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ABSTRACT: Dissolution of a platinum catalyst is a major degradation
mechanism of fuel cells, but the exact reaction mechanism has remained
unclear. Here, electrochemical ambient pressure X-ray photoelectron spectros-
copy (EC-APXPS) was utilized to provide direct information on chemical
species on a single-crystal Pt(111) electrode under extremely low pH
conditions. Measurements were conducted using a novel condensed electrolyte
film electrochemical cell applying work function measurement as a loss-free
probe for electrochemical potential. We show that platinum can dissolve
chemically as Pt** ion during potential cycling and redeposit as Pt** at the onset
potential for cathodic reactions. The dissolution of Pt does not require
electrochemical oxidation via oxide place exchange. In contrast, the adsorption
of oxygenated species (OH* or O*) at the onset potential for anodic reactions
is a sufficient prerequisite to the dissolution. These results provide new insight
into the degradation mechanism of Pt under extremely low pH conditions, predicted by the Pourbaix diagram, having practical
applications to the durability of Pt-based catalysts in electrochemical energy conversion devices.
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B INTRODUCTION

Platinum-based catalysts are the most active electrocatalysts for
electrochemical energy conversion devices such as electrolyzers
and fuel cells." Despite being one of the most resistive metals
to corrosion, degradation of Pt catalyst has been identified as
one of the key issues limiting the long-term durability of
proton exchange membrane fuel cells (PEMFs). Out of the
three degradation modes of a PEMF stack (load cycling, idling,
and start/ stop cycles), degradation during start/stop cycles is
the largest > Likewise, Pt dissolution is the strongest during
potential cycling, Wthh occurs during the start-up and
shutdown of a fuel cell.* The Pourbaix diagram® predicts Pt
corrosion in a narrow potential range close to 1.0 V only for

gradients” that might result in a decrease in the local pH value,
possibly even below 0.

Pt dissolution is a transient process, and the dissolution rate
during cathodic polarization is more significant than during
anodic polarization.” The common understanding is that
oxygenated Pt species that form at high anodic potentials
contribute to the dissolution mechanism. However, in the lack
of a direct chemical probe, the exact type and role of these
species have remained controversial and several dissolution
mechanisms have been proposed, as summarized recently by
Myers et al. in ref 9. One of the disagreements is the role of Pt
oxidation on dissolution. The initial steps of electrochemical Pt
oxidation include adsorption of OH or 0.'”"" Then, the

pH < 0, which is, however, out51de the ideal working
environment of a PEMF cathode.® Therefore, the inves-
tigations of Pt corrosion under nonideal conditions are likely to
provide new insights to the Pt dissolution mechanism and
following Pt redeposition at PEMF cathodes. For example, the
results obtained for model catalytic systems under potential
cycling conditions in dilute acids, as summarized below, have
contributed significantly to our current understanding of Pt
dissolution mechanism. In contrast, extremely low pH
conditions have been rarely addressed, albeit any diffusion
problem within the porous cathode induces concentration
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oxidation onsets via place-exchange reaction between the
adsorbed oxygenated species (OH* or O*) and surface Pt°
resulting in the formation of a two-dimensional PtO
(platinum(II) oxide) or Pt(OH), (platinum(II) hydroxide)
layer with subsurface oxygen atoms. With increasing anodic
potential, oxidation proceeds to three-dimensional film growth
and eventually to the formation of PtO, (platinum(IV) oxide).
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When potential is then decreased, the Pt oxides are
electrochemically reduced.

Since XPS analysis became feasible at high enough pressure
for H,O condensation, electrochemical devices allowing XPS
analysis of electrodes under aqueous electrochemical con-
ditions have been developed.'””" The ongoing development
work is aiming at the analysis of reaction intermediate species
on well-defined model catalytic systems during an electro-
catalytic reaction, i.e, operando. Such information would
provide critically needed input to the development of superior
catalyst materials for (photo)electrochemical energy con-
version devices.'® However, the desire for high surface
sensitivity sets challenges to the electrochemical cell design.
Performance of XPS in the analysis of electrochemical devices
has been demonstrated on a device based on a proton
exchange membrane'” and on a conventional electrochemical
cell using the “dip & pull” approach.'* The conductive
membrane provides low ohmic resistance between the
electrodes but the approach is only suitable to the analysis of
nanoparticles. The performance of the membrane cell can be
improved by an additional graphene capping layer that
confines a liquid electrolyte thin film between the nano-
particles and the vacuum of the XPS chamber.'® On the other
hand, the dip & pull approach allows the use of planar
electrodes, but the charge is transferred through a thin
electrolyte film with high ohmic resistance that limits the
operando analysis to low current densities."”

In this work, we use synchrotron light-mediated soft X-ray
ambient pressure X-ray photoelectron spectroscopy
(APXPS)"” together with a novel condensed electrolyte film
electrochemical cell depicted in Figure 1 to probe chemical
species on a single-crystal Pt(111) electrode surface under
acidic electrochemical conditions (Supporting Information).
We show that potential cycling within low current region
induces dissolution of Pt that adsorbs at the onset of cathodic
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Figure 1. Condensed electrolyte film electrochemical cell applied in
the operando EC-APXPS analysis of Pt dissolution. (a) Schematic
representation of the experimental setup and (b) pictures of the
electrochemical cell: the Pt(111) working electrode (WE) is
electrically isolated from the Ir counter electrode (CE) by a SiO,
film and the electrolyte adlayer is formed via rehydration of H,SO,
deposited ex situ onto the electrode surface by adjusting the relative
humidity below 100%. (c) SEM and (d) EDS images of the CE/WE
interface measured after EC-APXPS experiments revealing degrada-
tion of Pt(111) surface during the experiments.

reactions as Pt**(—S). At the onset of anodic reactions, only
adsorbed oxygenated species (OH* or O*) on the surface are
detected, which indicates that the oxidation of Pt via place-
exchange reaction is not a prerequisite to the dissolution.

B EXPERIMENTAL METHODS

Condensed Electrolyte Film Electrochemical Cell. The
Pt(111) single crystal employed in the experiments as the
working electrode (WE) was manufactured by Surface
Preparation Laboratory B.V. (Netherlands). The (111)-
oriented top surface of a 10 mm X 6.6 mm X 1 mm crystal
was aligned to <0.5 degree, and both the top surface and one
of the 6.6 mm X 1 mm side surfaces were polished to <0.03
um roughness. The Ir counter electrode (CE) was prepared on
a piece of polycrystalline Ta (10 mm X $ mm X 1 mm) by the
evaporation of the Ti (10 nm) wetting layer followed by the
evaporation of Ir (300 nm) on the top surface and sputter
deposition of SiO, (500 nm) on one of the 10 mm X 1 mm
side surfaces. Prior to the thin film growth, the top and side
surfaces were polished to mirror finish.

The electrochemical cell was assembled on a polyether-
etherketone (PEEK) polymer framework that was designed to
couple the electrode pieces mechanically side by side. In the
assembled electrochemical cell, the SiO, layer serves as
electrical insulation between the WE and CE. Before the cell
assembly, the Pt(111) WE was flame-annealed at white heat
for 3 min using a butane torch, and while still orange-yellow,
the WE was transferred into a flask through which inert N,
(99.999%) cooling gas was flowing until the room temperature
was reached in 2 min.”’ Cooling of Pt(111) after flame-
annealing in either H, or N, has been shown to result in well-
ordered and flat surface.”

After the cell assembly, the H,SO, electrolyte layer was
prepared by depositing a droplet of 1 M H,SO, solution ex situ
onto the electrode surface. Then, the electrochemical cell was
introduced into the APXPS vacuum chamber where the surface
was rehydrated by exposing it to H,O vapor at room
temperature.”’ The thickness of the electrolyte layer was
controlled by adjusting the H,O pressure in the measurement
chamber below the condensation limit by backfilling the
chamber with Milli-Q H,O using a leak valve. The Milli-Q
H,0 was degassed by multiple freeze—pump—thaw cycles
before introduction into the measurement chamber. Even-
tually, the rehydration of vacuum-dehydrated H,SO, solution
created an electrolyte adlayer for the EC-APXPS measure-
ments with concentration corresponding to saturated 18.8 M
H,SO, solution.”” The concentration of the electrolyte adlayer
was approximated based on measured XPS signals of S 2p and
O 1s (Supporting Information). The pH of the condensed
H,S0, electrolyte film was assumed to be negative.”> During
the EC-APXPS measurements, the pH,0O was fixed at S Torr,
which was found to provide sufficient ionic conductivity
between the electrodes, as shown in Figure S1. Based on the
attenuation of the Pt 4f XPS signal, the thickness of the
electrolyte layer during EC-APXPS measurements presented in
Figure 3 was estimated to be 4—10 nm. After the experiments,
the Pt(111)-WEISiO,(0.5 pm)IIr-CE electrode assembly was
analyzed by scanning electron microscopy (SEM) and energy-
dispersive X-ray spectroscopy (EDS).

APXPS Measurements. XPS measurements were per-
formed using the APXPS system on beamline 13—2 at the
Stanford Synchrotron Radiation Lightsource.”* The electro-
chemical cell assembly was inserted into the gas cell of the
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APXPS system where the sample alignment and navigation on
the electrode surface were performed at 0.2 ym steps through
piezoelectric positioners (Attocube, Germany). During the
EC-APXPS measurements, the sample was positioned
approximately 50 ym away from the spectrometer entrance
cone with 50 pm diameter. To minimize the ohmic losses
within the thin electrolyte film,"” all EC-APXPS data were
collected within 100 gm distance from the WE—CE interface.
To mitigate possible X-ray beam damage to the surface, the X-
ray spot (50 X 10 um? the incidence angle of 4°) was moved
on the sample between the experiments. No signs of beam
damage were observed in the SEM analysis after the
experiments. Therefore, the inhomogeneous surface composi-
tions observed in the XPS and SEM analyses were not the signs
of beam damage but attributed to the preparation of the
electrolyte film.

During the electrochemical measurements, the current—
voltage characteristics were recorded in a two-electrode
configuration with a potentiostat (BioLogic, France). All
measurements were conducted at room temperature. It is
worth noting that the electrochemical potential of a thin
electrolyte film electrochemical cell is not necessarily
homogeneous over the electrode surface.”” Therefore, the
incorporation of a conventional reference electrode was
omitted and the changes in the local electrochemical potential
with applied bias potential were monitored through the
changes in the local work function.

A shift in the XPS position of gas and liquid-phase species
with applied potential corresponds to a change in the local
work function, i.e., solution loss-free electrochemical potential
at a position where XPS data is collected (cf. a reference
electrode with a Luggin capillary). Because of ohmic solution
losses, the peak shifts begin to deviate from 1:1 relationship
with applied potential when current increases. Consequently, a
conventional reference electrode outside the XPS position
would not provide accurate electrochemical potential at the
XPS position as we showed in ref 19, and the CV
characteristics outside the linear range do not present the
charge-transfer properties at the XPS position. Thus, clearly
distinct XPS peak of gas-phase H,O was utilized here to
monitor the electrochemical potential. For example, with +1.6
V applied potential, the solution loss-free potential at the XPS
position, i.e., the O 1s H,0(g) peak shifts from 0 V, was +1.15
V. Likewise, for the applied potential of —0.9 V, the solution
loss-free potential at the XPS position was —0.53 V. Because of
the inherent limitation of the thin electrolyte film to low
reaction current, the potential at the XPS position maintained
between the onset potentials for cathodic and anodic reactions
during the course of experiments.

The photoemission signal was recorded using a differentially
pumped customized VG Scienta SES 100 electron spectrom-
eter. The working electrode was grounded to the spectrometer,
and the XPS binding energy scale was referenced to the Fermi
level set to 0 eV. All of the spectra were recorded at 688 eV
photon energy. The information depths (3 X inelastic mean
free path) of Pt 4f and O 1s photoelectrons with corresponding
kinetic ener§ies were 7.1 and 2.9 nm in liquid H,O,
respectively.” The chemical states of elements were
determined from XPS spectra by least-squares fitting of
Gaussian—Lorentzian (GL) lineshapes to the photoelectron
peaks after subtracting a Shirley background. To account for
the asymmetry of Pt 4f peaks, the GL lineshape was modified

by the exponential blend. The analysis was carried out using
the CasaXPS$ software (version 2.3.18).%°

B RESULTS AND DISCUSSION

Due to the inherent limitation of thin electrolyte film
electrochemical cells to low reaction current,'’ the operando
EC-APXPS analysis is best suited to study phenomena that do
not require charge transfer such as adsorption/desorption and
dissolution. To mitigate the ohmic solution losses induced by
the ultrathin (4—10 nm) condensed electrolyte film, XPS data
were collected within 100 um distance from the WE/CE
interface. Figure 2 presents XPS peak shifts (Figure S3) as a
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Figure 2. XPS peak shifts vs applied potential overlaid with cyclic
voltammogram (CV). XPS data was collected on Pt(111)-WE close
to the WE/CE interface during potentiostatic measurement from
—0.9 to +1.6 V for Pt(111)-WEISiO,(0.5 um)lIr-CE electrode
assembly with H,SO, electrolyte adlayer. The CV was recorded
between the WE and CE. The IV characteristics are dominated by the
electrode areas closest to the WE/CE interface where the ohmic
solution losses are the lowest. In contrast, the solution loss-free
potentials at the XPS position for the applied potentials of —0.9 and
+1.6 V are depicted with green arrows. Pt 4f was not detected in the
experiment for potentials > +0.1 eV due to the build-up of
contamination during prolonged data acquisition (Supporting
Information).

function of applied potential together with a cyclic voltammo-
gram (CV). Because of ohmic solution losses, the XPS peak
shifts begin to deviate from 1:1 relationship with applied
potential when current increases.'”” No sharp adsorption/
desorption peaks of SO, or H were observed in the CV that are
well characterized for defect-free Pt(111) surface in dilute
H,SO,."" Instead, the broad anodic and cathodic waves
between —0.5 and +1.0 V are similar to the ones observed by
Kodera et al. in ref 27 on Pt in concentrated H,SO,. Kodera et
al. reported that H adsorption/desorption peaks completely
disappeared in concentrated H,SO, and assigned the broad
anodic and cathodic waves to Pt corrosion. Furthermore,
compared to dilute H,SO,, significantly higher Pt dissolution
rate is expected under concentrated H,SO,.” The anodic peak
at +1.3 V is assigned to Pt oxidation that precedes the oxygen
evolution for potentials > +1.6 V.** Hydrogen evolution was
observed for potentials < —1.5 V (Figure S1).

Figure 3 shows XP spectra of Pt 4f and O 1s regions during
an experimental run. First, Pt(111)-WE was flame-annealed ex
situ and the surface was confirmed to be free from Pt oxides as
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Figure 3. XP spectra of Pt 4f and O 1s regions excited with 688 eV
photons during an experimental run on Pt(111)-WEISiO,(0.5 ym)IIr-
CE electrode assembly. The spectra were first recorded (a) after ex
situ flame-annealing and (b) after ex situ deposition of H,SO,. Then,
the electrode assembly was rehydrated in situ and subjected to 5
potential scans between —0.9 and +1.95 V. (c—f) After the CVs XP
spectra were recorded at the applied potentials of —0.9 V and at +1.6
V (at the measured potentials of —0.53 and +1.15 V, respectively) for
two different locations close to the WE/CE interface. The Pt 4f
difference spectra in red depict the similar change induced by the
potential step for both locations.

evidenced by a single Pt 4f doublet with Pt 4f,, at 71.1 eV
corresponding to metallic Pt (Figure 3a). The O 1s peak at
532.5 eV was assigned to adventitious contamination during
the sample transfer.”” The Pt(111)-WE remained oxide free
also after the ex situ deposition of H,SO, on electrodes (Figure
3b). The vacuum-dehydrated H,SO, on the sample has similar
O 1s binding energy with the adventitious contamination, and,
therefore, only one component was fitted to O 1s.’" Then, the
vacuum-dehydrated H,SO, was rehydrated in situ, and the
electrode assembly was subjected 5 potential cycles between
—0.9 and +1.95 V at 100 mV/s (between —0.53 and +1.15 V at
the XPS position) that induced the degradation of Pt(111)
surface. Thus, this potential cycling treatment in concentrated
H,SO, between the onset of anodic and cathodic reactions can
be considered as an accelerated corrosion test. Because of the
build-up of adventitious C- and Si-based contamination during
prolonged data acquisition, the operando EC-APXPS measure-
ments were carefully planned and focused only on the Pt
species at two potentials. Based on the XPS peak shifts
response to applied potential during potentiostatic measure-
ment, all of the Si and most of the C species were able to be
assigned to dissolved impurities in the electrolyte film
(Supporting Information) that were, therefore, assumed to
have a little effect on the Pt dissolution mechanism.

25131

After the electrochemical cycling between —0.9 and +1.6 V,
O 1s and Pt 4f spectra were recorded at —0.9 V at a location
close to the WE/CE interface (Figure 3c) and immediately
after, Pt 4f and O ls, in this order, were recorded at +1.6 V at
the same location (Figure 3d). After the data acquisition at the
first location, the measurement was repeated at another
location also close to the WE/CE interface (Figure 3e,f).
The current—voltage characteristics during the CVs and in situ
XPS measurement are presented in Figure S4.

The O 1s spectra recorded under electrochemical conditions
(Figure 3c—f) consist of two clearly distinct peaks that both
shift with the applied potential. The narrow gas-phase H,O
peak at the high binding energy side shifts —1.7 eV (in binding
energy) when the applied potential is changed from —0.9 to
+1.6 V. Similar peak positions and shifts were observed for
both XPS locations, which indicate that the electrochemical
potentials at both XPS locations were similar. The broad O 1s
peak at the low binding energy side was dominated by the
liquid-phase species assignable to H,O and $O,>~.”° We note
that adsorbed oxygenated species (e.g, —OH, —O, and
—H,0)"* were hard to distinguish from the broad O 1s peak
due to the low information depth (ID = 2.9 nm). In particular,
the broad peak at +1.6 V extends to the binding energy range
of oxygenated Pt, which appears between $29.7 eV>*"' (Pt—
0%*), 530.1 eV (PtO,),”" and 530.5 eV (Pt—OH*).”® Thus,
more bulk sensitive Pt 4f signal (ID = 7.1 nm) provided here a
better probe for the adsorbed surface species without the
interference from different oxygenated species from liquid and
solid phases that have similar binding energies in O 1Is.

The fitting of Pt 4f spectra recorded under electrochemical
conditions (Figure 3c—f) required two more doublets in
addition to the metallic Pt. The Pt 4f difference spectra
depicted as red lines in Figure 3 show an increase in intensity
at 71.7 eV and concurrent decrease at 73.0 eV (and at
corresponding energies of Pt 4f;;,) when the potential is
changed from —0.9 to +1.6 V. The same change was observed
for both XPS locations, albeit with different intensity ratio with
respect to Pt’. These new peaks were assigned according to
their binding energies to adsorbed oxygen sgecies (OH* or
0O*) on Pt (O/Pt) and Pt**, respectively.”'

Besides the chemisorbed oxygen species reported in the
literature for Pt electrodes,®” the binding energy of O/Pt
component corresponds to the 1 ML surface oxide on Pt(111)
that was observed under oxygen ambient at elevated
temperatures before the 3D oxide growth.”’ Compared to
the lattice restructuring involved with the oxide place
exchange,34 the formation of 1 ML surface oxide does not
involve subsurface oxygen, and, therefore, it is not considered
here as the oxide place-exchange reaction. However, the 1 ML
surface-oxide formation involves lifting of Pt atoms, i.e., place
change, that can induce strong modification to the Pt—O
bonding at the surface compared to chemisorbed oxygen
species alone. In other words, Miller et al. showed that
restructuring of Pt(111) surface does not require oxide place
exchange.” Thus, it is suggested that Pt place change, an initial
stage of oxide place exchange, is a sufficient prerequisite to the
Pt dissolution. This result does not contradict with the
previous understanding that the degree of Pt surface
restructuring during potential cycling is directly proportional
to the dissolution rate” but reveals that oxide place exchange is
not necessary. The difference in the Pt 4f spectrum between
the two XPS locations is an indication of inhomogeneous
surface composition that is likely a result of nonuniform

DOI: 10.1021/acs.jpcc.9b05201
J. Phys. Chem. C 2019, 123, 25128-25134


http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.9b05201/suppl_file/jp9b05201_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.9b05201/suppl_file/jp9b05201_si_001.pdf
http://dx.doi.org/10.1021/acs.jpcc.9b05201

The Journal of Physical Chemistry C

dehydration of H,SO, solution during the preparation of the
electrolyte film. The inhomogeneous surface composition is
also evident from the SEM image measured after the
experiment (Figure 1c) that shows localized corrosion defects.

The adsorption of oxygenated species as the potential is
increased is generally accepted as the initial reaction step of
electrochemical oxidation. In contrast, the behavior of Pt*
seems at first contradictory as the electrochemical reduction
reaction is expected with decreasing potential. However,
similar to oxidation, reduction would require charge transfer,
which is strongly limited by the thin electrolyte film. Therefore,
we assign Pt** species at —0.9 V as redeposited Pt species that
were dissolved during the potential cycling and migrated on
the surface. The potential step from —0.9 to +1.6 V is
suggested to induce migration of Pt** species to electrochemi-
cally inactive areas outside the XPS spot. We note that the XPS
peak of dissolved Pt** species would have shifted —1.7 eV with
the potential step, which contradicts the observed peak
separation of 1.3 eV between the Pt** and O/Pt peaks. In
fact, the formation of Pt**—S sgecies was observed by Kodera
et al. in concentrated H,SO,.”” In PEMF, dissolved Pt has
been ?roposed to redeposit at electrochemically inactive
areas,”” which is supported by the EDS maps in Figure 1d
that show some Pt on the SiO, insulator between the WE and
CE. We emphasize that the electrochemical oxidation of Pt via
oxide place exchange induced by the anodic potential step
would appear as an increase in Pt** and further 3D oxide layer
growth as an increase in Pt*" (reported Pt 4f,/, values range
from 73.4 eV'® to 75.0 eV"?) with corresponding changes in O
1s either of which were not observed.

The presented results focus on the identification of surface
species related to the dissolution mechanism on a model Pt
electrode by operando EC-APXPS. It is noted that the
experimental conditions were drastically different from the
ideal operation environment of a PEMF and from typical test
conditions applied to study electrocatalyst materials in terms of
mass transfer and electrolyte concentration. Therefore,
comparison between the results obtained using the condensed
electrolyte film cell with severe mass transfer limitation and
results obtained using the conventional electrochemical cell
with low solution resistance should be made with caution.
However, the concentration of the condensed H,SO, electro-
Iyte film is extremely high corresponding to pH where
corrosion of Pt has been predicted by the Pourbaix diagram
(pH < 0).° Thus, the results provide insights to the Pt
corrosion mechanism at extremely low pH, where the
mechanism might differ from that in dilute H,SO,.

B CONCLUSIONS

In conclusion, our operando EC-APXPS results provide direct
information on chemical species involved in Pt dissolution
under negative pH conditions. Measurements were conducted
using a novel condensed electrolyte film electrochemical cell
applying work function measurement as a loss-free probe for
electrochemical potential. The results support chemical
dissolution during potential cycling without charge transfer
between the electrodes via Pt—(OH*), + 2H" — Pt** + 2H,0
(or Pt—O* + 2H'" — Pt** + H,0) and redeposition of Pt**
ions at low potentials.35 In other words, Pt dissolution does not
require electrochemical oxidation of Pt via oxide place
exchange that has been the generally accepted reaction
mechanism.'®*® These results suggest that Pt place change,
an initial stage of oxide place exchange, could follow the

adsorption of oxygenated species and be a sufficient
prerequisite to the Pt dissolution. This is deemed an important
improvement to previous models that, because of the
nonavailability of exacting surface spectroscopic methods,
could not detect chemical dissolution of either elemental or
oxidized Pt.” Therefore, these results provide new insight to
the degradation mechanism of Pt under extremely low pH
conditions, predicted by the Pourbaix diagram, which are far
from ideal working environment of any electrochemical energy
conversion devices such as PEMF but might exist under
condition where diffusion of reactants is severely limited.
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