̂a,t

]
=

[
fa,t(xa,t−1, ε

x
a,t)

x̂a,t−1

]
. (49)

The measurement function is applied only to the first elements

ha,t

([
xa,t
x̂a,t

]
, εya,t

)
= h

(
xa,t, ε

y
a,t

)
. (50)

These updates can be done with any suitable KF or other
estimation method. The division of the state into blocks allows
also updating blocks at different rates.

The number of elements in the covariance matrix of each
block is (2nblock)2, thus if a 100-dimensional state is divided
into 100 decoupled blocks, the updates of blocks change 400
values in covariance matrices, while the update of the full
state would change 10000 values. The estimates for each block
contain only information about the measurements and state
transition of that block, and not information that comes from
other blocks through the dependencies of the blocks at time t0.

At time t1 the information of the different blocks is merged
in a global update that is done in two phases: First a virtual
update is constructed from all blocks and applied to the full
state estimate at time index t0. Then a virtual state prediction
is applied to the virtually updated full state. This order is the
opposite of the usual Kalman filter update where prediction is
usually done first and the update is done after that. The virtual
update fuses the individual blocks so that the correlations that
existed between the blocks at time t0 are taken into account.
To denote state parameters that have been updated with virtual
update we use superscript v; parameters for which both the
virtual update and prediction has been applied are denoted
with superscript +.

A. Virtual update

The virtual update updates the state with a Kalman update
that uses virtual observations yv , measurement matrix Jv , and
measurement covariance Rv [19]. The parameters for a virtual
update are

yvt1 =

yv1,t1
yv2,t1
yv3,t1

...

 (51)

Jvt1 = I (52)

Rvt1 =

Rv1,t1 0 . . .

0 Rv2,t1 0
. . .

... 0 Rv3,t1
. . .

.

 , (53)

7

where components have the form

yva,t1 =µxa,t0

+ Pxaxa,t0

(
Pxaxa,t0 − Px̂ax̂a,t1

)−1 (
µ̂a,t1 − µxa,t0

)
(54)

Rva,t1 = Pxaxa,t0

(
Pxaxa,t0 − Px̂ax̂a,t1

)−1
Pxaxa,t0

− Pxaxa,t0 . (55)

These both require the inversion of
(
Pxaxa,t0 − Px̂ax̂a,t1

)
which may be singular. One example of it being singular is
the situation of not having any measurements considering the
current block. In [19], the singular situation is handled by
using singular value decomposition.

In the following, we give a new formulation that does not
require the singular value decomposition and is equivalent to
the update presented in [19]. The formulation is derived in the
Appendix. In the new formulation, the ”posterior” parameters
after the virtual update are

µvx,t1 =µx,t0 +
(

(Px̂x̂,t1)
−1 −

(
PDxx,t0

)−1
+ (Pxx,t0)

−1
)−1

·
(

(Px̂x̂,t1)
−1
µ̂x,t1 − (Pxx,t0)

−1
µx,t0

)
(56)

P vxx,t1 =
(

(Px̂x̂,t1)
−1 −

(
PDxx,t0

)−1
+ (Pxx,t0)

−1
)−1

, (57)

where Px̂x̂,t1 and PDx̂x̂,t0 are defined as

Px̂x̂,t1 =

Px̂1x̂1,t1 0 . . .

0 Px̂2x̂2,t1 0
. . .

... 0 Px̂3x̂3,t1

. . .
.

 (58)

PDxx,t0 =

Px1x1,t0 0 . . .

0 Px2x2,t0 0
. . .

... 0 Px3x3,t0

. . .
.

 . (59)

Because these matrices are block diagonal, their inverses can
be computed blockwise.

This formulation does not require inversion of singular
matrices, provided that
• Prior Pxx,t0 has full rank
• Posterior Pxx,t1 has full rank

B. Virtual state propagation

After all blocks are updated as presented in the previous
subsection the state is propagated with a virtual state prop-
agation to obtain the global posterior. The state propagation
model is linear

x = F v(xv − µ̂) + µ+ εv, (60)

where εv has zero mean and covariance Qv . Thus the posterior
mean and covariance are

µ+
x,t1 = F vµv − F vµ̂+ µ (61)

P+
x,x,t1 = F vP vF vT +Qv (62)

The state propagation parameters have the following form

µ =
[
µTx1,t1 µTx2,t1 . . .

]T
(63)

µ̂ =
[
µ̂Tx1,t1 µ̂Tx2,t1 . . .

]T
(64)

F v =

F1 0 . . .

0 F2 0
. . .

... 0 F3
. . .

.

 (65)

Qv =

Q1 0 . . .

0 Q2 0
. . .

... 0 Q3
. . .

.

 , (66)

where the matrix blocks are

F va = Pxax̂a,t1P
−1
x̂ax̂a,t1

(67)

Qva = Pxaxa,t1 − Pxax̂a,t1P
−1
x̂ax̂a,t1

Px̂axa,t1 . (68)

The full algorithm for filtering a model whose state has
decoupled blocks is given in Algorithm 4.

C. Static blocks

In this section, we consider a common special case that
allows to optimize the formulas in the previous sections
further. This corresponds to the algorithm presented in [27].

Let xs be a block that does not change during the estimation
from time t0 to t1. For this block

µxs,t0 = µxs,t1 = µx̂s,t0 = µx̂s,t1 (69)

Pxsxs,t0
= Px̂sx̂s,t0

= Pxsxs,t1
= Px̂sx̂s,t1

= Px̂sxs,t1
(70)

and there is no need to compute their values before the final
update where the whole state is updated. We can see by
looking at (54) and (55) that the formulation presented in [19]
would require inversion of zero matrices.

In (57) the inverses can be computed blockwise. Because
block s of (Px̂x̂,t1)

−1 and
(
PDxx,t0

)−1
are identical their

inverses cancel each other and so do not need to be computed.
In the virtual state propagation F vs is an identity matrix and Qvs
is a zero matrix. An example of applying the block algorithm
is presented in Section VII-E.

VII. EXAMPLE APPLICATIONS

A. Fourier series

In this example, we show how the general form of Algo-
rithm 2 is simplifed for a specific application and compare the
computational complexity of the optimized version when we
are using UKF as the estimation algorithm. In this example an
n dimensional state that is inferred given a scalar measurement
of form

y = a0 +

k∑
j=1

(aj sin(jx) + bj cos(jx)) + εy, (71)

8

Algorithm 4: KF with decoupled blocks

Input: xt0 ∼ N(µx,0, Pxx,0) // Prior state
that can be divided into decoupled
blocks

ft,a(xa, ε
x
t,a) // State transition

functions for blocks for each time
step

ht,a(xa, ε
y
t,a) // Measurement functions for

blocks for each time step
// Note that each block may have

different number of state
transition and measurement
functions between t0 and t1

Output: x ∼ N(µ+
x,t1 , P

+
xx,t1) // Posterior

estimate
for a=1 to n do

µxa
=

[
µxa,t0
µxa,t0

]
// Initialize block mean

P xaxa =

[
Pxa,t0

xa,t0
Pxa,t0

xa,t0

Pxa,t0
xa,t0

Pxa,t0
xa,t0

]
// Initialize block covariance

end
for a = 1 to n do

for ta = t0 to t1 do
Update µxa

and P xaxa with the state
propagation and measurement models at time
ta using a suitable filter and (49)–(50).

end
end
// Update global state after each

block is updated to time t1
Compute virtual prediction mean µvx,t1 with (56) and

covariance P vxx,t1with (57).
Compute virtual prediction mean µ+

x,t1 with (61) and
covariance P+

xx,t1 with (62).

where εy ∼ N(0, R) is independent of the state. The aug-

mented state is
[
x
εy

]
. Matrices for Algorithm 2 are T =[

1 0 . . .
]

and H =
[
0 . . . 0 1

]
. Using these the

transformed mean is µz̃ = µx1 and the transformed covariance
is Pz̃z̃ = Px1x1 . Sigma-points are generated using one-
dimensional mean µx1

and covariance Px1x1
and the moments

are

µg(z̃) =
∑

wig(χi)

=
∑wia0 +

k∑
j=1

(aj sin(jχi) + bj cos(jχi))

Pg(z̃)g(z̃) =

∑
wi(g(χi)− µg(z̃))(g(χi)− µg(z̃))T

Pz̃g(z̃) =
∑

wi(χj − µz̃)(g(χi)− µg(z̃))T .
(72)

and equation (33) is

Pzg(z̃) = Pzz[:,1]P
−1
zz[1,1]Pz̃g(z̃) (73)

TABLE I
COMPUTATIONAL COMPLEXITY OF PARTS OF THE UPDATE OF THE STATE

WITH DIFFERENT OPTIMIZATIONS

Computation of Optimized version Basic UKF
Sigma points O(1) O(n3)

µg(z) O(k) O(nk)
Ph(z)h(z) O(k) O(nk)
Pzg(z) O(n+ k) O(n2 + nk)

K O(n) O(n)
µ O(n) O(n)
P O(n2) O(n2)

Because measurement error has zero mean we have

µh(z) = µg(z̃) (74)

and, as it is independent of the state, the last element of (73)
is 0. Thus, we can simplify (31) to

Ph(z)h(z) = Pg(z̃)g(z̃) +R (75)

and (36) to

Pxh(z) = Pzz[:,1]P
−1
zz[1,1]Pz̃g(z̃). (76)

Using the above equations we evaluate the complexity
improvements when they are applied with UKF that uses 2n+1
sigma-points. Table I shows the asymptotic complexities of
application of basic UKF and optimized version. The com-
plexities are given as functions of k to take into account the
complexity of the measurement function and of n, the number
of state variables. The highest complexities are underlined.

For the optimized version, the most complex parts of the
update have complexities O(n+ k) for computing the cross
correlation and O(n2) for updating the covariance matrix. The
most demanding parts for basic UKF are also computing the
cross correlation which has complexity O(n2 + nk) and the
computation of sigma points which has complexity O(n3) due
to computing the matrix square root of the covariance matrix.
This implies that the given optimization reduces computational
load in both situations where n or k dominates.

B. Pedestrian Dead Reckoning

In Pedestrian Dead Reckoning (PDR), a pedestrian’s posi-
tion is estimated based on steps and heading changes that are
measured with accelerometers and gyroscopes. In [32], a state
consists of two-dimensional position r, heading θ, step length
l, and possibly a floor index. The state transition is computed
with a particle filter. Here we show how the state model
without floor index and with normal noise can be optimized for
use with KFEs. We use in this example algorithms presented
in Sections IV-A and IV-B.

The nonlinear state transition model is

xt+1 =

r1,t+1

r2,t+1

θt+1

lt+1

=

r1,t + (lt + εxl) cos (θt + εxθ) + εxr,1
r2,t + (lt + εxl) sin (θt + εxθ) + εxr,2

θt + εxθ
lt + εxl

 ,
(77)

9

where εxθ ∼ N(∆t, σ
2
θ) is the noisy heading change, with

∆t measured from gyroscopes, l is the footstep length and
r is the position of the pedestrian. The augmented state is
z =

[
r1 r2 θ l εxr,1 εxr,2 εxθ εxl

]T
. The state transi-

tion model can be written in the form of (28):

z̃ =

[
θt + εxθ
lt + εxl

]
T =

[
02×2 I2×2 02×2 I2×2

]
g(z̃) =

[
z̃2 cos z̃1
z̃2 sin z̃1

]
A =

[
I2×2
02×2

]
H =

[
I4×4I4×4

]
.

(78)

In this formulation the reduced state z̃ is two-dimensional and
the nonlinear part of the state transition function is also two-
dimensional.

If this problem is to be solved with a KFE that uses sigma-
points, we can optimize the implementation further. This can
be done because z̃2 in (78) is conditionally linear, given z̃1.
The parts of function (37) are

zn = z̃1

zl = z̃2

gn(z̃1) =

[
0
0

]
Gn(z̃1) =

[
sin z̃1
cos z̃1

]
.

(79)

Using this the dimension of the nonlinear part of the state is
reduced to 1 and the sigma-points are generated for only one
dimension.

The reduction of the computational complexity using these
optimizations depend on the used KFE. Using QKF with
parameter α = 3 the number of sigma-points for computing
(17)-(19) is reduced from 6561 to 3. With UKF the reduction
is not as significant, the number of sigma-points is reduced
from 17 to 3.

Figure 1 shows mean estimates of the first position vari-
able r1 after one propagation step in a simulation. The
initial state has step length 1 and step direction 50 π

180
degrees. The initial covariance is strongly correlated being
diag

(
1, 1, 1, 0.01, .01, .01, π2

1802 , .00001
)

+ 1 . The estimates
are computed using S2KF with a varying number of sigma-
points. An implementation of the sigma-point generator and
S2KF can be found in [40]. S2KF is applied to the original
state (77) and to the above presented reduced states with 2
and 1 nonlinear variables. The propagation of the state with
the full state model cannot be computed with fewer than 9
sigma-points.

The state computed using the model that uses conditional
linearity in addition to the linearity has the smoothest con-
vergence to an estimate and the estimate with full state
estimate has the largest variation. This shows that the use
of optimizations can also improve the estimation accuracy as
the sigma-points will be better aligned along the dimensions
with nonlinearities. However, if one would use a KFE whose

Number of sigma points
0 5 10 15 20 25 30 35 40 45 50

M
e

a
n

 o
f

r 1

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

Dimension of the nonlinear state
8
2
1

Fig. 1. Estimated mean of r1 with different number of function evaluation
points using S2KF

number of sigma-points cannot be altered, such as having
2n+ 1 sigma-points in UKF, one may end up with better (or
sometimes worse) accuracy without optimizations just because
there are more sigma-points. We don’t compute the accuracy
of the estimates in the following examples as it is dependent
on the selected KFE and parameters. One can expect the
accuracy to be approximately the same when the optimizations
are applied.

C. Remaining useful life prediction of lithium-ion battery

In this example we apply the optimizations to prediction of
the useful lifetime of a lithium-ion battery. The original model
is proposed in [28].

The state consists of four estimated variables x =[
x1 x2 x3 x4

]T
and the state transition model is linear

xt+1 = xt+εx, where εx ∼ N(0, Q) and measurement model
is

yt = x3,te
tx1,t + x4,te

tx2,t + εy, (80)

where yt is the measured capacity of the lithium-ion battery
at cycle t, and εy has variance R.

Because the state transition model is completely linear it is
evident that the propagation should be done using the linear
KF, which becomes

µ−xt
= Iµxt−1

= µxt

P−xtxt
= IPxt−1xt−1I

T +Qt = Pxt−1xt−1 +Qt
(81)

This prediction requires 16 additions when Q is added to the
state covariance, or 4 if Q is diagonal. If the prediction were
computed with UKF and an augmented state, there would
be 11 sigma-points with 5 elements each, thus computation
of predicted covariance (18) requires 550 products and 275
summations. In addition, generation of sigma points involving
matrix square root computation and computation of the mean
(17) have to be performed. The absolute numbers of computa-
tions are small for modern computers either way, but reducing
the number of computations by a factor greater than 200 is a
significant reduction of operations.

The measurement model has one additive component, εy ,
and we can use (24)-(26) for it. Variables x3 and x4 are condi-
tionally linear and we can apply equations from Section IV-B.

10

In this case
µxl

= µ[3,4]

µxn
= µ[1,2]

Pxlxl
= P[3,4],[3,4]

Pxlxn
= P[3,4],[1,2]

Pxnxn
= P[1,2],[1,2]

gn(χi) = 0

Gn(χi) =
[
etµ1 etµ2

]
(82)

These can be used to compute µxl|χi
(38) and Pxlxl|χi

(39).
Merging (24)-(26) and (40)-(43) gives us

Yi =Gn(χi)µxl|χi

µg(z) =
∑

wiYi

Pg(z)g(z) =
∑

wi
(
(Yi − µg(z))(Yi − µg(z))T

+ Gn(χi)Pxlxl
Gn(χi)

T
)

+R

Pzg(z) =
∑

wi

(([
χi

µzl|χi

]
− µx

)
(Yi − µg(z))T

+

[
0

Pxlxl|χi
Gn(χi)

T

])
.

(83)

In this situation, the computation gains come mostly from the
reduction of the number of sigma-points as the dimension
is reduced from 5 to 2. When using UKF the number of
sigma-points is reduced from 11 to 5. However, the above
computations are more complex for each summand than if the
moments would have been computed using (17)-(19). So the
optimizations based on conditional linearity are not reducing
the computational complexity. However, when using QKF with
parameter α = 4, the number of sigma-points is reduced from
45 = 1024 to 42 = 16 and the optimizations are useful.

D. Source Tracking Using a Microphone Array Time Differ-
ence of Arrival (TDoA)

In tracking of a sound source using a microphone array, the
received acoustic signals of two microphones are compared so
that the TDoA of the acoustic signal is measured. In the ideal
situation the TDoA is

hi,j(r0) =
||ri − r0|| − ||rj − r0||

v
, (84)

where r0 is the location of the sound source, ri is the location
of the ith microphone and v is the speed of sound. When there
are m microphones in the array there are at most 1

2m(m− 1)
TDoA measurements available [33].

In practice, measurements contain noise. Here we consider
model with noises

hi,j(x) = ||ri − x|| − ||rj − x||+ εyi − ε
y
j + εyi,j , (85)

where εi is the noise corresponding to ith microphone and εi,j
is the error corresponding to the correlation of the measured
signals from the microphone pair. The speed of sound is
multiplied out from the equation.

When εi,j = 0 for all microphone pairs the measurement
noise covariance is not full rank and the measurement equa-
tions can be modeled with m− 1 measurements of the form

hi(x) = ||ri − x|| − ||rm − x||+ εyi − ε
y
m, (86)

which has a full rank noise covariance matrix. This kind
of assumption is done for example in [4]. In practice, this
assumption does not hold and the selection of microphone
pairs is a tradeoff, where pairs close to each other have smaller
correlation error εi,j , but worse geometry than pairs far away
from each other [38]. Here we consider the situation where
all possible microphone pairs are used and errors εi and εi,j
are modeled as Gaussians. The augmented state model is

z =
[
xT εy1,1 εy1,2 . . . εym,m εy1 . . . εym

]T
, (87)

where x contains 3 position and velocity variables.
Using (24)–(26) the nonlinear part of the estimation can

be done only for the state variables and sigma-points would
be required only for the 6 dimensional state instead of using
sigma-points also for 1

2m(m+ 1) noise terms. The measure-
ment model can be written in compact form using (28):

z̃ = x1:3

T =
[
I3×3 03×3

]
g(z̃) =

[
||r1 − z̃|| . . . ||rm − z̃||

]T

A =

1m−1×1 −Im−1×m−1
0m−2×1 1m−2×1 −Im−2×m−2
0m−3×2 1m−3×1 −Im−3×m−3

...
01×m−2 1 −1

H =

[
0m(m−1)

2 ×6 A Im(m−1)
2 ×m(m−1)

2

]
.

(88)
Using these the dimension of the nonlinear function is reduced
from 1

2m(m − 1) to m. This reduces the number of updated

elements for each sigma-point in (18) from
(
m(m−1)

2

)2
to

m2. A and H matrices are sparse and an application of sparse
linear algebra codes would further enhance the performance
of the algorithm.

The dimension of the innovation covariance S is(
m(m−1)

2

)2
×
(
m(m−1)

2

)2
. The computation of the inverse

of the innovation covariance for Kalman gain (7) can be
optimized using the inversion formula (45). The noise terms
are assumed independent so the noise covariance matrix R is
diagonal. We partition noises into two parts, and denote the
covariance matrices D1 and D2. D1 corresponds to micro-
phone specific terms εyi and D2 to microphone pair specific
terms εyi,j . Because z̃ contains only state variables and they
do not contribute to the linear part (APzg(z̃)THT = 0), the
innovation covariance can be written as

S = D2 +A(Pg(z̃)g(z̃) +D1)AT (89)

and its inverse is

S−1 =D−12 +D−12 AQ−1ATD−12 , (90)

where Q =
[
(Pg(z̃)g(z̃) +D1)−1 +AD−12 AT

]
. Because D−12

is diagonal its inverse is diagonal with the reciprocal of the
diagonal elements of D2 on its diagonal. Other inverses that
appear in this formula are applied to m×m matrices instead

of
(
m(m−1)

2

)2
×
(
m(m−1)

2

)2
matrices. If the used matrix

11

T=1

T=2 T=5

T=10

Prior mean

Posterior mean

True location

BS location

Measurement

Fig. 2. Posterior means computed with RUF with varying number of
iterations.

inversion algorithm has complexity of O(k3), the complexity
of the inversion operation is reduced from O(m12) to O(m3).

E. Optimization of Iterative KFEs

The optimizations based on the division of the state into
multiple sub-blocks in Section VI are most widely used in
the field of Simultaneous Localization and Mapping (SLAM)
[15], [19], [20]. In SLAM, the state contains a dynamic part
that represents the agent (robot) that is mapping static land-
marks in the environment and localizing itself. The landmark
coordinates are the static part of the state.

We propose that these optimizations can be applied also
to KFEs that do the update iteratively e.g. Recursive Update
Filter (RUF) [47] and its extension for sigma-point filters
[23] or posterior linearization filters [16], [36]. In RUF, the
state is updated by applying the update in parts that have
smaller impact than the original update. After each part of
the update the linearization is recomputed. These iterative
filters are developed assuming additive Gaussian noise. Instead
of making the updates for the full state the update could
be done iteratively only for the observed variables. Because
the iterative update is actually for a single observation, the
unobserved state variables are static during the partial updates.

In this example we consider a state model with 3D position,
velocity, and acceleration i.e. 9 state variables. Measurements
used are range measurements from 3 base stations. The
measurement model for the range from the ith base station
is

yi =
∥∥x[1:3] − ri∥∥+ εyi , (91)

where ri is the location of the ith base station. In our example,
the prior has a large variance and its mean is chosen so that
the linearization about the mean is not accurate. Figure 2
shows the example situation and the posterior means which
are computed with different number of iterations of RUF. The
estimate with one iteration (T = 1) is identical to the EKF
estimate and is not close to the true location. The estimate with
10 iterations is close to the true location. The computation
of 10 iterations with RUF involves the updates to the 9 × 9
state covariance matrices 10 times. Because the measurement
model (91) depends only on the three first state variables this
block can be updated 10 times using methods presented in

TABLE II
SUMMARY OF PRESENTED OPTIMIZATIONS

Section Exploited structure
Section IV-A Partially linear functions f(z) = Ag(Tz) +Hz
Section IV-B Conditionally linear functions

f(z) = gn(zn) +G(zn)zl
Section V-A Measurement covariance is block diagonal
Section V-B Innovation covariance of form

S = D2 +A(Pg(z̃)g(z̃) +D1)AT

Section VI State can be divided into multiple subprocesses

Section VI and the remaining variables can be left in a block
that does not need any update until the full covariance update.
The full covariance update is computed after all iterations are
applied. In this update scheme, the 3× 3 covariance matrix is
updated T times and the 9 × 9 matrix is updated only once
using (56)–(68). Thus, in each iteration the covariance update
is 9 times faster. Moreover, if the KFE computes sigma-points
using Cholesky decomposition, as UKF does, there is more
gain in speed. This is because the complexity of Cholesky
decomposition is O(n3).

VIII. CONCLUSIONS

In this tutorial, we presented different optimizations for
KFEs that exploit the structure of the state and measurement
models to reduce the computational load. Table II summarizes
the structures of models that are exploited in different opti-
mizations. These structures are present in various nonlinear
estimation problems.

Table III shows some properties of selected KFEs. Different
optimizations give different amounts of speed increase with
different KFEs. Optimizations presented in sections IV-A and
IV-B are most useful with KFEs that have a high number
of function evaluations as a function of state dimension.
The exploitation of conditionally linear part of functions in
Section IV-B requires that the expectations are approximated
with equations of form (17)–(19).

In addition to surveying existing code optimization methods
and using a general unified notation that allows them to be
used with various KFEs, we make the following contributions:

1) We point out the possibility to use a linear transfor-
mation to find the minimal nonlinear subspace (Sec-
tion IV-A).

2) We introduce an algorithm for systems with condition-
ally linear states (Section IV-B); it can be used to
compute the moments for the nonlinear part and solve
others using linearity (Section IV-A) as is done in the
example in Section VII-B.

3) We present a new formulation for estimation with a state
that can be divided into separate estimation processes
(Section VI). The new formulation avoids dealing with
inverses of singular matrices.

4) We present an example showing that in addition to gain-
ing increase in speed of computation the optimization
algorithms may also lead to better estimation accuracy
(Section VII-B).

5) We show how to use the matrix inversion lemma to
reduce the computational complexity in TDoA-based
positioning (Section VII-D).

12

TABLE III
SUMMARY OF PROPERTIES OF SELECTED KFES

Algorithm O
rd

er
of

m
ea

su
re

m
en

t
fu

nc
tio

n
ev

al
ua

tio
ns

α
=

al
go

ri
th

m
sp

ec
ifi

c
pa

ra
m

et
er

(α
>

0
)

j
=

nu
m

be
r

of
ite

ra
tio

ns

C
om

pu
ta

tio
n

of
J

A
=a

na
ly

tic
al

l
I=

us
in

g
(2

0)
N

=n
um

er
ic

al
ly

in
si

de
al

go
ri

th
m

E
xp

ec
ta

tio
ns

of
fo

rm
(1

7)
–(

19
)

It
er

at
iv

e
al

go
ri

th
m

EKF [26] 1 A
EKF2 [26] 1 A
UKF [46] n I X
CKF [2] nα I X

S2KF [41] n+ α I X
GF [24] αn I X

QKF [25] αn I X
DD [31] n N

SOKF2 [25] n2 N
RUF [47] j A X

6) We present an example showing that the optimization
that exploits a static state and partly unobserved vari-
ables can be applied with iterative KFEs (Section VII-E).

Optimizations in this tutorial were applied to KFEs that use
a mean vector and covariance matrix to represent the state.
However, there is another flavour of KFs, called square root
filters, that propagate a square root of the covariance matrix
instead of the full matrix for better numerical properties [1],
[6], [13], [44]. In [9], square root filtering is optimized for
the situation where some of the state variables are linear
and applying independent measurements sequentially as in
Section V-A is straightforward. However, most of the opti-
mizations presented in this tutorial have not been considered
for square-root form in literature and this remains an open
topic.

Another interesting topic is whether optimizations such as
the ones in this tutorial could be applied with EnKF. EnKF is
mainly used for problems whose state space dimension is so
large that it is infeasible to work with the covariance matrix.
In such a context, one can expect that the effort invested in
finding and implementing computation optimizations would be
especially worthwhile.

REFERENCES

[1] ARASARATNAM, I., AND HAYKIN, S. Square-root quadrature Kalman
filtering. IEEE Transactions on Signal Processing 56, 6 (June 2008),
2589–2593.

[2] ARASARATNAM, I., AND HAYKIN, S. Cubature Kalman filters. IEEE
Transactions on Automatic Control 54, 6 (June 2009), 1254–1269.

[3] ARNOLD, S. S., NUZZACI, R., AND GORDON-ROSS, A. Energy
budgeting for CubeSats with an integrated FPGA. In 2012 IEEE
Aerospace Conference (March 2012), pp. 1–14.

[4] BECHLER, D., SCHLOSSER, M. S., AND KROSCHEL, K. System for
robust 3d speaker tracking using microphone array measurements. In
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (Sendai, Japan, 2004), vol. 3, IEEE,
pp. 2117–2122.

[5] BEUTLER, F., HUBER, M. F., AND HANEBECK, U. D. Gaussian
filtering using state decomposition methods. In Proceedings of the 12th
International Conference on Information Fusion (FUSION) (Seattle, WA,
USA, July 2009), IEEE, pp. 579–586.

[6] BIERMAN, G. J. Factorization Methods for Discrete Sequential Estimation.
Academic Press, Inc., New York, 1977.

[7] BRIERS, M., MASKELL, S. R., AND WRIGHT, R. A Rao-Blackwellised
Unscented Kalman filter. In Proceedings of the 6th International
Conference of Information Fusion (FUSION) (Cairns, Australia, July
2003), vol. 1, IEEE, pp. 55–61.

[8] CLOSAS, P., FERNANDEZ-PRADES, C., AND VILA-VALLS, J. Multiple
quadrature kalman filtering. IEEE Transactions on Signal Processing
60, 12 (Dec 2012), 6125–6137.

[9] CLOSAS, P., AND FERNÁNDEZ-PRADES, C. The marginalized square-
root quadrature Kalman filter. In 2010 IEEE 11th International
Workshop on Signal Processing Advances in Wireless Communications
(SPAWC) (June 2010), pp. 1–5.

[10] CLOSAS, P., VILÀ-VALLS, J., AND FERNÁNDEZ-PRADES, C. Compu-
tational complexity reduction techniques for quadrature kalman filters.
In 2015 IEEE 6th International Workshop on Computational Advances
in Multi-Sensor Adaptive Processing (CAMSAP) (Dec 2015), pp. 485–
488.

[11] DA COSTA, S. C. L., ARAUJO, A. S., AND D. S. CARVALHO, A.
Battery state of charge estimation using extended Kalman filter. In
2016 International Symposium on Power Electronics, Electrical Drives,
Automation and Motion (SPEEDAM) (June 2016), pp. 1085–1092.

[12] DAVISON, A. J. Mobile Robot Navigation Using Active Vision. PhD
thesis, Department of Engineering Science, University of Oxford, 1998.

[13] DER MERWE, R. V., AND WAN, E. A. The square-root unscented
Kalman filter for state and parameter-estimation. In Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’01) (2001), vol. 6, pp. 3461–3464 vol.6.

[14] DOUCET, A., FREITAS, N. D., MURPHY, K. P., AND RUSSELL, S. J.
Rao-Blackwellised particle filtering for dynamic Bayesian networks.
In Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence (San Francisco, CA, USA, 2000), UAI ’00, Morgan Kauf-
mann Publishers Inc., pp. 176–183.

[15] ESTRADA, C., NEIRA, J., AND TARDOS, J. D. Hierarchical slam: Real-
time accurate mapping of large environments. IEEE Transactions on
Robotics 21, 4 (Aug 2005), 588–596.

[16] GARCÍA-FERNÁNDEZ, A. F., SVENSSON, L., MORELANDE, M. R.,
AND SÄRKKA, S. Posterior linearisation filter: principles and imple-
mentation using sigma points. IEEE Transactions on Signal Processing,
99 (2015), 1–1.

[17] GOLUB, G. H., AND VAN LOAN, C. F. Matrix computations, vol. 3.
JHU Press, 2012.

[18] GREWAL, M. S., AND ANDREWS, A. P. Applications of Kalman
filtering in aerospace 1960 to the present [historical perspectives]. IEEE
Control Systems Magazine 30, 3 (June 2010), 69–78.

[19] GUIVANT, J. E. The generalized compressed Kalman filter. Robotica
35, 8 (2017), 1639–1669.

[20] GUIVANT, J. E., AND NEBOT, E. M. Optimization of the simultaneous
localization and map-building algorithm for real-time implementation.
IEEE Transactions on Robotics and Automation 17, 3 (Jun 2001), 242–
257.

[21] HILTUNEN, P., SÄRKKÄ, S., NISSILÄ, I., LAJUNEN, A., AND
LAMPINEN, J. State space regularization in the nonstationary inverse
problem for diffuse optical tomography. Inverse Problems 27, 2 (2011),
025009.

[22] HO, Y.-C., AND LEE, R. A Bayesian approach to problems in stochastic
estimation and control. IEEE Transactions on Automatic Control 9, 4
(October 1964), 333 – 339.

[23] HUANG, Y., ZHANG, Y., LI, N., AND ZHAO, L. Design of sigma-point
Kalman filter with recursive updated measurement. Circuits, Systems,
and Signal Processing (2015), 1–16.

[24] HUBER, M. F., AND HANEBECK, U. D. Gaussian filter based on deter-
ministic sampling for high quality nonlinear estimation. In Proceedings
of the 17th {IFAC} World Congress (2008), vol. 41, pp. 13527 – 13532.

[25] ITO, K., AND XIONG, K. Gaussian filters for nonlinear filtering
problems. IEEE Transactions on Automatic Control 45, 5 (May 2000),
910–927.

[26] JAZWINSKI, A. H. Stochastic Processes and Filtering Theory. Academic
Press, New York, NY, USA, 1970.

[27] LEFEBVRE, T., BRUYNINCKX, H., AND SCHUTTER, J. D. Nonlinear
Kalman Filtering for Force-Controlled Robot Tasks, vol. 19 of Springer
Tracts in Advanced Robotics. Springer-Verlag, Berlin, Germany, 2005.

[28] MIAO, Q., XIE, L., CUI, H., LIANG, W., AND PECHT, M. Remaining
useful life prediction of lithium-ion battery with unscented particle filter
technique. Microelectronics Reliability 53, 6 (2013), 805 – 810.

13

[29] MORELANDE, M. R., AND MORAN, B. An unscented transformation
for conditionally linear models. In Proceedings of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP)
(Honolulu, HI, USA, April 2007), vol. 3, IEEE, pp. III–1417–III–1420.

[30] MORELANDE, M. R., AND RISTIC, B. Reduced sigma point filtering for
partially linear models. In Proceedings of the International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (Toulouse,
France, May 2006), vol. 3, IEEE, pp. III–III.

[31] NØRGAARD, M., POULSEN, N. K., AND RAVN, O. New developments
in state estimation for nonlinear systems. Automatica 36, 11 (Nov. 2000),
1627–1638.

[32] NURMINEN, H., RISTIMAKI, A., ALI-LÖYTTY, S., AND PICHÉ, R.
Particle filter and smoother for indoor localization. In Proceedings of the
International Conference on Indoor Positioning and Indoor Navigation
(IPIN) (Montbéliard, France, Oct 2013), IEEE, pp. 1–10.

[33] OUALIL, Y., FAUBEL, F., DOSS, M. M., AND KLAKOW, D. A
TDOA Gaussian mixture model for improving acoustic source tracking.
In Proceedings of the 20th European Signal Processing Conference
(EUSIPCO) (Bucharest, Romania, 2012), IEEE, pp. 1339–1343.

[34] RAITOHARJU, M., GARCÍA-FERNÁNDEZ, A. F., AND PICHÉ, R.
Kullback–Leibler divergence approach to partitioned update Kalman
filter. Signal Processing 130 (2017), 289 – 298.

[35] RAITOHARJU, M., PICHÉ, R., ALA-LUHTALA, J., AND ALI-LÖYTTY,
S. Partitioned update Kalman filter. Journal of Advances in Information
Fusion (June 2016), 3–14. In press.

[36] RAITOHARJU, M., SVENSSON, L., GARCIA-FERNANDEZ, A. F., AND
PICHE, R. Damped posterior linearization filter. IEEE Signal Processing

Letters (2018). In press.
[37] SÄRKKÄ, S. Bayesian filtering and smoothing, vol. 3. Cambridge

University Press, Cambridge, UK, 2013.
[38] SILVERMAN, H. F., PATTERSON, W. R., AND FLANAGAN, J. L. The

huge microphone array. IEEE Concurrency 6, 4 (1998), 36–46.
[39] SORENSON, H. W., AND ALSPACH, D. L. Recursive Bayesian estima-

tion using Gaussian sums. Automatica 7, 4 (1971), 465–479.
[40] STEINBRING, J. Nonlinear estimation toolbox, Accessed: Dec. 8. 2015.
[41] STEINBRING, J., AND HANEBECK, U. D. LRKF Revisited: The Smart

Sampling Kalman Filter (S2KF). Journal of Advances in Information
Fusion 9, 2 (Dec. 2014), 106 – 123.

[42] STENGEL, R. F. Stochastic optimal control. Wiley-Interscience, New
York, 1986.

[43] STRASSEN, V. Gaussian elimination is not optimal. Numerische
mathematik 13, 4 (1969), 354–356.

[44] THORNTON, C. L. Triangular Covariance Factorizations for Kalman
Filtering. PhD thesis, NASA, 1993. NASA Technical Memorandum
33-798.

[45] VILÀ-VALLS, J., CLOSAS, P., AND GARCÍA-FERNÁNDEZ, Á. F. Un-
certainty exchange through multiple quadrature kalman filtering. IEEE
Signal Processing Letters 23, 12 (Dec 2016), 1825–1829.

[46] WAN, E. A., AND VAN DER MERWE, R. The unscented Kalman filter
for nonlinear estimation. In Proceedings of the Adaptive Systems
for Signal Processing, Communications, and Control Symposium
(AS-SPCC) (Lake Louise, AB, Canada, 2000), IEEE, pp. 153–158.

[47] ZANETTI, R. Recursive update filtering for nonlinear estimation. IEEE
Transactions on Automatic Control 57, 6 (June 2012), 1481–1490.

14

APPENDIX

Derivation of the virtual update that does not require the inversion of a possibly singular matrix. First, we define matrices
Px̂x̂,t1 and PDx̂x̂,t0

Px̂x̂,t1 =

Px̂1x̂1,t1 0 . . .

0 Px̂2x̂2,t1 0
. . .

... 0 Px̂3x̂3,t1

. . .
.

 (92)

PDxx,t0 =

Px1x1,t0 0 . . .

0 Px2x2,t0 0
. . .

... 0 Px3x3,t0

. . .
.

 (93)

The virtual update covariance Rvt1 can be written using these and the matrix inversion lemma

Rvt1 = PDxx,t0
(
PDxx,t0 − Px̂x̂,t1

)−1
PDxx,t0 − P

D
xx,t0

=
(

(Px̂x̂,t1)
−1 −

(
PDxx,t0

)−1)−1 (94)

The predicted measurement is

yvt1 = µx,t0 + PDxx,t0
(
PDxx,t0 − Px̂x̂,t1

)−1
(µ̂t1 − µx,t0)

= µx,t0 + PDxx,t0

((
PDxx,t0

)−1 − (PDxx,t0)−1 ((PDxx,t0)−1 − (Px̂x̂,t1)
−1
)−1 (

PDxx,t0
)−1)

(µ̂t1 − µx,t0)

= µx,t0 +

(
I −

((
PDxx,t0

)−1 − (Px̂x̂,t1)
−1
)−1 (

PDxx,t0
)−1)

(µ̂t1 − µx,t0)

= µ̂t1 −
((
PDxx,t0

)−1 − (Px̂x̂,t1)
−1
)−1 (

PDxx,t0
)−1

(µ̂t1 − µx,t0)

(95)

The Kalman gain is

Kv
t1 = Pxx,t0

(
Pxx,t0 +

(
Rvt1
)−1)−1

= Pxx,t0

(
(Pxx,t0)

−1 − (Pxx,t0)
−1
((
Rvt1
)−1

+ (Pxx,t0)
−1
)−1

(Pxx,t0)
−1
)

= I −
((
Rvt1
)−1

+ (Pxx,t0)
−1
)−1

(Pxx,t0)
−1

=
((
Rvt1
)−1

+ (Pxx,t0)
−1
)−1 ((

Rvt1
)−1

+ (Pxx,t0)
−1
)
−
((
Rvt1
)−1

+ (Pxx,t0)
−1
)−1

(Pxx,t0)
−1

=
((
Rvt1
)−1

+ (Pxx,t0)
−1
)−1 (

Rvt1
)−1

=
(

(Px̂x̂,t1)
−1 −

(
PDxx,t0

)−1
+ (Pxx,t0)

−1
)−1 (

(Px̂x̂,t1)
−1 −

(
PDxx,t0

)−1)

(96)

The posterior mean is

µvx,t1 = µx,t0 +Kv
t1

(
yvt1 − µx,t0

)
= µx,t0 +

(
(Px̂x̂,t1)

−1 −
(
PDxx,t0

)−1
+ (Pxx,t0)

−1
)−1 (

(Px̂x̂,t1)
−1 −

(
PDxx,t0

)−1)
×
(
µ̂x,t1 −

((
PDxx,t0

)−1 − (Px̂x̂,t1)
−1
)−1 (

PDxx,t0
)−1

(µ̂x,t1 − µx,t0)

)
= µx,t0 +

(
(Px̂x̂,t1)

−1 −
(
PDxx,t0

)−1
+ (Pxx,t0)

−1
)−1

×
((

(Px̂x̂,t1)
−1 −

(
PDxx,t0

)−1)
µ̂x,t1 +

(
PDxx,t0

)−1
(µ̂x,t1 − µx,t0)

)
= µx,t0 +

(
(Px̂x̂,t1)

−1 −
(
PDxx,t0

)−1
+ (Pxx,t0)

−1
)−1 (

(Px̂x̂,t1)
−1
µ̂x,t1 − (Pxx,t0)

−1
µx,t0

)
(97)

15

The posterior covariance is

P vxx,t1 = Pxx,t0 −Kv
t1

(
Pxx,t0 +

(
Rvt1
)−1)

Kv
t1
T

= Pxx,t0 − Pxx,t0
(

(Px̂x̂,t1)
−1 −

(
PDxx,t0

)−1)(
(Px̂x̂,t1)

−1 −
(
PDxx,t0

)−1
+ (Pxx,t0)

−1
)−1

= Pxx,t0

(
(Px̂x̂,t1)

−1 −
(
PDxx,t0

)−1
+ (Pxx,t0)

−1
)(

(Px̂x̂,t1)
−1 −

(
PDxx,t0

)−1
+ (Pxx,t0)

−1
)−1

− Pxx,t0
(

(Px̂x̂,t1)
−1 −

(
PDxx,t0

)−1)(
(Px̂x̂,t1)

−1 −
(
PDxx,t0

)−1
+ (Pxx,t0)

−1
)−1

=
(

(Px̂x̂,t1)
−1 −

(
PDxx,t0

)−1
+ (Pxx,t0)

−1
)−1

.

(98)

The posterior mean and covariance contain the inverses (Px̂x̂,t1)
−1,

(
PDxx,t0

)−1
, (Pxx,t0)

−1, and(
(Px̂x̂,t1)

−1 −
(
PDxx,t0

)−1
+ (Pxx,t0)

−1
)−1

. If measurements have non-degenerate noise, the posterior (Px̂x̂,t1)
−1 is

positive definite. Matrices
(
PDxx,t0

)−1
and (Pxx,t0)

−1 depend only on the prior which is assumed positive definite. The
posterior has smaller or equal covariance than the prior, thus (Px̂x̂,t1)

−1 −
(
PDxx,t0

)−1
is positive semidefinite and the sum

of this and the positive definite matrix (Pxx,t0)
−1 is positive definite. Thus, assuming that the prior covariance is positive

definite and that the posterior is positive definite, the matrix inverses in (98) are applied only to positive definite matrices.

Matti Raitoharju received M.Sc. and Ph.D. degrees in Mathematics
in Tampere University of Technology, Finland, in 2009 and 2014
respectively. He works as a signal processing specialist at an aerospace
and defence company Patria and as a postdoctoral researcher at
Aalto University. He is a visiting scholar at Tampere University. His
scientific interests include mathematical modeling and development
and application of Kalman type filters.

Robert Piché received the Ph.D. degree in civil engineering in 1986
from the University of Waterloo, Canada. Since 2004 he holds a
professorship in mathematics at Tampere University of Technology
(now Tampere University). , Finland. His scientific interests include
mathematical and statistical modelling, systems theory, and applica-
tions in positioning, computational finance, and mechanics.

	Introduction
	Notations
	Background
	Optimizations Based on the Linearity in Nonlinear functions
	Partially Linear Functions
	Conditionally Linear Measurements

	Optimizations Related to the Inverse of the Innovation Covariance
	Block Diagonal Measurement Covariance
	Applying the Matrix Inversion Lemma to Innovation Covariance

	Optimization Based on Dividing the State into Individual Estimation Processes
	Virtual update
	Virtual state propagation
	Static blocks

	Example Applications
	sec1Fourier series
	Pedestrian Dead Reckoning
	sec2Remaining useful life prediction of lithium-ion battery
	Source Tracking Using a Microphone Array TDoA
	Optimization of Iterative KFEs

	Conclusions
	References
	Appendix

