
The Journal of Systems and Software 157 (2019) 110391

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Action-Oriented Programming Model: Collective Executions and

Interactions in the Fog

�

Niko Mäkitalo

a , ∗, Timo Aaltonen

b , Mikko Raatikainen

a , Aleksandr Ometov

c , d ,
Sergey Andreev

d , Yevgeni Koucheryavy

d , Tommi Mikkonen

a

a University of Helsinki, Department of Computer Science, FI-0 0 014, Helsinki, Finland
b Tampere University, Laboratory of Computing, FI-33014, Tampere, Finland
c National Research University Higher School of Economics, 20 Myasnitskaya st., 1010 0 0, Moscow, Russia
d Tampere University, Unit of Electrical Engineering, FI-33014, Tampere, Finland

a r t i c l e i n f o

Article history:

Received 18 May 2018

Revised 27 June 2019

Accepted 7 August 2019

Available online 7 August 2019

Keywords:

Fog Computing

Edge computing

Socio-technical systems

Programming model

Proximity-based computing

a b s t r a c t

Today’s dominant design for the Internet of Things (IoT) is a Cloud-based system, where devices trans-

fer their data to a back-end and in return receive instructions on how to act. This view is challenged

when delays caused by communication with the back-end become an obstacle for IoT applications with,

for example, stringent timing constraints. In contrast, Fog Computing approaches, where devices commu-

nicate and orchestrate their operations collectively and closer to the origin of data, lack adequate tools

for programming secure interactions between humans and their proximate devices at the network edge.

This paper fills the gap by applying Action-Oriented Programming (AcOP) model for this task. While orig-

inally the AcOP model was proposed for Cloud-based infrastructures, presently it is re-designed around

the notion of coalescence and disintegration , which enable the devices to collectively and autonomously

execute their operations in the Fog by serving humans in a peer-to-peer fashion. The Cloud’s role has

been minimized—it is being leveraged as a development and deployment platform.

© 2019 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1

e

2

l

t

a

b

p

v

a

u

m

(

a

e

n

j

p

1

e

s

o

f

o

e

t

a

h

0

. Introduction

The field of computing is amid a significant disruption. It is

stimated that around 50 billion devices will be connected by

020 Shi and Dustdar (2016) . In the coming years, advanced wire-

ess infrastructures will enable computation on any networked en-

ity. From the software development perspective, this means that

 single computing system no longer consists of a single computer

ut instead of multiple increasingly capable and connected com-

uting units. Continuous connectivity enables these dissimilar de-

ices to perform tasks for one another in the background, connect

nd share data with other devices, and even be controlled by other
ser’s devices.

� 5 years after perspective on the original Action-Oriented Programming

odel Aaltonen et al. (2013) .
∗ Corresponding author.

E-mail addresses: niko.makitalo@helsinki.fi (N. Mäkitalo), timo.aaltonane@tuni.fi

T. Aaltonen), mikko.raatikainen@helsinki.fi (M. Raatikainen),

leksandr.ometov@tuni.fi (A. Ometov), sergey.andreev@tuni.fi (S. Andreev),

vgeny.kucheryavy@tuni.fi (Y. Koucheryavy), tommi.mikkonen@helsinki.fi (T. Mikko-

en).

a

t

p

w

r

s

C

m

ttps://doi.org/10.1016/j.jss.2019.110391

164-1212/© 2019 The Authors. Published by Elsevier Inc. This is an open access article u
From the end-user perspective, computing-enabled ob-

ects in the immediate surroundings become an inseparable

art of human’s lives as envisioned by Weiser in the early

990s Weiser (1991) . These devices aid with everyday matters:

ntertainment, socializing with friends, as well as capturing and

haring personal events. Despite the desire that owning and

perating multiple devices should be casual, fluid, and hassle-free

or the user (Miranda et al., 2015), a transition to multi-device

wnership is however riddled with many problems (Ometov

t al., 2017; Dearman and Pierce, 2008). Numerous devices and

heir connectivity options call for a new breed of multi-device

pplications that enable coordinated interaction between nodes in

 pervasive manner.

There are ways to facilitate such coordinated behavior and in-

eraction between said devices. Over the past decade, such ap-

roaches have chiefly been based on (Mobile) Cloud Computing,

hich in its simplest form refers to accessing Cloud Computing

esources from a mobile device (Klein et al., 2010), but often as-

umes the ability to share services among devices in the same

loud (Raatikainen et al., 2012). For instance, a photo taken by a

obile phone is typically uploaded to the Cloud nowadays, thus
nder the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.jss.2019.110391
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.110391&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:niko.makitalo@helsinki.fi
mailto:timo.aaltonane@tuni.fi
mailto:mikko.raatikainen@helsinki.fi
mailto:aleksandr.ometov@tuni.fi
mailto:sergey.andreev@tuni.fi
mailto:evgeny.kucheryavy@tuni.fi
mailto:tommi.mikkonen@helsinki.fi
https://doi.org/10.1016/j.jss.2019.110391
http://creativecommons.org/licenses/by/4.0/

2 N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391

t

a

o

S

a

o

c

n

C

t

C

t

s

t

t

a

c

t

w

h

S

g

m

o

n

t

s

t

t

C

t

F

2

c

t

r

a

e

a

d

w

s

o

p

i

s

f

becoming accessible and editable in the user’s other devices, as

well as shareable with friends.

Thus far, Cloud Computing has offered virtually unlimited stor-

age and processing capabilities but may reach its limits sooner or

later. In fact, even though the Cloud may be scaled up to store

and process all relevant data, other limits may be reached: an

increasing number of services are latency-sensitive, wherein the

delay in transferring data to the Cloud and back might become

prohibitive (Dastjerdi and Buyya, 2016). This becomes especially

pronounced in enabling software executions where multiple de-

vices collectively and autonomously interact and cooperate with

each other and with humans. All of the above points toward Edge

Computing, where intelligence descends from the remote Cloud to

proximate Edge computers (Satyanarayanan et al., 2001).

As another step forward, the Fog Computing 1 takes its niche,

where intelligence disperses from the centralized Cloud to every-

where within the networked environment around the user – net-

work edge devices, smart gateways and routers, network nodes,

and yet part of said intelligence remains in the Cloud. Generally,

the notion of the Fog Computing was coined by Cisco to refer to

having multiple layers of processing between the device(s) and the

Cloud, as opposed to having a single intermediary between the de-

vice(s) and the Cloud (Bonomi et al., 2012).

The software development challenges in the context of Fog arise

from the distributed nature of the system as well as the intermit-

tent, unreliable connectivity and varying latencies that depend on

the network topology and conditions. Furthermore, the numbers

of participating devices in various executions may also vary dy-

namically. This potentially unpredictable and highly dynamic na-

ture of executions places an additional burden on the developers,

which can only be addressed by shifting the focus from construct-

ing sequentially-run applications to defining collective interactions

that take place between the computers. Enablement of such Fog-

based scenarios requires further effort s, especially when compared

with traditional programming models, since the related constructs

do not directly support the necessary primitives, such as actions

and triggers.

In this work, we study how this kind of collective intelligence

can be developed so that it can deployed and executed anywhere

in the Cloud, at the Edge, or over the Fog. To this aim, we out-

line an Action-Oriented Programming model that enables efficient,

on-the-fly development of coordinated, proactively and pervasively

initiated, multi-device programs, which employ actions as their ba-

sic building blocks. This approach is inspired by our earlier work

in the context of the Cloud; here, the focus is on decomposing the

executions that previously took place in a centralized Cloud into

collaborative operations executed securely by the Edge and Fog de-

vices. In particular, our earlier APSEC 2013 paper (Aaltonen et al.,

2013) laid a foundation that this contribution extends toward new

domains. Further, we discuss the characteristics of wireless in-

frastructure that needs to realize the Action-Oriented Program-

ming model, so that it responds to the main challenges of Fog

Computing software development. As a concrete example of such

an infrastructure, we outline our recently redesigned and imple-

mented Edge and Fog Computing infrastructure (Mäkitalo et al.,

2018), as well as compare it with the original Cloud-based infras-

tructure (Mäkitalo et al., 2012).

Fig. 1 depicts the original architecture where most operations

took place in the Cloud. Different Cloud-based services of our sys-
1 It has been repeatedly argued that the distinction between Edge Computing and

Fog Computing is not always clear – either the Fog Computing is defined similar to

Edge Computing, or regarded as a combination of Cloud Computing, Edge Comput-

ing, and all of the options in between Bermbach et al. (2017) . In particular, there is

one aspect that may lead to such confusion: mobile phone – the most popular edge

device – is actually a widely used smart gateway at the same time. In this paper,

we assume the latter interpretation.

t

e

m

n

t

em were then observing social media services (phase 1, in Fig. 1)

nd devices (A, B, C, D, E, F) were streaming their raw data to

ur Cloud-based services like Proximity Server (phase 2) and State

erver component. Based on the changes in this data (phase 3),

 Cloud-based Controller-component was observing the proximity

f the devices (phases 4 and 5) and then trying to find device

onfigurations based on their streamed state (phases 6 and 8). Fi-

ally, when a proper configuration was composed (phase 9), the

ontroller was initiating a rather long-lasting interactive applica-

ion between the devices Orchestrator-component (phase 10). This

loud-based component was also coordinating the remote opera-

ions on the devices (phases 11 and 12). After many years of re-

earch, it is now clear that such an approach was full of flaws. In

his paper, we introduce a more sophisticated approach that allow

he computations to take place where these make the most sense,

nd sharing data and coordinating the operations directly with lo-

al device-to-device (D2D) communication (Li et al., 2014) between

rusted set of devices.

The rest of this paper is structured as follows. In Section 2 ,

e provide the necessary background for this work and envision

ow future software could behave in the Fog Computing era. In

ection 3 , we offer an abstract-level example usage of our pro-

ramming model, which helps us in describing our programming

odel in the remainder of the paper. In Section 4 , we introduce

ur programming model for the collective executions and coordi-

ation of interactions. In Section 5 , we describe the new architec-

ure and implementation in details. We also discuss how safe and

ecure device coalitions can be formed for the communication that

akes place behind the collective executions. In Section 6 , we con-

ribute our redesigned approach and compare it with the earlier

loud-based alternative. We also evaluate the new approach and

he overhead it causes. In Section 7 , we review the related work.

inally, Section 8 draws the main conclusions of this study.

. Background: qualities of human-centric Fog Computing

In many past multi-machine use cases, computers have been

ommunicating and interacting remotely in online collaboration

ools, email and Internet usage, file transfer, etc. While all of these

emain very popular and important use cases in our daily lives,

 whole new way of using multiple computers and computing-

nabled objects emerges where they are utilized at the same time

nd often in the same space. 2

The vertical dimension in Fig. 2 represents today’s dominant

esign trend for the IoT. Here, we depict a Cloud-based system

here devices stream their data all the way up to the back-end

ervices and in return receive instructions on how to act. In previ-

us non-colocated multi-machine scenarios, such design is appro-

riate since the physical distance between the users covers the lag

n communication. A common denominator for the corresponding

oftware stands from the end-user perspective – the interaction

ollows similar principles as those in the early days of computing:

A human gives an input command to a machine, which the ma-

chine then executes, provides an output, and waits for the next hu-

man input. Thus, the interactions are user-initiated, requiring con-

stant active participation, much attention, and switching between

the apps.
2 Broadly speaking, multi-machine experience with humans can be divided into

hree categories: (i) sequential use (one user, multiple devices, sequential use),

(ii) simultaneous use (one user, multiple devices, parallel use for different tasks or

roles), and (iii) collaborative use (multiple users and devices, the same software used

in collaboration) Google Services (2012) . In this paper, we address all these cat-

gories as we discuss multi-machine experiences. Hence, it becomes evident that

ore and more interactions between computers take place near the edge of the

etwork, where people and their devices are actually located, as has been illus-

rated at the bottom of Fig. 2 .

N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391 3

Fig. 1. Original Cloud-based implementation of the Action-Oriented Programming model was presented in 2013 at the APSEC conference Aaltonen et al. (2013) .

h

t

e

c

o

t

t

e

t

p

p

c

e

e

d

b

b

h

l

s

t

P

o

m

w

h

p

i

a

w

t

p

w

t

s

a

h

p

i

i

p

t

i

a

a
Disrupting what has become the status quo in computing, one

as to rethink the software execution and the very role of interac-

ions in computing.

Fortunately, in modern Fog Computing environments, all of the

ntities are interconnected on various levels (consider the verti-

al and horizontal dimensions in Fig. 2) either directly with each

ther, or via an intermediary node and perhaps over some infras-

ructure networks. Leveraging computing-enabled entities across

he entire network unlocks numerous opportunities for near-the-

dge computations, which helps reduce the communication la-

ency as well as improve other aspects of software execution like

rivacy, security, and functional safety.

Inspired by these opportunities to improve multi-machine ex-

eriences that emerge along with Fog Computing as well as ac-

ounting for the fact that interactions increasingly occur near the

dge of the network, we identified six crucial qualities of the mod-

rn Fog Computing environments that we consider instrumental to

isrupt the status quo. 3 We believe that these qualities, namely—

e concerted, be proactive, be inclusive, be social, be adaptive, and

e humane —have the potential to make future computing more

uman-centric and user-friendly as well as help the developers

everage the many opportunities that Fog Computing can offer

ince it does make sense to place the software executions closer

o where the interactions primarily take place and where the lag
3 These qualities are partially inspired by our previous work on the Internet of

eople (Miranda et al., 2015). However, we have reconsidered the original Internet

f People Manifesto to better fit Fog Computing environment.

w

a

c

t

atters more from the multi-machine experience perspective. In

hat follows, we take a closer look at these six qualities:

Quality 1: Be concerted. In Fog Computing, executions often

inder upon orchestrating the operations in real-time. The user ex-

erience highly depends on the network and location where these

nstructions to act come from. Presently, several technologies en-

ble global Internet-based (e.g., MQTT, WebSockets, WebRTC) as

ell as local (essentially, BLE and WiFi Direct) D2D communica-

ion. Many of today’s IoT platforms (e.g., Node-RED) further sim-

lify this coupling. From the developer’s perspective, programming

ith these approaches is highly communication-oriented and shifts

he focus from developing collective activities where computers

erve humans. Hence, clear programming concepts are required to

bstract away the complexity of dealing with a large number of

eterogeneous entities and exploiting their resources.

Quality 2: Be proactive. As discussed above, present-day com-

uting requires a lot of manual user interventions. In Fog Comput-

ng, software execution and behavior of computers, as well as the

nteractions with them, should become proactive to make the com-

uters serve humans better. This requires the software to be able

o anticipate the events (sensations) coming from the world (dig-

tal or physical), and then react to these events with actions that

re the outputs to the world. Ideally, the software can also adapt if

n unforeseen event takes place. This proactive nature of the soft-

are makes the computers initiate interactions with each other

nd with humans. While there are multiple risks with such exe-

utions, we believe that proactivity is the key capability for a new

ype of computing that can genuinely serve humans.

4 N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391

Fig. 2. Fog Computing and related interactions.

q

m

a

t

l

fl

w

l

v
Quality 3: Be inclusive. Since individuals are also creatures of

habit, everyone has their own way of doing computing. Hence, the

inclusive quality requires that the user preferences and content are

collectively reflected in the executions. Technologically, such a per-

sonalized nature of executions requires collecting, observing, main-

taining, and extracting the insights from various sources about the

participating people, across both digital and physical worlds. The

harnessed information and content can then be used, e.g., for en-

riching the interactions and experiences with computers and with

other people. From the developer’s perspective, this quality re-
uires novel communication infrastructures and related program-

ing constructs for controlling how the preferences and content

re shared collectively and safely.

Quality 4: Be social. In Fog Computing, the ownership of en-

ities becomes an important premise, and therefore the social re-

ationships between the entities and their owners need to be re-

ected in the executions. For example, it is essential to consider,

hich entities are allowed to interact and, which content is al-

owed to be shared among them. Presently, Bluetooth and WiFi ser-

ice discovery and beacon transmission techniques can potentially

N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391 5

Fig. 3. Preparation for interactions.

b

r

h

o

w

b

t

f

p

t

o

b

e

t

b

w

e

p

o

p

t

h

z

w

m

u

l

m

u

v

p

A

o

s

3

t

p

t

s

o

s

d

s

s

s

T

s

a

i

P

s

c

b

d

i

n

J

g

t

i

i

4

n

a

P

i

e

w

t

a

o

e

y

t

i

i

m

c

e utilized for sensing the entities in proximity. The relationship-

elated information in social media may be employed for defining

ow these entities – or their owners – are socially related to each

ther. It forms a social network between the entities in the physical

orld, which the underlying execution environment should reflect

y ensuring that the data is only dispatched to the authorized en-

ities.

Quality 5: Be adaptive. The software (and its execution) should

ollow the user. However, the Fog Computing principles may im-

ly that the swarm around the user changes frequently: the enti-

ies (and thus their resources) do not remain the same and also

ther people move nearby. For this reason, the executions have to

e able to adapt to these continuous changes and recover when-

ver contingencies occur. Primarily, the executions need to choose

he best entities for performing a particular task. This selection can

e based on the hardware and software resources of the entities as

ell as on their quality. Additionally, other properties of an entity,

.g., battery status or processing power, may affect the selection

rocess.

Quality 6: Be humane. Computers communicate with each

ther in a very different way than humans do. The inputs and out-

uts are fundamentally different in the human world. Fortunately,

he interactions with humans can be augmented by leveraging new

ardware and software resources (e.g., digital assistants like Ama-

on Echo and Apple’s Siri) that are available on some of the devices

ithin the execution environment. In certain contexts, these novel

odalities have unraveled potential to make interactions more nat-

ral for humans. However, when the resources are being used col-

ectively, e.g., for user input and output, the lag in communication

ay affect the user experience by degrading the levels of how nat-

ral the human feels the interaction to be. This becomes especially

isible when integrating full-fledged and highly-constrained com-

uting devices.

In the remainder of this paper, we present and discuss our

ction-Oriented Programming model that has been redesigned to

perate in the Fog – in a decentralized manner – but yet to con-

ider all of the human-centered qualities of Fog Computing.

. Abstract-level example: photo sharing

To exemplify the executions as discussed above, we introduce

he following example that we use throughout this paper.

A group of friends had an enjoyable party recently, and

resently they meet at Alice’s home. Each person has taken pic-

ures, some of which are stored on their mobile devices and
ome are uploaded to the Cloud, shared on social media, and so

n Petri et al. (2017) . Their devices proactively suggest a photo

ession, where each participant may share pictures with all of the

evices that are participating in it collectively. They all agree to

tart a joint photo sharing session. The utilized devices range from

martphones and tablets to Alice’s 65-inch smart TV. Photos are

hared among everyone, but since the viewing experience with the

V is the best, most of the people use their own devices to only

elect pictures for viewing.

In addition to people, the collective execution can also adapt

nd behave differently when the environment has various interact-

ng capabilities. For instance, if the room has smart lighting (e.g.,

hillips HUE), the atmosphere can be changed when the photo

haring sessions begin and end. Similarly, another collective exe-

ution (e.g., collective music listening) may then adjust the lighting

ased on the song being played.

Behind the scenes, the following events take place. First, the

evices sense that they are in close proximity and start interact-

ng. They exchange contextual information with each other and

otice that the same group was together at a party a while ago.

ointly, the devices deduce that now is the appropriate time to sug-

est a photo session. They prepare fluid user experience by proac-

ively sharing the required pieces of data as well as by establish-

ng optimized connections between the devices as demonstrated

n Fig. 3 .

. Programming model for collective executions in the Fog

Action-Oriented Programming (AcOP) has its roots in coordi-

ation languages (Gelernter and Carriero, 1992; Ciancarini, 1996)

nd the theory of joint actions (Back and Kurki-Suonio, 1988).

reviously, we studied AcOP in the context of Cloud Comput-

ng (Aaltonen et al., 2013). In this work, the goal is to move the

xecutions from the centralized Cloud to anywhere in the Fog, as

ell as to determine and solve the associated challenges. In par-

icular, these include the localization of actions to edge devices

nd network nodes, dynamic establishment and deletion of groups

f devices that collaborate, and human-friendly, non-invasive ex-

cutions. A complete programming model calls for two separate

et compatible entities (Gelernter and Carriero, 1992): a computa-

ion model and a coordination model . The former allows for spec-

fying computational activities while the latter is used for bind-

ng the separate activities together. We introduce the computation

odel of the Action-Oriented Programming by describing its key

oncepts.

6 N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391

Fig. 4. Co-located devices executing photo sharing application.

Fig. 5. The conceptual model of AcOP.

c

k

i

i

m

m

t

c

4.1. Computation model

4.1.1. Key concepts

In the following we introduce the key concepts of AcOP. On

a general level, these concepts and how these fit to the huamn-

centric Fog Computing has been depicted in Fig. 4 . The key con-

cepts of AcOP and their relation are represented in Fig. 5 .

A device can be shared or personal. It always has an owner ,

who can be an individual user, a group of users, or an organization.

A user is a person who can own one or multiple devices, and

may have social relationships with other users.

Collective Execution is the concept at the heart of the new

programming model. It is an aggregating unit with the primary

task of scheduling actions between machines and humans in the

Fog. To some extent, collective execution is another term for the
oncept of an app in mobile (and web) computing. However, this

ind of collective execution differs from the traditional app – it

s targeted to run on multiple devices at the same time, and it is

nclusive, that is, considers many people and their preferences si-

ultaneously. Fig. 4 illustrates a basic collective execution where

ultiple users’ devices are running the same software.

A state is a temporal mode or condition of being, which is dis-

ributed across the Fog. It can be divided into the following three

ategories:

• A user state is a profile that can be regarded as a timeline of

all the data and actions collected by the sensors of the user

devices along with the information that can be inferred from

them, i.e., user preferences, links to the digital content, social

relationships, activities, mood, profession, goals, etc.

N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391 7

i

t

o

b

o

t

t

m

v

a

t

m

l

i

t

a

a

v

t

a

s

i

b

o

e

b

t

v

b

t

c

r

4

t

v

w

i

n

t

n

t

c

o

Fig. 6. Photo sharing example of an action.

c

s

s

p

c

s

a

a

n

t

o

4

f

t

o

a

s

t

i

v

r

o

a

u

n

o

s

t

a

a
• A device state comprises the status of its resources.
• A collective execution state includes a set of participating devices

and their owners in the same collective execution, as well as

a relevant subset of the participating device and user states.

In addition, a collective execution incorporates the application-

specific state (e.g., which photo the devices are currently show-

ing, or which photos have already been shown). The entire col-

lective execution state is shared and synchronized among all of

the participating devices in the same collective execution.

An action defines the joint behavior of machines and humans

n collective executions. Informally, it is a modular unit that de-

ermines how several participating devices interact with each other

ver a specified period. It can be paralleled to a task or a part of

ehavior of an app by realizing the output as an observed behavior

f a collective execution. An action consists of

• A guard related to collective execution state, which must evalu-

ate to true for the action to be executed

• Roles , which define the required capabilities and which the de-

vices can participate in , and

• A body , which models joint behavior of roles by utilizing the

capabilities as well as the basic programming logic.

The modularity of actions helps make them more generic, so

hat they may be exploited in many different collective executions.

Capabilities are integrated into the devices for them to be able

o carry out their responsibilities during the action execution. This

eans that actions employ the capabilities of the participating de-

ices in the assigned roles when executing. Capabilities are used

nd realized by the resources of the devices. A capability is a mean

o act and produce output to the world. The device capabilities

ay be utilized by many actions that can be used in different col-

ective executions.

A sensation is an input to the collective execution state com-

ng from the physical, virtual, or social world. It is instrumental

o our model to observe various events coming from other worlds,

nd then act upon these events. In this model, the observed events

re named sensations. The abstraction level of the sensations may

ary, and in addition to observing the physical world’s phenomena

he processes in the virtual and social worlds can be monitored

s well. A concrete example of a sensation is the changed sen-

or value, while a more abstract sensation is, e.g., when a friend

s nearby, which combines data from different worlds (e.g., Face-

ook friendship and Bluetooth signal strength values). Awareness

f a sensation is shared during the participation in a collective ex-

cution.

As a summary, collective executions yield scheduling actions

ased on predefined sensations coming from the world. The par-

icipating devices are selected for their roles from the set of de-

ices in the same execution instance on the basis of device capa-

ilities and other resources. Moreover, before an action is executed

he shared state is evaluated. This results in actions being timely,

oncerted operations for the devices. For instance, it is better to

eschedule an action than to use an eternal loop inside one.

.1.2. Conceptual example

An example illustrating a collective execution on the concep-

ual level is shown in Fig. 6 . This collective execution has two state

ariables of its own: currentPhoto and currentPhotoOwner ,
hich are both initialized to null meaning that they do not ex-

st. These variables acquire a value after someone has selected a

ew photo to be shared with other devices of the same collec-

ive execution. Then the variable currentPhoto is assigned to a

ewly selected photo and the photo owner’s device is assigned to

he variable currentPhotoOwner . The collective execution in-

ludes an action sharePhoto , which can be invoked after some-

ne has selected a photo in their device, i.e., currentPhoto and
urrentPhotoOwner have a value. The action has two roles,

ource and sinks . The former is the device, which owner has

hared the photo, and the latter is a set of all devices to which the

hoto is being shared. The guard of the action consists of three

onjuncts. The first one ensures that there is a new photo to be

hared, the second one ties the owner device to the role source ,
nd the last one allows only the devices, which are ready to view

 new image, to participate in the role of sinks . In the body, the

ewly selected photo is delivered to all of the sinks and the collec-

ive execution state is reset. The rest of the actions are omitted.

If more than one action can be executed at the same moment

f time, selection of the actions is non-deterministic.

.2. Coordination model

The coordination model is adapted to the distributed setup as

ollows. Each running collective execution has a coordinator , which

asks are two-fold: managing the collective execution state collab-

ratively and, based on the changes in the state, scheduling the

ctions.

The enabling conditions—the so-called guards—of the actions

hould be evaluated every time when there is a state change in

he system, which is not feasible for obvious reasons. Therefore, we

ntroduced a notion of sensations that can be generated by any de-

ice of the collective execution if it detects a vital state change. The

ules for defining the changes that are essential parts of the logic

f an action; ultimately, the programmer decides, which changes

re important.

Sensations are attached to actions, of which guards might eval-

ate to true due to the state change. In the case of photo sharing, a

ewPhotoSelected sensation can be generated by a device, the

wner of which selects a new image through the UI.

A coordinator of the running collective execution captures the

ensations. When the coordinator receives a sensation, it attempts

o find devices with the roles according to all the actions associ-

ted with the sensation; then it evaluates the guards of the actions

nd executes one of the enabled ones. In the simplest case, the co-

8 N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391

Fig. 7. The new coordination model for collective, autonomous execution. (a) Two devices of a single user are executing the same software collectively. (b) If a device lacks

a component that prevents it from cooperating with others, this component can be loaded dynamically. (c) New users and devices join and leave the collective execution

by dispatching their state information to others. (d) Devices are selected for specific roles and then coordinated to perform these roles. (e) The user state can be transferred

from one device to another for seamless usage.

n

t

n

t

t

p

c

a

o

p

i

c

(

t

l

n

p

r

e

l

a

t

ordinator can be implemented as a Cloud service. The drawback

of such a solution is that the coordinator becomes a single point

of failure and the amount of traffic might become excessive as the

number of devices grows.

Because of the limitations of the Cloud-based IoT coordination,

we followed a different approach. An edge device, e.g., mobile

phone or a smart gateway, is selected to act as the coordinator

by voting. Over the years, many algorithms in distributed systems

have been developed for such purposes that can be applied when

coalescence or disintegration take place. This voting procedure can

also be complemented with an attributes that help selecting the

best coordinator for each case (as we discuss later in Section 5.2).

4.3. Coalescence and disintegration

Collective executions are run on the user devices continuously.

The basic setup is depicted in Fig. 7 (a), which considers one user

(u 1) who owns two devices (D 1 and D 2). Referring to the Photo-

Sharing example, the state of the collective execution includes the

set of the executing devices, the current photo, and all of the pre-

viously viewed photos. The devices have their local state, which

includes the battery charge level as well as the lists of actions and

capabilities. Capabilities offer the means to access the device re-

sources, like reserving the screen for an action.
When a collective execution receives a sensation indicating that

ew devices are in proximity, it can evaluate who is present, and

hen try to schedule a joint action for this new set. The begin-

ing of a collective execution means merging two or more execu-

ions into one, wherein the actions are the union of the actions in

he collective executions, and all of the devices are the potential

articipants in them. In the technical sense, this means that the

ollective executions begin to exchange state information with one

nother. This happens by dispatching the data to the selected co-

rdinator, which then forwards the same data to all of the partici-

ants in this collective execution. When a collective execution dis-

ntegrates, the dispatching between disintegrated entities and the

oordinator stops.

Fig. 7 (c) illustrates how two PhotoSharing collective executions

devices D 1 , D 2 , and D 3 on the left, and devices D 5 and D 6 on

he right) are coalesced , which means that the two running col-

ective executions are merged into a single execution. Therefore, a

ew collective execution state must be consolidated based on the

reviously disjoint states. In the PhotoSharing example, the cur-

ent photo is replaced with the most recent one. A collective ex-

cution schedules actions like currentPhotoChanged , when photoSe-

ected sensation is generated – for instance, when someone selects

 new photo from their album to be displayed, or timeout occurs

hat triggers a change of the picture.

N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391 9

p

s

b

t

t

fi

m

e

o

C

e

e

v

h

c

e

i

u

P

U

e

w

D

c

a

m

d

c

t

c

i

m

f

d

o

c

o

t

a

t

t

o

t

c

r

g

u

D

e

H

i

c

h

l

l

4

o

i

p

n

t

i

t

c

a

m

s

r

s

(

w

e

c

t

b

c

c

t

5

i

d

fi

t

u

t

t

v

v

More formally, two executions can be coalesced when they ap-

ear close to each other in an application-specific n -dimensional

pace. Typical dimensions are the following:

• Physical distance of the collective executions. The distance be-

tween ColExec i and ColExec j is the shortest Euclidean distance

between the devices d i ∈ ColExec i and d j ∈ ColExec j . For example,

the distance between the two collective executions in Fig. 7 (c)

is the physical distance between D 2 and D 4 .
• Social distance of the users.

– Its definition is based on a (pair-wise) taxonomy: family

members, friends, a friend of a friend (FoF), workmates, col-

leagues, etc.

– Application-specific distance: a collective execution can re-

quest that all the pairs of users belong to one or more spe-

cific classes in taxonomy. In the PhotoSharing example, the

users are required to be friends or FoFs.

– User-specific distance: users can adjust their profile to ap-

prove only the selected classes (or even exclude the selected

users).

– Value of social distance between the collective executions is

0 if all of the application- and user-specific requirements are

satisfied, and 100 otherwise.
• User willingness (distance) : A value (0 ≤ willingness ≤ 100) re-

flects how eager the user is to participate in an activity. The

value of 0 means that the user is willing and 100 shows that

there is no desire to participate. This is analogous to distance as

above. The default value can come from a system recommenda-

tion, or the user can set it dynamically.

The dimensions of the n -dimensional coordinate system need to

e transformed to commensurate. For example, the physical dis-

ance is measured in meters, whereas the social dimension and

he user willingness can be considered as described above. We de-

ne the distance for two collective execution instances: D

E
C
(p, q) :=

ax (dist i (p, q)) , where p and q are the instances of the collective

xecution E and dist i is their mutual distance along the dimension

f i . As the value of the distance is the maximum, it is the so-called

hebyshev distance (Cantrell, 2001) between the instances.

For two collective execution instances to coalesce, it is a nec-

ssary but not a sufficient condition that the instances are close

nough to each other (the threshold may be an application-specific

alue). Also, other application-specific external conditions must

old. Let us return to the PhotoSharing example in Fig. 7 (c). The

ondition “time is between seven and nine” transforms to Delta to

poch , where epoch is the time range between t 1 and t 2 , while �

s the current time. Hence, delta to epoch is defined as follows:

• 0, if t 1 ≤�≤ t 2 ,
• t 1 − �, if �< t 1 ,
• � − t 2 , if �> t 2 .

Let the coalescence threshold t
PhotoSharing
c = 20 . In Fig. 7 c, the

sers u 1 , u 2 , and u 3 are already at Alice’s home and their

hotoSharing executions have already coalesced to ColExec 1 ;

sers u 4 and u 5 have already met on the way to Alice, hence their

xecutions have also coalesced to ColExec 2 . The time is 6:50pm

hen the users u 4 and u 5 arrive together at Alice’s. The devices

 2 and D 4 are the physically closest device pair and their physi-

al distance is 19 meters. Therefore, the distance between ColExec 1
nd ColExec 2 is 19. Now we can calculate D c (C olExec 1 , C olExec 2) =
ax ({ pd , sd , w }) = max ({ 19 , 0 , 0 }) = 19 , where pd is the physical

istance, sd is the social distance, and w is willingness. The same

oalescence threshold is used for delta to epoch, which evaluates

o 10 (at ten to seven). Since the coalescence threshold is 20, two

ollective executions coalesce as depicted in the figure.

As opposed to coalescence, a collective execution is said to dis-

ntegrate when a set of the executing devices is split into two or
ore subsets. The disintegration occurs when the devices alienate

rom each other in the n -dimensional space for more than a pre-

efined application-specific disintegration threshold t E
d

. To prevent

scillation, t E
d

> t E c . After disintegration, the devices continue the

ollective execution in the subsets, and the state is either copied

r split depending on the nature of the collective execution. Let

PhotoSharing

d
= 30 . Assuming that users u 1 , u 2 , ���, u 5 stay at Alice’s

nd remain friends, our example collective execution disintegrates

otally at 9:30pm, because the delta to epoch grows larger than the

hreshold.

Previously, concepts like Liquid Software introduced the notion

f a roaming state meaning that the application and its state follow

he user from device to device (Gallidabino et al., 2017). When it

omes to AcOP, such roaming means that the collective executions

elated to two devices are coalesced first and that they are disinte-

rated immediately after. This is illustrated in Fig. 7 (e), where the

ser u 2 has first used Device D 2 , but later has changed it to device

 5 . Before roaming, the device D 2 belonged to the same collective

xecution as the devices D 1 , D 3 , and D 4 , but the device D 5 did not.

owever, the collective execution installed in device D 5 means that

t has been running on the device. After the user has decided to

hange the device, the collective execution by only the device D 5

as coalesced to the bigger execution. Immediately after the coa-

escence, the disintegration takes place, so that the device D 2 is no

onger a part of the aggregate execution.

.4. Programming with actions

We described above the AcOP computation model together with

ur PhotoSharing example on the conceptual level. In the follow-

ng, the same has been realized in Figs. 8 and 9 , as well as ex-

lained below.

The scheduling is based on sensations, which can be inter-

al or external. For example, a currentPhotoChanged sensa-

ion is generated when a user chooses a photo in the PhotoShar-

ng collective execution. Fig. 8 (lines 15–16) prepare the collec-

ive execution to receive such a sensation. After the PhotoSharing

ollective execution receives a sensation, it attempts to schedule

 PhotoShareAction . For this, it first executes the casting
ethod of the action (lines 7–14 in Fig. 9) that picks the sensation

ender for the role of the source. It then sets the devices with the

equired capabilities and in the correct state as to the roles of the

inks. Further, the coordinator executes the action guard method

lines 17–21 in Fig. 9) to in order to make sure that the casting

as successful and that the context is correct. Finally, the runtime

xecutes the body part of an action (lines 24–35 in Fig. 9), which

omprises the actual synchronization and coordination logic.

Typically, actions are relatively short in time and incorporate

he coherent collective operations of multiple devices. As defined

y JavaScript, the execution of actions can take place in various lo-

ations. What is common though is that one device then acts as a

oordinator for the other devices participating to the same collec-

ive execution.

. Runtime for collective executions

A complete programming model needs a runtime environment

mplementation (Coulouris et al., 2005). Previously, we studied two

ifferent approaches to implementing the AcOP runtime. In the

rst one (Aaltonen et al., 2013), a centralized Cloud service main-

ains the states of all the devices and another Cloud service contin-

ously evaluates the preconditions of the AcOP actions by accessing

he state information. If a precondition of some action is evaluated

o true, the execution is then continued by yet another Cloud ser-

ice via running the action body (as was described already at the

ery beginning of this paper in Fig. 1).

10 N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391

Fig. 8. PhotoSharing collective execution initializing the scheduling of the PhotoShareAction.

t

p

f

p

t

t

l

r

t

i

t

s

g

s

t

a

c

5

u

s

s

B

t

T

r

s

n

d

4 Note that it can be argued where the line between the network and network

edge layers goes. Today’s mobile phones are also portable gateways since they are

directly connected to many other types of devices, like wearable gadgets, cars, and

home appliances (but also other mobile devices). Mobile phones can also act as mo-

bile hotspots, thus acting similar to simple WLAN routers. In our model, the mobile

phone is considered to belong to the network edge layer for two main reasons. First,

mobile phones are portable devices, which separates them from the fixed network

infrastructures, thus allowing people to be continuously “connected” in any loca-

tion. Second, humans directly and continuously interact with these devices. Hence,

we consider this bottom layer as the layer for the interaction to take place as was

depicted already at the begging of this paper in Fig. 2 .
The second Cloud-based implementation (Mäkitalo, 2014) was

more lightweight: AcOP is complemented with a new app con-

cept. At that time, the apps were small programs observing the

states with common patterns, such as Publish/Subscribe. However,

scheduling operations in this approach required making similar

queries to a similar state registry as in the first implementation,

since only seldom did a single event describing a change in the

state contain enough information for scheduling an action. Need-

less to say, both of these approaches are not optimal solutions. In

this section, we introduce the new Fog Computing based runtime

implementation and describe how it operates in a decentralized

heterogeneous infrastructure.

5.1. Architecture of the new Fog Computing based AcOP runtime

The new AcOP runtime – depicted in Fig. 10 – enables collec-

tive executions where the participants can be placed anywhere in

the topology. In the vertical direction, the architecture is divided

into three layers that also provide horizontal communication and

interaction.

The Cloud layer is the first layer from the top in the vertical

dimension. Typical of this layer is to hold the AcOP components

allowing the devices to download them (similarly to how today’s

web browsers download web page components). Another impor-

tant role of the Cloud in this new architecture is to manage and

distribute the identities of the devices, so that trusted device coali-

tions can be formed. Further, the Cloud can naturally act as a co-

ordinator by running the Collective Execution framework (as de-

picted in the figure) but this is not the optimal solution in most

cases. Most importantly, it is not necessary to use the Cloud in the

AcOP programs, since the devices can execute the AcOP programs

collectively without connecting to the Cloud.

The network layer is the middle layer in the vertical dimen-

sion. The new runtime enables collective executions on the net-

work level, and horizontally there can be multiple networked de-

vices that collectively execute the same AcOP programs. For AcOP

programs, the network layer is often the optimal location from

where to allocate the coordinator, since many edge-layer devices

are in any case connected to the same wireless local area net-

work (WLAN). The network layer also provides important horizon-

tal inter-connectivity for other networked devices, such as smart

home gateways. While such devices might also be reached directly

from other edge devices through the Internet connection, such a
opology increases the communication overheads and introduces

ossible backdoors as well as other security risks. Also, the in-

rastructure devices typically have a fixed Internet connection and

ower supply, which may be demanded by some AcOP programs.

The network edge layer is the bottom layer of the new AcOP run-

ime in the vertical dimension

4 . This is the layer that is closest

o people and their devices; hence, it makes sense to locate col-

ective executions as close to these devices as possible. The new

untime enables the leveraging of multiple edge devices for collec-

ive executions, either directly (in device-to-device topologies) or

ndirectly (with the above layers of the architecture), or alterna-

ively by leveraging, e.g., cellular connections. Therefore, it is pos-

ible and sometimes optimal to collectively execute the AcOP pro-

rams without the above network or Cloud layers. For instance, in

ome areas there may be security risks for the public WLANs, or

he network (infrastructure devices) may be too busy to serve as

 coordinator. Other examples include cases where, for instance,

ontent is held only in the possession of trusted edge devices.

.2. Details of new runtime framework

The state is the key construct in building human-centric and

ser-friendly interactions—breaking the ‘status quo’ : The qualities

uggest that the executions must be inclusive—each user has a

tate, but yet social—all of the user states are utilized collectively.

eing able to access the state becomes a precondition for proac-

ive executions, as confirmed by our previous implementations.

hese requirements set challenges for the programming model, its

untime environment, and the communication framework. To re-

olve these challenges, AcOP interactions are now based on the

otion of collective executions. Because of the coalescence and

isintegration, implementing joint activities becomes intuitive and

N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391 11

Fig. 9. SharePhotoAction defined with JavaScript.

m

e

i

t

o

a

s

t

d

s

e

i

o

t

o

S

t

a

e

r

a

i

d

a

s

P

i

a

c

l

A

i

n

d

t

i

d

a
uch more straightforward, since direct access to all of the rel-

vant and most recent state information is available (see line 29

n Fig. 9). Communication-wise, the propagation of all the collec-

ive execution states is handled by our coalition framework, which

perates behind the collective executions. Fig. 10 depicts how the

pplication-specific state variables, as well as the user and device

tates, are synchronized by different components of the framework

hat leverage the trusted device coalition. All of this empowers the

eveloper to focus on implementing the actual behavior.

The coalescence requires being able to merge the application-

pecific state variables as well as the user and device states with

ach other when the distance (whether physical, social, or other)

s short enough. The actual merging can be implemented in vari-

us ways. Fig. 11 indicates our preferred option and Fig. 10 shows

hat there is a dedicated component for observing the thresh-

ld for coalescence and disintegration (as was discussed above in

ection 4.3). When coalescence or disintegration is to take place,

he component notifies the Coordinating Manager component to

rrange new elections for choosing a new coordinator. Here, one

ntity is first chosen as a coordinator, and the state changes are
elayed and merged with the state of the coordinator; then, they

re broadcasted to the coalesced entities. On the other hand, dis-

ntegration means that the state values are no longer relayed to the

isintegrated entities. Compared with many real-time collaborative

pplications, somewhat up-to-date state information is sufficient,

ince one entity at a time is using it for scheduling the actions.

reviously, keeping the application state up-to-date has been stud-

ed for example in Voutilainen et al. (2016) .

The role of the coordinator means that one entity, whether

 network edge device, a Cloud service, or a network node, is in

harge of the collective execution and scheduling actions. Fig. 10 il-

ustrates how the coordinator selection is performed with the new

cOP framework. Selecting an entity for the role of the coordinator

s done by voting. When the Coalescence & Disintegration Handler

otifies the Coordinating Manager component that coalescence or

isintegration is taking place, and the Coordinating Manager no-

ices that the coordinator is missing, it arranges elections by send-

ng a message to others. The Coordinating Managers in the other

evices then reply with an election message. In the classic Bully

lgorithm (Garcia-Molina, 1982), simply a device with the biggest

12 N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391

Fig. 10. Architecture of our Fog Computing based prototype implementation of AcOP.

N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391 13

Fig. 11. Updating distributed state with trusted device coalition framework.

i

a

a

q

s

v

o

a

t

a

w

t

t

t

f

a

e

o

i

f

r

b

m

t

s

l

c

a

i

H

l

b

a

p

t

s

i

u

m

t

r

a

t

t

t

t

r

i

t

t

c

f

p

M

t

i

c

t

t

v

n

t

h

m

v

5 See “makingCoffee” by Niko Mäkitalo. Vimeo, Inc., 2014: https://vimeo.com/

89557849 .
d number is elected to act as the coordinator, which in some situ-

tions offers a decent solution. However, the election messages can

lso be accompanied with a quality attribute describing the entity’s

ualification for acting as coordinator.

In AcOP, it is natural to pick the device with better connectivity

upport for the role of the coordinator – in other words, the de-

ice that acts as the group owner in a trusted device coalition. An-

ther option is to select the entity with the most computing power

vailable and having a fixed power supply. In our current proto-

ype setup, we have WiFi routers where Raspberry Pi 3 computers

re cabled to represent the Fog Computing infrastructure. In cases

here portable devices need to select a coordinator, the one with

he most remaining battery life is selected, or in some cases (when

he Internet connectivity is not available), the one that already has

he most recent versions of the required AcOP components loaded

rom the store. Going further, we expect that the coordinator may

lso be selected based on the role of the entity in action: if some

ntity has a central role or requires faster coordination than the

thers, it should then act as coordinator.

Allocating resources for interactions in the Fog environment

s handled by the Device Resource Manager component of the new

ramework (depicted in Fig. 10). The manager detects which device

esources (e.g., a screen, speaker, or microphone) are not reserved

y any other process or the AcOP capability. With our past imple-

entations, we learned that the devices and their resources con-

inuously appear and disappear; hence, it cannot be ensured that

pecific resources remain allocated for the desired purpose over a

ong time. Also, the user and the device must be enabled to take

ontrol over the resources when desired (e.g., an incoming call to

 mobile phone requires specific resources).

For the above reasons, we come to a conclusion that reserv-

ng the resources for interactions has to be considered holistically.

ence, the new framework follows the policy:

1. Reserve resources only during the action execution. Joint inter-

actions are now ephemeral to ensure the required resources for

the interaction.

2. An action execution is aborted if the resources are lost.

3. An action can be re-scheduled when the required resources are

available again.

In the new implementation of AcOP, it is typically not a prob-

em to abort an action execution, since the actions are targeted to

e ephemeral (consider the above example action that aims to set

 specific photo on the device screens). In the previous AcOP im-

lementations, the actions were rather long-lasting (e.g., the en-

ire photo sharing session was one action). This caused many is-

ues while canceling the action executions. To recover from these

ssues, we experimented with transactions and counter-actions to
ndo the effects caused by the aborted actions. However, imple-

enting such transactions was challenging and this approach was

hus abandoned. In the new AcOP, aborted actions can instead be

e-scheduled when the resources are available again.

We acknowledge that enforcing the resource allocation policy

bove requires the developers to follow certain guidelines:

1. Action’s casting method makes sure that devices with adequate

and free resources have been cast in their roles.

2. Action’s body part (joint operations that require device re-

sources) should be kept as ephemeral as possible. The abstract

joint behavior of the devices should remain on the collective

execution level.

3. Ultimately, it is the action’s guard responsibility to ensure that

the appropriate resources are free for the interaction.

4. The framework will abort the action execution if the required

resources are lost. Aborted action can be re-scheduled when

the resources are available again.

Coordinating the interactions is done by executing the ac-

ions. Since interactions with other devices are programmed with

he JavaScript defined AcOP capabilities, this allows the developer

o focus on the actual business logic and user experience. In the

raditional mobile application development, the programming is

ather communication-oriented since the developer is required to

mplement communication and state handling separately. In AcOP,

he programmability is achieved with the runtime’s entity stubs

hat represent the entities and their current states as well as take

are of handling the capability method calls through the coalition

ramework.

Deploying the components to the Edge and network devices

roceeds via a centralized Cloud-based store with the Component

anager of the framework. This resembles current web applica-

ions, but instead of webpage components, the store keeps AcOP

nteraction components, actions, and capabilities. When coales-

ence takes place, missing AcOP components can be pulled from

he store on the user device, as depicted in Fig. 7 (b). To facilitate

he development, we are integrating to the store a Web-based en-

ironment that allows the developers to implement AcOP compo-

ents with JavaScript. Since many of the capabilities need to use

he native programming language of a device for accessing the

ardware, the Web IDE must then support generating stubs that

ake it a straightforward copy-paste as we have done in our pre-

ious implementations 5 .

https://vimeo.com/89557849

14 N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391

Fig. 12. Structure of trusted device coalitions operating behind collective executions of AcOP.

f

a

g

i

t

c

g

o

s

c

i

(

l

u

n

S

l

p

t

f

fi

i

t

d

h

u

b

c

p

t

i

i

a

p

n

w

t

v

a

w
5.3. Establishing trusted device coalitions for collective executions

The PhotoSharing collective execution considered in this work

provides a demonstrative example of how the Fog operation may

be facilitated in a real-life scenario. One aspect left behind is how

to make this execution more secure, or enable communication in

cases where the operator network is not reachable.

From the information security perspective, the network op-

erator is considered as a trusted authority responsible for ini-

tial security-related actions (Zhang et al., 2016). The recently-

standardized solution named ProSe (3GPP TS 23.303, 2017) al-

ready allows maintaining the coalition factor not only for the logi-

cally grouped users at a distance from each other but also for the

users in proximity, which can technically utilize direct short-range

links instead of expensive cellular connections (from the operator’s

perspective). This mode of cooperation is known as D2D capabil-

ity (Chorppath et al., 2017).

The main difference between the conventional peer-to-peer and

D2D communication is the presence of the centralized “orchestra-

tor” in the latter case (Fodor et al., 2012; Ometov et al., 2016b).

The Cloud control is responsible for managing the connectivity and

security of the executions, i.e., assisting in locating the matching

users in proximity to the selected user; initializing and maintain-

ing short-range connections; distributing security-related informa-

tion; and considering user mobility (Celesti et al., 2017). Most of

the functions of the orchestrator are already integrated into the

cellular (3GPP LTE) core, but security management remains un-

clear (Tsolkas et al., 2016).

Conventionally, centralized systems are controlled by utilizing

Public Key Infrastructure (PKI) solutions that generate and redis-

tribute the secret and public keys for continuous operation while

under the network coverage (Ometov et al., 2016c). Since the net-

work functionality at the cell edge may be unstable (Fodor and

Reider, 2011), these traditional approaches should be enhanced to

fulfill the connection reliability requirements even in cases where

one or more collaborating devices lost their connection to the co-

ordinator.

Operation in cases of unreliable connectivity to the orchestrator

leaves us with three scenarios based on the user connectivity type,

as it is shown in Fig. 12 .

Fully under network coverage. In this scenario, all the users

have a stable connection to the Cloud that has full knowledge of

the system operation. Here, rebuilding or modifying the coalition
rom the information security perspective is fairly straightforward

nd to be managed by the infrastructure network. The users can

roup for collective executions, by including new users and exclud-

ng the unnecessary ones. While creating the coalition, the orches-

rator generates the group secret and distributes it between the

urrent coalition users. This further allows them to ‘vote’ inside the

roup to, for example, let a new user join the photo sharing group

r make any other collective decision requiring the approval of the

ignificant proportion of users within the group. The so-called se-

ret ‘shares’ allow users to continue with collective executions both

n proximity (using short-range wireless interfaces) and remotely

using cellular or other longer links) if required.

Unreliable connectivity. In case one or more users accidentally

eave cellular coverage but are still in proximity with at least one

ser with a reliable connection, they can keep the execution run-

ing via the device with an active network connection as a relay.

uch operation requires additional work related to ensuring the re-

aying node trust (Araniti et al., 2017; Kalia et al., 2016). For sim-

licity, we imply that all the remote user’s sensitive data can be

unneled directly to the coordinator (Bruneo et al., 2017). There-

ore, the logical operation of the coalition remains similar to the

rst case.

Isolated operation. In the case where the centralized network

s not reachable by any of the devices in the group, the execu-

ions, connections, and security management are delegated to the

evices themselves (Lu et al., 2014). This scenario requires much

igher levels of device involvement from both computational and

ser perspectives. In the first place, the users are now responsi-

le for deciding if a new user is eligible and trustworthy to be ac-

epted to an existing group. The social tier may help automate this

rocess to some extent (Ometov et al., 2016d). Since the connec-

ion to the orchestrator is not available anymore, D2D connectivity

s supposed to operate in ad hoc mode where the decision mak-

ng is distributed among the coalition users. The previously gener-

ted coalition secret should be kept unchanged for the subsequent

roofs of the coalition validity after any of the active nodes reach

etwork coverage.

Trust between entities. Trust in our system is based on the

ell-known PGP concept (Garfinkel, 1995). Generally, the level of

rust of a selected pair (device 1-device 2) is represented as a

ariable distributed between zero and one. It could be obtained

s multiplication of trust levels for already known devices as t =
 01 w 11 + w 0 , 2 w 1 , 2 , where w i, j is the level of known trust between

N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391 15

i

s

c

t

d

v

m

f

i

h

i

a

v

d

m

t

c

v

t

t

o

a

o

t

o

a

a

t

c

t

c

a

6

c

W

l

a

A

6

c

t

m

h

m

p

6

i

C

6

l

H

m

g

b

p

t

i

S

f

a

b

w

f

t

w

r

i

d

p

t

m

s

o

T

t

e

h

m

c

a

b

t

o

r

c

a

d

i

w

c

a

t

a

a

B

s

t

c

t

e

p

W

e

t

s

6 It is worth mentioning that our research team has strong experience in liquid

multi-device software, where the fundamental idea is that the software follows the

user (Gallidabino et al., 2017). The same ideology stands behind AcOP, as the idea

is that the AcOP components can be dynamically loaded at the entities around the

user by enabling interaction and perception.
 and j devices. Therefore, if t = < 1 , then the new device is as-

umed to be trusted. By this means, each device of the network

an build a tree of trust based on other known trust relations of

he devices.

Since our system was designed to be fair in terms of voting by

efault and is based on Lagrange polynomial mechanism, each de-

ice has one vote per potential coalition. On the other hand, there

ay be situations when the weight should be variable – especially

or more complex systems with a must for flexible decision mak-

ng. Thus, our system is equipped with a mechanism allowing to

ave more than one vote per device, i.e., allowing to bring more

mpact on the coalition decision. The following set of voting mech-

nisms could be implemented in our framework: (1, n) – any indi-

idual device can make a decision for the entire group; (n, n) – all

evices are needed to make a decision; (k, n) – any k devices can

ake a decision; and weighted (k, n) – where k votes are needed

o make a decision.

Therefore, the ultimate trust in our system is only set for the

entralized trusted authority, which is only present during the de-

ice coalition initialization. If the connection to the centralized au-

hority is reliable during the operations with other devices, the

rust relations should be obtained through the authority. On the

ther hand, the devices can operate and form their own trust trees

fterwards based on their observations. After forming its own tree

f trust, the device in our framework may automatically decide if

he other node is trusted or not. More details on trust related to

ur framework are given in Ometov et al. (2015) . We developed

nd tested this solution first in lab environment (Devos et al., 2016)

nd later in a live cellular core by showing the possibility of main-

aining the coalitions on the fly (Ometov et al., 2016a).

It should be possible to run collective executions not only in

ases of continuous network availability but also when the infras-

ructure becomes unavailable due to various factors. Assisting such

onnectivity from the social proximity perspective is a key en-

bling technology for collective executions and coalescence.

. Evaluation and discussion

In this section, we evaluate the proposed AcOP model and dis-

uss how it meets the qualities that we identified in Section 2 .

e also discuss how AcOP responds to the Fog Computing chal-

enges presented by Bermbach et al. (2017) . Moreover, we provide

 comparison with the old model presented over five years ago in

PSEC (Aaltonen et al., 2013).

.1. Comparison with original AcOP

Changing the execution from centralized Cloud services to a de-

entralized and distributed regime performed by the devices in

he Fog environment has a dramatic impact on our programming

odel. In Table 1 , we describe how the most essential concepts

ave been changed in the original Cloud Computing based AcOP

odel (Aaltonen et al., 2013) compared with the current Fog Com-

uting based AcOP model (Mäkitalo et al., 2018).

.2. Revisiting qualities of human-centric Fog Computing

Table 2 revisits the qualities of human-centric Fog Comput-

ng identified in Section 2 . We discuss and evaluate how the Fog

omputing-based AcOP model meets these qualities.

.3. Discussion on key research challenges of Fog Computing

Bermbach et al. (2017) introduce eight high-level research chal-

enges for discussing the state of the Fog Computing research.
ere, we employ these challenges to discuss the status of our AcOP

odel.

RC1: New abstractions. According to Bermbach et al., middle-

round abstractions that expose sufficient details on the distri-

ution and physical locations are needed. Our aim with the pro-

osed AcOP model is to specifically aim for offering such abstrac-

ions that enable programming applications for the Fog Comput-

ng that can leverage its full potential. Bermbach et al. propose

erverless Computing approaches to this task. Our AcOP model of-

ers a similar method for coordinating the devices with the high

bstraction level capability concept. Although a capability can also

e implemented with the existing Serverless Computing frame-

ork (e.g., AWS Lambda) on some entity, this is not what we pre-

er (Eivy, 2017): the idea is to leverage the users’ own devices

o act as smart gateways and perform the coordination on them,

hile using the Cloud for heavy computation when the data is al-

eady located there.

RC2: Capacity management. The second challenge

n (Bermbach et al., 2017) is managing the resources of the

evices compared with Cloud Computing, where the computation

ower is typically considered nearly infinite. In our present work,

he particular meaning of the collective execution is this capacity

anagement: while each device only computes sensations and

ends this high abstraction-level information to other participants

f the collective execution, the load is minimal for these devices.

he role that is the heaviest in terms of computation belongs

o the coordinator. As described, the coordinator is selected via

lections, and the quality attributes are used in the task. This

elps balance the load.

RC3: Modularization. Bermbach et al. suggest that

icroservice-based approaches are for the future Fog appli-

ations (as opposed to the service-oriented Cloud Computing

rchitectures) (Bermbach et al., 2017). The introduced AcOP can

e seen as a special form of the microservice architecture. Al-

ernatively, it can be considered that the actual implementation

perates on top of microservices: each collective execution is

egarded as a microservice that uses capabilities, which can be

onsidered as a microservice as well. Hence, the modularity in our

pproach is similar but has more abstract-level building blocks for

efining how the interaction and perception coordination can be

mplemented using microservices. In the actual implementation,

e tested the use of Docker containers for deploying the AcOP

omponents to Raspberry Pi as well as to AWS EC2 instances.

RC4: Fluidity. To leverage the full potential of the Fog, Edge,

nd Cloud, it becomes obvious that the programming model needs

o embrace the notion of fluidity, that is, the ability to start/stop

nd liquidly move the application modules across the nodes,

s well as clone these modules as has also been discussed by

ermbach et al. in their paper Bermbach et al. (2017) . As a possible

olution, Bermbach et al. mention: “A convenient way to address

his fluidity challenge is to strictly separate stateful and stateless

omponents.” This kind of separation and fluidity is a crucial fac-

or in our AcOP model. 6

RC5: Graceful degradation and fault-tolerance. Bermbach

t al. say that fault-tolerance becomes challenging in Fog Com-

uting as compared to Cloud Computing (Bermbach et al., 2017).

e agree that with multiple nodes that connect and disconnect to

ach other freely, there are more potential failure points in the sys-

em. On the other hand, Fog Computing also offers opportunities to

upport functional safety: if one device fails, other devices can then

16 N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391

Table 1

Comparison between cloud computing based AcOP (Aaltonen et al., 2013) and re-designed Fog Computing based AcOP (Mäkitalo et al., 2018) models.

Concept Description and Comparison

Collective

Execution

The original AcOP did not have this concept. Instead, the executions took place on several Cloud-based services, each of which focused on

a specific task (e.g., scheduling, orchestration, etc.). As the name suggests, collective executions are done jointly by the devices in

decentralized and distributed manner.

Coalescence /

Disintegration

The original AcOP did not have these concepts since the system did not have the notion of collective execution.

Trusted device

coalition

The original AcOP did not have the concept of trusted device coalitions. Instead, all the data was communicated from device to Cloud and

the action-related instructions came from Cloud to devices. In the Fog, the devices form coalitions with other devices that can be trusted.

Action Action is used for modeling joint operations between multiple machines and humans. While originally the actions contained much

business logic, now they are rather short-lived operations. However, the main difference is how the action is composed, see below.

Action

precondition

Previously, an action precondition had an important role as these were evaluated continuously to check if the action can be executed.

Presently, this functionality is achieved by observing.

Action role The participants of an action are variables into which the devices need to be assigned. This concept has remained the same.

Device From the developer’s perspective, the device is a set of capabilities that are owned by a person or an organization. The concept has not

changed much since the original AcOP.

Device capability The ability of a device to carry out the task or functionality associated with the capability. This concept has not changed. However, now

the operations of capabilities suffer less from lag since communication happens directly between devices.

Trigger Previously, AcOP had a data structure named a trigger for relaying the scheduling-related information between the Cloud services.

Currently, there is no such concept, since the scheduling is done differently.

Scheduling The task of attempting to start the execution of an action; aims to find a set of devices and assign them to the action roles, so that the

action precondition is satisfied. Scheduling still has the same goal, but the implementation is fundamentally different with the new

concepts of perception, casting , and guard .

Sensations

(Dynamic

information)

In the original AcOP, all the important raw data was reported to the remote Cloud, and it did not have the concept of sensations.

Presently, the data is refined on the devices to sensations and the changes are shared directly among the trusted devices.

Table 2

Revisiting qualities of human-centric Fog Computing.

Quality Evaluation

1: Be concerted With its clear programming constructs , AcOP leads the developers away from today’s communication-oriented programming for the IoT.

Actions and capabilities are especially targeted for defining joint operations between multiple devices and humans . On the other hand, device

coalitions make sure that the actions and sensation sharing take place only between trusted entities.

2: Be proactive The developers can now program the collective executions to anticipate the events – sensations produced by the devices – and then define

how to react upon these events by scheduling actions. Events that are not known by the system can be inspected with exception handlers,

but this support is limited to what the developer has programmed the execution for while an exception or error occurs. Hence, it is hard

to prepare for all types of unexpected events in any other ways except perhaps warning the user, re-scheduling the action, or scheduling

another action.

3: Be inclusive As the name implies, the fundamental idea of collective executions is that a trusted set of devices together execute the same application .

Hence, it includes the data (sensations) and preferences of each owner and device that takes part in the execution.

4: Be social The distance in physical and social dimensions (as well as in any other dimension) are the key factors of how the collective executions

behave. The distances define when coalescence or disintegration takes place, which again reflects on the trusted device coalitions

underneath.

5: Be adaptive Collective executions are designed to adapt to the changes in the computing environment. Coalescence and disintegration are the key

phenomena in this process since these enable the devices to start sharing the sensations and preferences with their surroundings .

Furthermore, the sensations that trigger actions then cause a selection of the best set of devices and resources for specific roles of the action

with the casting methods.

6: Be humane The re-designed A cOP enables direct communication between all types of devices , and all the raw data is not communicated to the Cloud as

in most IoT-centric programming approaches. Hence, the interactions suffer from minimal communication lag. This is important since it

improves the interactions between the computers and humans , as well as makes the user experience much more fluent (consider, for instance,

human reaction time, which is around 150 ms for visual stimulus).

l

s

a

a

e

e

t

h

s

F

B

i

i
stand in. Naturally, this type of recovery actions may not always

be suitable, especially if a critical service node fails. In AcOP, we

offer contingency handlers (essentially JavaScript try-catch block

with access to the collective execution state) for detecting errors

both on the device-end as well as in the coordinator. These han-

dlers can then be used for recovering from misbehavior, replacing

a node with another node, rescheduling an AcOP action, or trying

a different action. As a final precaution, the handler can be used

for notifying the user(s) if the recovery fails.

RC6: Benchmarking and testing. We agree with Bermbach

et al. as they claim that testing and benchmarking in Fog Com-

puting is highly challenging (Bermbach et al., 2017). Naturally, ar-

ranging tests in controlled experiments can be conducted, but this

hardly gives a realistic idea of how the system will operate in real-
ife situations. We acknowledge that testing our approach is hard,

ince the interactions take place proactively in an ad hoc manner

nd are not fixed to any location. Hence, the network quality has

 high impact on the quality of service and the quality of experi-

nce. For the purposes of testing our system, we implemented an

ngine that runs on a mobile device and generates input data to

he collective executions. While this may not be fully sufficient, it

elps to test the proactivity of the system in various locations and

ituations.

RC7: Security. There are certain security issues related to

og Computing, as discussed in Stojmenovic et al. (2016) , and

ermbach et al. mention them as one of the research challenges

n Fog Computing. The main reason behind these Fog Comput-

ng related issues is that direct communication between the de-

N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391 17

5
10

20
0

40

60
R

eq
ui

re
d

pe
rc

en
to

f
de

vi
ce

s

80

100

100

Number of devices Time needed to
reconstruct the coalition, ms

0 5 15 2010
Number of devices

0

20

40

60

80

100

120

T
im

e
ne

ed
ed

to
re

co
ns

tr
uc

tt
he

co
al

iti
on

,m
s

Required for reconstruction
percent of devices

100%
75%
50%
25%

50
15 0

Fig. 13. Dependence of coalition reconstruction time on the required proportion of devices.

v

i

t

t

d

t

r

s

b

I

w

t

l

a

w

e

a

6

t

t

m

c

w

w

6

l

w

l

t

h

c

t

t

d

t

w

p

c

f

t

h

t

Table 3

Execution time of security primitives.

Primitive Powerful node, μs Mobile device, μs

RSA 512 public key 7.28 109.3

RSA 512 private key 99.95 1157.8

RSA 1024 public key 19.57 305.81

RSA 1024 private key 352.38 5991.61

RSA 2048 public key 66.83 953.56

RSA 2048 private key 2158.89 35987

Random variable generation 7.23 24.95

t

i

c

l

c

t

2

w

u

6

d

w

p

t

s

X

u

d

c

r

s

e

g

r

s

o

a

c

e

6

t
ices without a trusted authority, or any other trusted entity stand-

ng between the devices, makes it challenging to trust the enti-

ies. An alternative view on the collective executions is via the

rusted device coalitions that operate behind the scenes and un-

erneath the collective executions. For this purpose, we introduced

he trusted device coalition framework, which enables forming di-

ect D2D connections proactively and based on the social relation-

hips between the owners of the involved devices.

RC8: Privacy. According to Bermbach et al., Fog Computing

rings challenges and opportunities that are related to privacy.

ndeed, the latter is cumbersome in ever-changing environments,

here different devices come and go nearby. Fortunately, we have

he trusted device coalition framework operating behind the col-

ective executions. This means that connections between entities

re established only if they can be trusted. Additionally, the frame-

ork allows considering the social relationships between the own-

rs, which further supports the developers as they can schedule an

ction only when certain social relation criteria are met.

.4. Overhead analysis

The overhead of the collective executions can be viewed from

wo perspectives, the software perspective, and the communica-

ion perspective. The software is used for controlling the com-

unication, and hence most of the overhead originates from the

ommunication and device coalition management. In what follows,

e discuss the details of our implementation that cause overhead,

here the overheads reflect the programming model side.

.4.1. Coalescence and disintegration overheads

A crucial feature of collective executions is the ability to coa-

escence, that is, to merge the ongoing executions’ state and data,

hich is achieved with trusted device coalitions. Coalescence al-

ows the devices to join while disintegration permits them to leave

rusted device coalitions. Naturally, this process causes some over-

eads. From the framework implementation perspective, coales-

ence and disintegration require reconstructing a new secret for

he coalition devices and then reconstructing the coalition with

his new secret. The overhead caused by reconstructing the secret

epends on the number of new devices joining the coalition, or

he number of devices to be excluded from it. To investigate this,

e conducted measurements with modern non-restricted smart-

hones. The respective results are visualized in Fig. 13 , where one

an observe that it takes up to 100 ms to produce another point

or a newly-joining device or for excluding an existing device from

he coalition if the number of devices required to participate is

igher than 50%. It directly affects the trust factor of the coali-

ion as a trade-off between the system operation complexity and
he selected threshold proportion of devices required to participate

n the coalition reconstruction procedure. The time of device in-

lusion/exclusion may vary dramatically as a result of the desired

evel of trust between the voting devices.

Clearly, it is possible to implement a much more lightweight

ommunication framework by leveraging e.g., plain WiFi connec-

ions (as we did in some of our previous work (Mäkitalo et al.,

016)). However, trust is a crucial factor of collective executions,

hich is instrumental to share one’s data with other devices and

sers securely (Mäkitalo et al., 2018).

.4.2. Fog Computing environment overheads

The Fog Computing environment comprises various types of

evices, from mobile gadgets to powerful full-fledged computers,

hich means that their computing power varies significantly. We

erformed tests in a real-life environment to evaluate the opera-

ion of our framework in terms of timing overheads. For the server

ide, a CentOs virtual machine with two virtual processors Intel(R)

eon(R) CPU X5472 both running 3.00GHz, 6MB cache size was

sed. As a mobile device, a smartphone with a Qualcomm Snap-

ragon 400 1.4 GHz dual-core processor (8930AA) was selected. A

omparison to the experimental results employing the RSA algo-

ithm using OpenSSL is summarized in Table 3 .

The results obtained with a more powerful server-side proces-

or are approximately 10 times better than those produced on the

dge device. Moving computation to a more powerful device may

enerally reduce the overall delays experienced by the user. The

esults clearly indicate how the computing power and the level of

ecurity cause different amounts of overhead. Since security is an-

ther critical element of collective executions, it is essential to en-

ble various levels of encryption in different applications as well as

onsider which devices are more likely to participate in collective

xecution.

.4.3. Coordination latency

The Fog Computing environment provides various communica-

ion technologies for direct D2D as well as for indirect connectivity,

18 N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391

Table 4

Coordination latency samples with various devices and communication tech-

nologies.

�t i Android (BT4) Public WiFi Private WiFi 3G iOS (BLE)

1 55 77 83 429 59

2 57 91 83 421 71

3 57 73 84 448 43

4 58 72 73 530 67

5 60 74 77 579 63

6 57 75 79 420 62

7 61 70 74 422 46

8 56 71 136 458 48

9 57 80 77 432 55

�t 57.4 75.2 84.9 457.7 58.4

σ 1.84 6.46 18.39 53.70 10.06

a

s

s

p

t

W

t

t

c

p

t

i

H

t

r

w

d

t

t

d

t

d

t

r

6

t

d

t

w

H

w

i

t

t

u

n

m

a

w

I

m

r

t

o

–

t

d

t

o

6

p

h

s

t

t

f
where data travels via the network infrastructure (e.g., LAN or In-

ternet). We tested how these technologies affect the coordination

process and the respective latency.

In these tests, one device was selected for the role of a coordi-

nator to manage another device (e.g., a mobile phone). The coordi-

nated device was responding to the coordinator immediately and

only plotted timestamps in these tests. Table 4 represents a sam-

ple of ten coordinated events with each communication technology

under consideration. The results show that, on average (�t), there

is not much difference when using regular Bluetooth (with An-

droid) or Bluetooth Low Energy based communication (with iOS).

However, there is much more lag in coordination when the co-

ordinator is located in the network. When data travels over the

3G network, the delay becomes a problem for many applications

and there is much more variation (σ). Therefore, it is vital for

the trusted device coalition framework to provide direct D2D com-

munication, even though establishing such connections may cause

some overhead as described above.

6.4.4. State and data synchronization overhead

The primary function of collective execution is to enable the

sharing and synchronize the state. As described above, this feature

is achieved with trusted device coalitions that allow for exchanging

data – or sensations – between the devices in the same execution.

Transferring such data requires communication resources, whereas

keeping the up-to-date data causes overhead.

However, the idea is to only have the relevant subset of the par-

ticipating device and user states to be synchronized between the

participating entities. Moreover, the data is shared and synchro-

nized first while coalescence takes place, and then only when the

state changes. Compared with our previous implementation and

many other similar stream processing IoT approaches, the overhead

is now much smaller as there is no need to transfer all of the data

to the Cloud continuously.

Similarly, the new concept of sensation significantly reduces

the communication overhead, since the computing approach is

now edge-oriented rather than Cloud-based computing. The de-

vices are now responsible for analyzing, combining, and generating

meaningful sensations from the raw data all by themselves, and

these sensations are then synchronized with other devices with

the trusted device coalition framework.

As a concrete example, consider forming the social proximity

graph – a very central feature of collective executions and co-

alescence. Previously, the devices communicated their situational

data to the Cloud service. In the environment where five devices

are constantly broadcasting such data (BLE UUIDs and RSSI values

in JSON format), this means approximately 221 Bytes per a cho-

sen interval (how often the graph is to be updated). If the data

were updated once in five seconds, this would mean transferring

0.16 MB over an hour by each device. This quickly makes the Cloud
 bottleneck since there can be numerous devices communicating

uch data.

Presently, the devices themselves combine Facebook and other

ocial media data by directly generating a more meaningful social

roximity graph, where the distances between entities are charac-

erized by the physical distance as well as by the social distance.

hen a change in the graph takes place, this generates a sensa-

ion, and only such sensations are shared and synchronized be-

ween the devices. As an example, if the social proximity graph

omprises five devices (the device id together with the social and

hysical distances), and it changes every 5 seconds, synchronizing

his graph over one hour should require the transfer of approx-

mately 0.08 MB of JSON data between the collective executions.

ence, the payload size is about a half and it already contains

he necessary information about the distances. Moreover, there is

arely a significant change in distance sensations every 5 seconds,

hich reduces the communication even more.

Together with synchronizing and sharing, using the subset of

evice and user states is a much-improved strategy for reducing

he communication overhead. Previously, the constant streaming of

he situational data to the Cloud drained the battery of the mobile

evice fast, also causing unnecessary consumption of communica-

ion resources. Naturally, there is still some overhead and redun-

ancy in the synchronization between different AcOP programs. In

he future, we will investigate how such overhead may be further

educed.

.5. Feedback and experiences from developers

The described framework in its present form remains under ac-

ive development and it has not been made available for other

evelopers yet. However, our explicit goal is that at their concep-

ual level, the models and ideas as well as the facilities of the tool

ill be similar to those of the previous generations of the system.

ence, we expect that the developers’ experience will be in-line

ith our previous studies, which we have summarized in Table 5 .

To pinpoint the differences between the proposed system and

ts earlier version that has been evaluated by developers, consider

he following. At the implementation level, the difference in the

oolchain is that our previous work on developer experiences has

sed a central repository as the means of deployment. With the

ext-generation tools, we aim to enable more fine-grained deploy-

ent, which takes into account the specific features of the Edge

nd the Cloud.

In addition to the findings in Table 5 , there was other learning,

hich cannot be overlooked in our long-term development plans.

t is not directly related to the proposed concept and the program-

ing model, but more associated with developers’ expectations

egarding any toolset. In general, developers found our tools and

echniques partly incomplete, but usable for keen and aware devel-

pers. For independent use – without consulting with researchers

it was understood that the tools and documentation are not ma-

ure enough for mainstream use. Furthermore, the heterogeneity of

evices also caused certain problems. We will devote more atten-

ion to this dimension soon, as it is also an inherent requirement

f the Fog and Edge Computing.

.6. Future work on the evaluation

We described how AcOP has been evaluated from the different

erspectives over the years, but the evaluation has not been done

olistically to AcOP and the evaluation has focused on earlier ver-

ions of programming model. The overall architecture of the sys-

em has changed from a somewhat centralized Cloud-based solu-

ion to highly decentralized Fog-based solution in which the in-

rastructure changes dynamically at runtime. In addition, there are

N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391 19

Table 5

Summary of developer experiences from the perspective of human-centric Fog Computing qualities.

Summary of the experiment and observations Preliminary Conclusions

Quality 1: Be

concerted

We hired a team of software engineering students in order to study how

developers adopt the AcOP approach Mäkitalo et al. (2013) . All study

participants agreed that the overall idea of AcOP was easy to grasp and

communicate. Furthermore, participants with development background

found that the used technology was rational and easy to deploy to practice,

to the extent that they started hands-on development immediately without

waiting until the end of the presentation. The participants found it

straightforward to coordinate the devices with the help of the AcOP

framework and the communication with the devices was made very easy.

They believed that this kind of approach to coordinate all the types of

devices around the users could be utilized in several other systems, in which

device coordination is needed. The participants approved of the methods

that AcOP provides for implementing interactions.

• The programming model offers appropriate abstractions

for developers.
• AcOP offers appropriate means for coordinating

functionalities between several devices.
• The programming concept of action is a clear unit of

modularity.

Benítez, a junior-level developer, also agreed that the AcOP provided the

required programming concepts and tools for implementing

applications Benítez (2014) . However, he found the biggest challenge to be

the minimal documentation, and hence he wrote a tutorial that guides

building five different applications with the AcOP model. The tutorial has

been useful for other developers later on

(http://orchestratorjs.org/tutorial.pdf). Also, a new video tutorial was later on

created by the authors (http://vimeo.com/nikkis/gadgeteer).

• Developers who start experimenting with new

programming approaches prefer tutorials, and these

should be provided.
• An open community is important since the developers

can support and help each other.
• AcOP does not yet have an online community, but it does

have tutorials.

Quality 2: Be

proactive

Jarusriboonchai et al. used Action-Oriented Programming model to conduct

Wizard-of-Oz user studies, a typical method in HCI

research Jarusriboonchai et al. (2014) . The researchers wished to create a

controlled environment to study how humans perceive novel, proactive and

human-like interactions with mobile devices. Behind the scenes, the

researchers were manually triggering or allowing the system to trigger

specific interactions between the devices and humans and then observing

the situations with cameras. The participants were also interviewed

afterward. The study proved that AcOP could also be used for testing

proactive interactions, which often is a very challenging task.

• Testing proactive interactions with IoT is challenging.
• AcOP enables studying proactive interactions with

Wizard-of-Oz user studies.

Proactivity vs. reactivity of AcOP interactions was studied by Palvilainen

et al. Palviainen et al. (2013) in a laboratory setting by observing and

interviewing the participants. They tested two versions of a game: One that

they started manually, and one that was proactively started. 74% of the

participants said that they rather manually start the game than have it

started proactively. The participants, however, also took the proactive version

also positively, and the only negative result related to the game being

considered embarrassing since the game was controlled by voice (actually by

yelling, as demonstrated in https://youtu.be/T3sL3JYjCEM). In some other

types of applications, proactive interactions were considered to be very

useful. For instance, proactively sharing one’s sports data with friends

devices was received very positively by the participants.

• The developer must consider what types of interactions

should be started proactively, and in which interactions

are manual triggering by the user preferred instead.
• AcOP supports implementing both, reactive and proactive

interactions.

Designing and implementing proactive interactions with physical objects

without any computing capabilities with AcOP was tested by a senior level

developer. This previously unreported experiment was done by simply

tagging such physical objects with Bluetooth beacons, which allows them to

broadcast their presence. As an example application, the developer

implemented MedicineReminder app, where a mobile device is used for

audio and dialog based input and output, and where the actual medicine jar

is equipped with a Bluetooth beacon. The application reminds elderly people

to take their medicine while they are near their medicine jar and it is about

time to take their medicine. Moreover, if the elderly person does not take

medicine for some reason, the relatives (or a doctor) can proactively be

informed about this.

• Bluetooth beacon is simple and inexpensive, but yet

powerful tool for turning interactions with a physical

object proactive.
• AcOP can be used with plain Bluetooth beacons.

Quality 3: Be

inclusive

Benítez has implemented five different applications with the Action-Oriented

Programming model, which are inclusive in the sense of Quality 3, and

enable extracting insights from social, physical, and cyber

worlds Benítez (2014) . The basic idea of the applications is similar: devices

first interact by exchanging some pieces of information that their owners

have specified about their personal interests. With this information, the

devices then try to find matches and help their owners to connect and

interact within the cyber world.

• AcOP provided the required programming concepts for

developing inclusive social applications that leverage

users social media content.

In Aaltonen et al. (2013) , we introduced PhotoSharing application which was

implemented with AcOP by a MSc student in a couple of days. The idea of

the app is to show how content shared in the virtual world can be shared in

the physical world, and its social situations, when we actually meet our

friends and family: The devices then proactively initiate and suggest a photo

sharing session for their owners when new photo album has been shared in

social media, and the friends have gathered together in a cafeteria, for

instance.

• The experiment shows that it is easy with AcOP to

include social media content, and share this content in

AcOP interactions.

(continued on next page)

http://orchestratorjs.org/tutorial.pdf
http://vimeo.com/nikkis/gadgeteer
https://youtu.be/T3sL3JYjCEM

20 N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391

Table 5 (continued)

Summary of the experiment and observations Preliminary Conclusions

A PhD student used the trusted device coalition framework to test forming

direct device-to-device topologies for exchanging state information between

the devices Devos et al. (2016) . The experiment showed that proximate

devices could offload large amounts of user-originated data from the

conventional cellular links to be transferred directly between these devices.

Direct communication provides benefits like security and supports

preserving privacy. In addition, it can be slow to transfer large files through

Internet. Trusted device coalition framework solves many problems of

sharing the state and content to be included in the interactions (Quality 3).

• Trusted device coalition framework provides a secure

way of exchanging state information between devices in

a peer-to-peer manner since all the information stays on

the possession of a trusted set of devices.
• While sharing user-generated content in the Fog

environment, the trusted device coalition framework

provides faster transfer rates and help with including the

content in the interactions.

Quality 4: Be social Benítez was implementing various social applications with

AcOP Benítez (2014) . Some issues, however, emerged in his experiments

related to becoming aware of other users and devices presence. Benítez used

classic Bluetooth technology for detecting other devices (and their owners)

in the proximity and found that this was consuming much battery. Benítez’s

solution for the problem was to use GPS for detecting when the users are in

the vicinity, and then start using classic Bluetooth discovery for detecting

the actual distance. However, also Benítez believes that in the near future

Bluetooth Low Energy technology has the potential to void these issues.

• Forming a proper proximity set can be considered as one

of the main challenges of Quality 4 and in general

human-centric Fog Computing.
• BLE solves many issues, but yet typically prevents

proximity detection while the applications run in the

background.

Palviainen et al. Palviainen et al. (2013) used AcOP to implement and study

a social gaming application for co-located situations. In many collaborative

co-located applications, the physical topology is an essential factor since

screens, for instance, may be shared. In their CarGame, multiple devices

show part of a race track. They were successful in forming the social

proximity graph of the devices with the framework, but it turned out that

the orientation of the graph was hard to detect—in many cases the social

proximity graph was mirrored. This led the developers to eventually

implement a feature that enabled the users to set the device topology

manually.

• The orientation of the social proximity graph may be an

important feature of social applications that share

resources (Quality 4).
• It may yet be challenging to detect the orientation of the

graph in AcOP. This should be studied further.

Benítez used AcOP to implement FollowMe application, where the devices

first interact by exchanging some pieces of information that their owners

have specified about their personal interests Benítez (2014) . With this

information, the devices then try to find matches and help their owners to

connect and interact within the cyber world.

• Social media content can be leveraged to help forming

new social relationships.
• AcOP provides tools for implementing the cyber-social

and social-physical interactions and new relationships

between entities based on the users’ social media

content.

Quality 5: Be

adaptive

We hired a team of junior software developers to implement a social game

application with AcOP Mäkitalo et al. (2013) . This team evaluated the

framework for Android, and the framework’s ability to dynamically load the

capabilities during the run-time and enabled by the user’s preferences. The

developers regarded the idea of loading the capabilities dynamically very

good and important. Such ability is especially crucial from the perspective of

Quality 5 as it enables reserving resources from the user’s surroundings.

From Quality 5 perspective it is essential to provide proper programming

concepts that enable the software execution to adapt to the dynamically

changing environment around the user.

• Dynamic deployment of capabilities during runtime is an

essential feature from the adaptivity perspective (Quality

5).
• Frameworks for various platforms are essential to make

the collective executions as adaptive as possible.
• AcOP provides frameworks for leveraging device

resources from various platforms: iOS, Android, Arduino,

NET Gadgeteer, and any Node.js and Python enabled

platforms.

Aguilar was not entirely happy with the AcOP framework (previous

version) Aguilar (2014) . He studied how AcOP can be used for implementing

social games, and found some features to be missing. Thus, he implemented

his own a complementary Game Composer Framework

(https://github.com/dpares/Game- Composer- Framework) for AcOP, that offers

features like profile management (username and avatar), spectator mode,

player disconnection handling, and rematch management which are essential

for the adaptivity of the collective executions (Quality 5). After his feedback,

AcOP framework has been complemented with a new feature which enables

new devices to join ongoing interactions.

• Implementing social games often require implementing

the same features over and over again. Frameworks can

be used to provide such features for developers.
• In multiplayer games, it is often required that players can

join and leave the game dynamically and without

affecting to other players. The new AcOP actions are

ephemeral, and the collective executions directly support

user profiles and devices to join and leave.

Plain trusted device coalition framework has been tested separately by an

Information Technology PhD student, who was leveraging the trusted device

coalition framework to implement communication offloading from the

mobile phone networks to direct D2D communication for a social video

sharing application Devos et al. (2016) . The experiments provided valuable

insight into what are the pain points of WiFi Direct technology. The main

challenge was that the user has to confirm the connections with all the

users that are encountered in proximity every time the connection is being

initialized. This requirement was, however, set by the Android platform â not

by the communication framework itself. Another challenge was that, on the

one hand, there must always be a group owner to which other devices then

connect, and which then makes the communication dependent on this group

owner. On the other hand, forming a mesh topology requires then having

multiple group owners, which consumes a lot of resources. Although the

experiment focused purely on the communication framework, these

challenges interfere with the Quality 2 (be proactive) as well as the other

qualities in general.

• The security policies of the communication technologies

in different platforms vary, and these may cause issues

that affect other qualities, especially to the Quality 2

and 5.

(continued on next page)

https://github.com/dpares/Game-Composer-Framework

N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391 21

Table 5 (continued)

Summary of the experiment and observations Preliminary Conclusions

Quality 6: Be

humane

Ever since the first implementation of Action-Oriented Programming model,

Talking-capability has been one of the most studied

concepts Aaltonen et al. (2013) ; Mäkitalo et al. (2012) . Talking-capability

enables translating text to speech, giving a human-like impression for the

co-located people. Later on the Talking- capability has been used by

developers for different purposes. For instance, BusReminder is targeted to

the office or home environment for observing busses in real-time and then

notifying the user with voice when it is time to go to the bus stop. Other

similar examples are CalendarReminder and SMSReminder, which can both

utilize user’s other devices and even other users’ devices to notify about

urgent events and emails. These demonstrations implemented by various

people proved that Action-Oriented Programming could be used for

programming meaningful interactions between different types of devices and

leverage human-friendly interaction interfaces.

• In some cases, people yet feel it strange to communicate

with voice with the IoT devices. However, in the case of

physical robots, the voice is likely the most natural

modality for a human to communicate with them since

this is the way people are accustomed to interacting with

other humans.

To study more using human-like interaction interfaces, a MSc

student Kelloniemi (2014) implemented an AcOP framework for the Arduino

platform. On top of this framework, he implemented a robot parrot that was

able to detect people nearby and communicate with them by voice. In the

demonstration of these AcOP interactions, the software did run on a

Raspberry Pi, which helped to reduce the communication lag as this turned

out to be a decisive factor in human-machine interactions to make the user

feel more comfortable while communicating with the robot parrot. Another

interesting finding of this experiment was that people indeed seem to take it

more natural to communicate in human-like modalities with robots – in

contrast to communicating with their mobile devices for instance.

• It depends on the device how people prefer to interact

with the device. With physical robots, the more

human-like interactions are typically preferred.
• The communication lag may affect how humans feel

interacting with a robot.
• AcOP with its capability concept provides an easy way to

implement interaction modalities that feel more natural

for humans in various contexts.

More thoroughly the user experiences and the roles of the interaction

participants in social and co-located situations with AcOP has been studied

by Jarusriboonchai for her PhD thesis Jarusriboonchai (2016) . Jarusriboonchai

categorized such interactions where multiple devices and people are present

in three types of interactions: inviting, encouraging, and enforcing

interactions. In all of these, the role of the device is to act as an activity

facilitator, which means that the devices are then managing and

manipulating the users’ interactions. The results of her studies show that in

certain situations the devices can indeed augment, encourage, and support

the interaction. Yet people may consider interactions with specific

interaction modalities awkward and especially in social situations.

• The developer and the designer must carefully consider

the role of the devices in the interactions to make the

interactions feel as natural as possible to a human to

support the Quality 6.

n

s

g

i

t

i

t

F

f

b

t

f

i

q

s

t

r

d

e

H

t

p

p

m

e

s

e

t

s

F

v

e

o

v

o

s

d

m

i

t

t

c

d

i

o

e

O

a

i

i

t

v

a

r

o

m

i
ew and changed programming concepts that need to be exten-

ively evaluated by software developers and the implemented pro-

rams must be evaluated with end-users. Therefore, there are lim-

tations regarding the validity of the presented evaluation, and for

his reason, the validity of the evaluation must be considered crit-

cally. More holistic evaluation is a topic for future work including

esting AcOP programs that are based on the six human-centric

og Computing qualities is one of the critical research topics to

ocus on.

At a concrete level, we are studying how AcOP applications

ased on the presented six human-centric Fog Computing quali-

ies should be tested and evaluated. Testing AcOP programs differs

rom testing traditional distributed software and systems. While

n general distributed systems are hard to test, the human-centric

ualities set entirely new perspectives on the evaluation. For in-

tance, the qualities Be proactive and Be adaptive have turned out

o be challenging to test. For this purpose, we record data from

eal-life situations and feed this to a test-bed consisting of specific

evices and networks. Such testing will only help to repeat differ-

nt situations, which is essential for developing the applications.

owever, in real life, the data and the system structure will con-

inuously change, and thus the actual evaluation of any such AcOP

rogram following the qualities can only be done during a long

eriod and by multiple users providing constructive feedback.

Other qualities set similar challenges for the evaluation: Be hu-

ane, for example, is somewhat subjective to the person experi-

ncing the interaction and thus can be hard to measure. It is pos-

ible to develop AcOP programs for specific use cases, and then

valuate the programs with end-users by interviewing them and

hen, for instance, by comparing how humane various people con-

ider the developed programs. It must be noted, however, that the
og and IoT form a dynamic computing environment where the de-

ices around the user change, which has a direct effect on the user

xperience.

The qualities Be concerted and Be social have been evaluated in

ur previous tests with the communication framework, and with

arious experiments by software developers. In general, the use

f action and capability concepts has not changed much. In this

ense, the evaluation can yet be considered to be valid from the

eveloper perspective. The main flaw has been the lack of docu-

entation and sometimes improperly working tools. Based on our

nterpretation, this has not prevented the developers from using

he framework. Naturally, it is yet essential to keep the documen-

ation up-to-date to support the developers.

Similarly, the quality Be inclusive has been evaluated but not

omprehensively. The AcOP model now allows collectively han-

ling the joint state in entirely new ways. Thus, more evaluation

s needed with real-life applications so that we can get feedback

n how developers experience the new concept of collective ex-

cution as well as the new framework supporting this concept.

ne option to get feedback from outside developers would be to

rrange summer school or code camp where students would be

mplementing applications with the new AcOP framework. Dur-

ng and after such an event, we would be collecting feedback and

hen improving the framework accordingly, as we have done pre-

iously (Mäkitalo et al., 2013). Later, when the framework is stable

nd mature enough, it would be an excellent opportunity to ar-

ange tutorials in scientific conferences and then get feedback from

ther researchers and to discuss future research plans.

As a concrete application scenario, we are applying the AcOP

odel in a project on autonomous robotics and creative comput-

ng to study how the autonomously operating robots could form

22 N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391

s

m

s

i

t

t

m

a

2

s

o

m

F

C

n

g

f

a

w

a

m

e

m

F

f

2

a

t

i

h

a

a

p

g

p

s

a

c

a

i

M

M

b

s

o

a

f

F

p

e

c

g

c

A

s

7

p

n
new joint goals with the concept of collective execution, and then

aim at reaching these goals with joint actions. This will give us

more insight into how well AcOP fits forming the shared goals in

a physical and highly dynamic environment.

7. Related work

In what follows, we describe the different advances in the

field of Fog Computing and Ubiquitous Computing related to AcOP

model for Fog Computing. We give an overview of the related work

in three dimensions, beginning from the network technology level,

then continuing to programming approaches on a general level,

and finally ending with concrete platforms and middlewares that

are related to our work.

7.1. Network technology for ad hoc communication

Mobile ad hoc networks have been emerging ever since mobile

devices started to gain popularity. Mobile ad hoc networking tech-

nology can be seen as an important enabler for Edge Computing

and Fog Computing. The broad adaptation of our trusted device

coalition framework could rely only on systems that are already

standardized and partially integrated or ones currently in the stan-

dardization process. Currently, available solutions are not yet ready

to handle the connectivity in a comprehensive manner, which is

confirmed by the state-of-the-art technological implementations.

Direct links between mobile devices are still rather exotic and,

for example, Apple or Android users can already use short-range

communication to share data between smartphones through Air-

Drop or WiFi-Direct protocols acting in mesh-like mode and be-

ing mainly utilized for file transfer, but also have excellent capa-

bilities to accommodate a variety of direct data exchange applica-

tions (Pyattaev et al., 2014).

Utilization of Bluetooth Low Energy (BLE) is also feasible

due to its availability on most of the market-available de-

vices (Malandrino et al., 2014) but is highly questionable due to

low bitrate and limitations of the collision domain. Another po-

tential solution is the IEEE 802.11s standard designed explicitly

for WiFi-like mesh networks (Karvounas et al., 2014). It is, how-

ever, not very widely supported by conventional devices. As part

of active future candidates to serve our tasks, IEEE 802.11ad and

802.11ax are perfect ad hoc enabled technologies offering high

throughput and low delay (Nitsche et al., 2014). To summarize, the

presence of the listed technologies only proves that the enabler is

already integrated into most of the devices on the market, there

is just a place for an additional level of extraction that allows the

nodes to establish the connectivity more efficiently.

7.2. Programming approaches

Fog Computing has been an emerging research topic for sev-

eral years already, but only a few programming approaches are

targeted to the Fog in particular (Bermbach et al., 2017). This is

in part because Fog Computing is a relatively new paradigm pro-

posed by Cisco in 2012 Bonomi et al. (2012) . However, research

on distributed and IoT systems has been active for many years. In

general, there are two types of the Fog Computing programming

models: sense-process-actuate and stream processing (Dastjerdi and

Buyya, 2016). The latter is the conventional approach for program-

ming the current IoT systems. The idea is that all of the devices,

regardless of their computing capabilities, stream data to a remote

Cloud where the processing is then conducted. Such systems are

primarily used for data analysis and are not aimed for program-

ming two-way interactions as such. These approaches have long

been studied in various distributed contexts, such as Wireless Sen-
or Networks (WSNs) and Industrial IoT (IIoT). These programming

ethods are not the focus of this work.

The sense-process-actuate programming models have also been

tudied for some time already in the context of the IoT. The lim-

tation of many existing approaches is that the data is streamed

o a remote Cloud and then the instructions are sent back to

he Edge. While this may work for some systems, there are also

any reasons why this approach does not suit well for real-time

nd mission-critical operations (Díaz et al., 2016; Esposito et al.,

017; Bonomi et al., 2012; Hong et al., 2013). Further, the re-

earch on Fog Computing programming models appears to focus

n the analysis and the sense part of the sense-process-actuate

odels (Bonomi et al., 2014). Hence, the existing models (e.g.,

oglets Saurez et al., 2017 and Ceml Soto et al., 2016) mainly target

omplex Event Processing (CEP) at the Edge and other parts of the

etwork (Mongiello et al., 2017).

In contrast, we offer a complete perception-interaction pro-

ramming model that can dynamically leverage the entire Fog in-

rastructure, that is, the network edge devices, the network nodes,

s well as the Cloud services (Bittencourt et al., 2017). In this

ork, a particular emphasis is set on the actuate part of the sense-

ctuate-process model. Therefore, many existing Fog programming

odels can become useful for the CEP purposes in our collective

xecutions.

The concept of Cloudlets is sometimes criticized for that it is

erely a data center in a box and that it does not help realize the

og Computing full potential (Bermbach et al., 2017). Despite this

act, we observe similarities between Cloudlets (Bittencourt et al.,

017; Satyanarayanan et al., 2009) or Foglets (Saurez et al., 2017)

nd our collective execution framework. However, compared with

hese, the collective executions are more dynamic and can merge

nto each other when a certain threshold is reached. We describe

ow the coalescence may occur when the distance in the social

nd physical worlds becomes sufficiently short. This distance is an

pplication-specific value.

As opposed to Cloud Computing, Edge Computing is about com-

utation in the edge devices (Shi et al., 2016). It has been ar-

ued that edge devices simply cannot handle multiple IoT ap-

lications running on them while consuming their limited re-

ources (Dastjerdi and Buyya, 2016). For this reason, it is imper-

tive to consider more dynamic leveraging of the entire modern

omputing platform, that is, the edge devices, the network nodes,

s well as the Cloud services. To this effect, we also find similar-

ties with certain legacy Fog Computing approaches, such as e.g.,

obile Fog (Hong et al., 2013).

However, our goal here is not to focus on the scalability of

obile Fog. Instead, the scalability in our approach is supported

y executing the computationally heavy tasks closer to the data

ources by relying on the AcOP concept of capability . This kind

f scalability in our approach can be considered as a high-level

pproach to Serverless Computing (Tai, 2017). While the current

rameworks (e.g., AWS Lambda, Google’s Cloud Functions, Azure

unctions) can be used behind the scenes to implement a com-

utationally heavy AcOP capability, one should keep in mind the

conomics of the serverless computing approaches offered by the

urrent Cloud service providers (Eivy, 2017). For this reason, we ar-

ue that it is preferable to leverage the users’ own devices for the

omputational tasks and perform analytics on the edge devices. In

cOP, this Edge Device Analytics is supported by the concept of

ensations .

.3. Middlewares and platforms for interactions

Over the years, a multitude of middleware and platform ap-

roaches for the IoT have been introduced (Taivalsaari and Mikko-

en, 2017). All approaches have unique characteristics and specific

N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391 23

g

a

u

a

a

i

d

l

g

p

b

g

t

s

e

a

t

o

p

t

A

p

A

s

b

t

n

s

i

b

t

g

t

c

v

e

T

C

M

2

e

w

e

t

w

s

t

t

2

r

c

s

l

e

(

p

v

P

s

v

c

A

d

t

t

t

b

l

a

c

t

i

i

a

A

c

b

i

8

i

A

n

p

t

i

s

e

a

i

v

a

c

a

g

l

h

n

t

A

l

R

3

A

A

A

A

B

B

oals, and we find similarities between AcOP and many existing

pproaches. In a broader scope, AcOP can be considered to belong

nder Weiser’s Ubiquitous Computing (Weiser, 1991) paradigm,

nd in particular, we find similarities to Ambient Intelligence (Cai

nd Abascal, 2006; Sadri, 2011) approaches. Ubiquitous Comput-

ng and Ambient Intelligence both aim at making the technology

isappear in the background while serving the human in daily

ife (Cai and Abascal, 2006).

There are various programming models for Ambient Intelli-

ence. Ambient-oriented programming model and AmbientTalk

rogramming language aim at making the programming of Am-

ient Intelligence as easy as object-oriented programming is in

eneral (Dedecker et al., 2006; Van Cutsem et al., 2007). We find

he actor model of AmbientTalk interesting, and especially we find

imilarities between how AcOP and AmbientTalk frameworks op-

rate behind the scenes: Also in AcOP device objects are similarly

llocated (during runtime), and their representatives created, af-

er which the devices and their resources can be considered as

bjects of object-oriented programming. In AcOP, the device ca-

abilities are the programmable objects, and these also describe

o which roles a device can participate in a specific action. While

mbientTalk is already a mature approach, its ambient-oriented

rogramming model has lately been embodied in JavaScript with

mbientJS, which enables a multitude of devices to leverage the

ame application (Gonzalez Boix et al., 2018). Hence, this resem-

les AcOP as both aim at one single application that can be dis-

ributed to various devices.

One of the main contributions of this presented work is the

ew collective execution concept. AcOP enables creating high ab-

traction level sensations (like events in AmbientTalk but consist-

ng of various data coming from multiple sources in physical, cy-

er, and social worlds), and then sharing these sensations between

he other devices executing the same instance of the AcOP pro-

ram. From the development perspective, the idea is to support

he software developers with these sensations to implement more

omplex events and by providing tools for combining data from

arious sources software. In some sense, this idea of the collective

xecution can also be considered to resemble shared/distributed

uple Space, which has been long studied in the context of Mobile

omputing (e.g., TOTA and LIME) (Mamei and Zambonelli, 2004;

urphy et al., 2001), and lately in the context of IoT (Lima et al.,

019). However, also compared to Tuple Spaces, the collective ex-

cutions provide direct access to the shared sensation objects,

hich act as a basis for the joint interactions. The collective ex-

cution also provides the support for coalescence and disintegra-

ion, and synchronizing the data is done in a specific order as

e have described in this paper. This is because the usage of the

hared sensations is different than in typical Tuple Space applica-

ions since in AcOP, only the coordinator needs to have access to

he most recent data.

There are also plenty of Publish/Subscribe (Eugster et al.,

003) approaches for the IoT where events or notifications are

elayed between the nodes. These typically form peer-to-peer

ommunication architecture in mesh network topologies. As de-

cribed in this paper, the AcOP was earlier based on the Pub-

ish/Subscribe (Mäkitalo, 2014). Now, the collective execution, how-

ver, is a specific type of implementation where the sensations

complex events) are shared via the coordinator to other partici-

ants of the collective execution.

We also find similarities between AcOP and pervasive ser-

ice composition approaches (Brønsted et al., 2010). Com-

OS (̊Akesson et al., 2019) represents one of the latest pervasive

ervice composition approaches where the idea is on combining

arious services (e.g., camera or motion service), and then enable

omposing actor behavior between different devices. In contrast to

cOP, such programming is rather service-oriented—in AcOP the
eveloper defines specific roles, and then creates a casting func-

ion that tries to pick the best devices to these roles based on

heir capabilities. AcOP thus lacks the concept of service , although

here are often services behind the capabilities. Other similarities

etween the approaches include adaptive and dynamic behavior,

ike the ability to continue execution when some of the devices

re not available.

Arguably, the Fog Computing mobility-aware scheduling in the

ontext is the closest to our ideas presented in this paper. Bit-

encourt et al. present a compelling general idea and architecture

n (Bittencourt et al., 2017), and their research supports our think-

ng that scheduling should take place in the Fog, closer to people

nd their devices. In their work, programmability resides on the

PI level, while they also mention that programming models are

omplementary to their work (Bittencourt et al., 2017). Hence, we

elieve that the said research may be beneficial for our approach

n considering the scheduling policies.

. Conclusions

Our essential assumption is that Fog Computing is still miss-

ng appropriate programming constructs. Hence, we contribute the

ction-Oriented Programming model for the purposes of coordi-

ating interactions between machines to augment humans. Since

eople own a growing variety of devices, while more and more in-

eractions with various devices take place near the network edge,

t is evident that the existing approaches are inadequate in these

ettings.

To overcome the limitations of traditional Cloud-based IoT back-

nds, we defined the necessary qualities for more user-friendly

nd human-centric software that emerge from the Fog Comput-

ng paradigm as well as the computing environment that it pro-

ides. We suggested executing applications in the Fog—collectively

nd autonomously—by dynamically leveraging the entire network

apability near the Edge, where the people and their devices are

ctually located. We also described how the Action-Oriented Pro-

ramming model may be used for programming autonomous col-

ective executions and discussed how these satisfy the qualities of

uman-centric Fog Computing. The paper specifically focused on a

ew coordination model that supports the coalescence and disin-

egration of autonomous collective executions in the Fog.

cknowledgment

The work of N. Mäkitalo was supported by the Academy of Fin-

and (project 313973).

eferences

GPP TS 23.303 , 2017. Technical Specification Group Services and System Aspects;

Proximity-based services (ProSe), V15.0.0. Technical Report .
altonen, T. , Myllärniemi, V. , Raatikainen, M. , Mäkitalo, N. , Pääkkö, J. , 2013. An

Action-oriented Programming Model for Pervasive Computing in a Device Cloud.
In: Proc. of 20th Asia-Pacific Software Engineering Conference (APSEC), Vol. 1.

IEEE, pp. 467–475 .
guilar, D.P. , 2014. Framework de Juegos para Móviles Basados en Social Devices

(Framework for Mobile Games based on Social Devices), Master of Science The-

sis. University of Málaga .
˚ kesson, A., Hedin, G., Nordahl, M., Magnusson, B., 2019. Compos: Composing Obliv-

ious Services. In: Proc. of IEEE International Conference on Pervasive Com-
puting and Communications Workshops (PerCom Workshops), pp. 132–138.

doi: 10.1109/PERCOMW.2019.8730786 .
raniti, G. , Orsino, A. , Militano, L. , Putrino, G. , Andreev, S. , Koucheryavy, Y. , Iera, A. ,

2017. Novel D2D-based Relaying Method for Multicast Services over 3GPP LTE-A
Systems. In: Proc. of International Symposium on Broadband Multimedia Sys-

tems and Broadcasting (BMSB). IEEE, pp. 1–5 .

ack, R.-J. , Kurki-Suonio, R. , 1988. Distributed cooperation with action systems. ACM
Trans. Program. Lang.Syst. (TOPLAS) 10 (4), 513–554 .

enítez, J.A.C. , 2014. Emerging Models for the Development of Social Mobile Appli-
cations: People as a Service, and Social Devices. A Proof of Concept, Master of

Science Thesis. University of Málaga .

https://doi.org/10.13039/501100002341
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0003
https://doi.org/10.1109/PERCOMW.2019.8730786
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0007

24 N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391

J

K

K

K

L

L

M

M

M

M

M

M

M

M

M

M

N

O

O

P

P

Bermbach, D. , Pallas, F. , Pérez, D.G. , Plebani, P. , Anderson, M. , Kat, R. , Tai, S. ,
2017. A Research Perspective on Fog Computing. In: Proc. of 2nd Workshop

on IoT Systems Provisioning & Management for Context-Aware Smart Cities.
Springer .

Bittencourt, L.F., Diaz-Montes, J., Buyya, R., Rana, O.F., Parashar, M., 2017. Mobility-
aware Application Scheduling in Fog Computing. IEEE Cloud Comput. 4 (2), 26–

35. doi: 10.1109/MCC.2017.27 .
Bonomi, F. , Milito, R. , Natarajan, P. , Zhu, J. , 2014. Fog Computing: a Platform for In-

ternet of Things and Analytics. In: Big Data and Internet of Things: a Roadmap

for Smart Environments. Springer, pp. 169–186 .
Bonomi, F. , Milito, R. , Zhu, J. , Addepalli, S. , 2012. Fog Computing and its role in the

Internet of Things. In: Proc. of the First Edition of the MCC Workshop on Mobile
Cloud Computing. ACM, pp. 13–16 .

Brønsted, J., Hansen, K.M., Ingstrup, M., 2010. Service Composition Issues in Perva-
sive Computing. IEEE Pervasive Comput. 9 (1), 62–70. doi: 10.1109/MPRV.2010.11 .

Bruneo, D. , Distefano, S. , Esmukov, K. , Longo, F. , Merlino, G. , Puliafito, A. , 2017.

User-space Network Tunneling under a Mobile Platform: a Case Study for An-
droid Environments. In: Proc. of International Conference on Ad-Hoc Networks

and Wireless. Springer, pp. 135–143 .
Cai, Y., Abascal, J. (Eds.), 2006. Ambient Intelligence in Everyday Life. Springer-Ver-

lag, Berlin, Heidelberg .
Cantrell, C.D. , 2001. Modern Mathematical Methods for Physicists and Engineers.

Meas. Sci. Technol. 12 (12), 2211 .

Celesti, A. , Fazio, M. , Longo, F. , Merlino, G. , Puliafito, A. , 2017. Secure Registration and
Remote Attestation of IoT Devices Joining the Cloud: the STACK4THINGS Case of

Study. Security and Privacy in Cyber-Physical Systems: Foundations, Principles
and Applications .

Chorppath, A.K. , Hackel, J. , Fitzek, F.H. , 2017. Network Coded Caching and D2D Co-
operation in Wireless Networks. In: Proc. of 23th European Wireless Conference

European Wireless. VDE, pp. 1–6 .

Ciancarini, P. , 1996. Coordination Models and Languages as Software Integrators.
ACM Comput. Surv. (CSUR) 28 (2), 300–302 .

Coulouris, G. , Dollimore, J. , Kindberg, T. , 2005. Distributed Systems: Concepts and
Design (4th Edition) (International Computer Science). Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA .
Dastjerdi, A.V., Buyya, R., 2016. Fog Computing: Helping the Internet of Things Re-

alize its Potential. Computer 49 (8), 112–116. doi: 10.1109/MC.2016.245 .

Dearman, D. , Pierce, J.S. , 2008. It’s on my other computer!: Computing with Mul-
tiple Devices. In: Proc. of SIGCHI Conference on Human Factors in Computing

Systems. ACM, pp. 767–776 .
Dedecker, J. , Van Cutsem, T. , Mostinckx, S. , D’Hondt, T. , De Meuter, W. , 2006.

Ambient-oriented Programming in Ambienttalk. In: Proc. of Object-Ori-
ented Programming. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 230–

254 .

Devos, M. , Ometov, A. , Mäkitalo, N. , Aaltonen, T. , Andreev, S. , Koucheryavy, Y. ,
2016. D2D Communications for Mobile Devices: Technology Overview and Pro-

totype Implementation. In: Proc. of 8th International Congress on Ultra Mod-
ern Telecommunications and Control Systems and Workshops (ICUMT). IEEE,

pp. 124–129 .
Díaz, M. , Martín, C. , Rubio, B. , 2016. State-of-the-art, Challenges, and Open Issues

in the Integration of Internet of Things and Cloud Computing. J. Netw. Comput.
Appl. 67, 99–117 .

Eivy, A. , 2017. Be Wary of the Economics of “Serverless” Cloud Computing. IEEE

Cloud Comput. 4 (2), 6–12 .
Esposito, C. , Castiglione, A. , Pop, F. , Choo, K.-K.R. , 2017. Challenges of Connecting

Edge and Cloud Computing: a Security and Forensic Perspective. IEEE Cloud
Comput. 4 (2), 13–17 .

Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M., 2003. The Many Faces
of Publish/Subscribe. ACM Comput. Surv. 35 (2), 114–131. doi: 10.1145/857076.

857078 .

Fodor, G. , Dahlman, E. , Mildh, G. , Parkvall, S. , Reider, N. , Miklós, G. , Turányi, Z. ,
2012. Design Aspects of Network Assisted Device-to-Device Communications.

IEEE Commun. Mag. 50 (3) .
Fodor, G. , Reider, N. , 2011. A Distributed Power Control Scheme for Cellular Network

Assisted D2D Communications. In: Proc. of Global Telecommunications Confer-
ence (GLOBECOM). IEEE, pp. 1–6 .

Gallidabino, A. , Pautasso, C. , Ilvonen, V. , Mikkonen, T. , Systä, K. , Voutilainen, J.-P. ,

Taivalsaari, A. , 2017. Architecting Liquid Software. J. Web Eng. 16 (5&6),
433–470 .

Garcia-Molina, H. , 1982. Elections in a Distributed Computing System. IEEE Trans.
Comput. 31 (1), 48–59 .

Garfinkel, S. , 1995. PGP: Pretty Good Privacy. O’Reilly Media, Inc .
Gelernter, D. , Carriero, N. , 1992. Coordination Languages and Their Significance.

Commun. ACM 35 (2), 96–107 .

Gonzalez Boix, E. , De Porre, K. , De Meuter, W. , Scholliers, C. , 2018. AmbientJS.
Springer International Publishing, Cham, pp. 32–58 .

Google Services, 2012. The New Multi-screen World: Understanding Cross-
platform Consumer Behavior. [online] http://services.google.com/fh/files/misc/

multiscreenworld _ final.pdf .
Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B., Koldehofe, B., 2013. Mo-

bile Fog: a Programming Model for Large-scale Applications on the Internet of

Things. In: Proc. of Second ACM SIGCOMM Workshop on Mobile Cloud Comput-
ing. ACM, New York, NY, USA, pp. 15–20. doi: 10.1145/2491266.2491270 .

Jarusriboonchai, P. , 2016. Understanding Roles and User Experience of Mobile Tech-
nology in Co-located Interaction. Tampere University of Technology .
arusriboonchai, P. , Olsson, T. , Väänänen-Vainio-Mattila, K. , 2014. User Experience
of Proactive Audio-based Social Devices: a Wizard-of-Oz Study. In: Proc. of

the 13th International Conference on Mobile and Ubiquitous Multimedia. ACM,
pp. 98–106 .

alia, A.K. , Zhang, Z. , Singh, M.P. , 2016. Güven: Estimating Trust from Communica-
tions. J. Trust Manage. 3 (1), 1 .

arvounas, D. , Georgakopoulos, A. , Tsagkaris, K. , Stavroulaki, V. , Demestichas, P. ,
2014. Smart Management of D2D Constructs: An Experiment-based Approach.

IEEE Commun. Mag. 52 (4), 82–89 .

Kelloniemi, A. , 2014. Social Devices Client for Arduino. Tampere University of Tech-
nology .

lein, A. , Mannweiler, C. , Schneider, J. , Schotten, H.D. , 2010. Access Schemes for Mo-
bile Cloud Computing. In: Proc. of 11th International Conference on Mobile Data

Management (MDM). IEEE, pp. 387–392 .
i, Y. , Wu, T. , Hui, P. , Jin, D. , Chen, S. , 2014. Social-aware D2D Communications: Qual-

itative Insights and Quantitative Analysis. IEEE Commun. Mag. 52 (6), 150–158 .

Lima, H.D., de P. Lima, L.A., Calsavara, A., Eberspächer, H.F., Nabhen, R.C., Duarte, E.P.,
2019. Beyond Scalability: Swarm Intelligence Affected by Magnetic Fields in Dis-

tributed Tuple Spaces. J. Parallel Distrib. Comput. 123, 90–99. doi: 10.1016/j.jpdc.
2018.09.004 .

u, Q. , Miao, Q. , Fodor, G. , Brahmi, N. , 2014. Clustering Schemes for D2D Communi-
cations Under Partial/No Network Coverage. In: Proc. of 79th Vehicular Technol-

ogy Conference (VTC Spring). IEEE, pp. 1–5 .

äkitalo, N. , 2014. Building and Programming Ubiquitous Social Devices. In: Proc.
of 12th ACM International Symposium on Mobility Management and Wireless

Access. ACM, New York, NY, USA, pp. 99–108 .
äkitalo, N. , Aaltonen, T. , Mikkonen, T. , 2013. First Hand Developer Experiences of

Social Devices. In: Proc. of European Conference on Service-Oriented and Cloud
Computing. Springer, pp. 233–243 .

äkitalo, N. , Aaltonen, T. , Mikkonen, T. , 2016. Coordinating Proactive Social Devices

in a Mobile Cloud: Lessons Learned and a Way Forward. In: Proc. of Interna-
tional Conference on Mobile Software Engineering and Systems. ACM, New York,

NY, USA, pp. 179–188 .
äkitalo, N. , Ometov, A. , Kannisto, J. , Andreev, S. , Koucheryavy, Y. , Mikkonen, T. ,

et al. , 2018. Safe, Secure Executions at the Network Edge: Coordinating Cloud,
Edge, and Fog Computing. IEEE Softw. 35 (1), 30–37 .

äkitalo, N. , Pääkkö, J. , Raatikainen, M. , Myllärniemi, V. , Aaltonen, T. , Leppänen, T. ,

Männistö, T. , Mikkonen, T. , 2012. Social devices: Collaborative co-Located Inter-
actions in a Mobile Cloud. In: Proc. of 11th International Conference on Mobile

and Ubiquitous Multimedia. ACM, p. 10 .
alandrino, F. , Casetti, C. , Chiasserini, C.-F. , 2014. Toward D2D-enhanced Heteroge-

neous Networks. IEEE Commun. Mag. 52 (11), 94–100 .
amei, M., Zambonelli, F., 2004. Programming Pervasive and Mobile Computing Ap-

plications with the TOTA Middleware. In: Proc. of Second IEEE Annual Confer-

ence on Pervasive Computing and Communications, pp. 263–273. doi: 10.1109/
PERCOM.2004.1276864 .

iranda, J. , Mäkitalo, N. , Garcia-Alonso, J. , Berrocal, J. , Mikkonen, T. , Canal, C. ,
Murillo, J.M. , 2015. From the Internet of Things to the Internet of People. In-

ternet Comput IEEE 19 (2), 40–47 .
ongiello, M. , Patrono, L. , Di Noia, T. , Nocera, F. , Parchitelli, A. , Sergi, I. , Rametta, P. ,

2017. A Complex Event Processing Based Smart Aid System for Dire and Dan-
ger Management. In: Proc. of 7th IEEE International Workshop on Advances in

Sensors and Interfaces (IWASI). IEEE, pp. 44–49 .

urphy, A.L. , Picco, G.P. , Roman, G.-C. , 2001. LIME: a Middleware for Physical and
Logical Mobility. In: icdcs. Citeseer, p. 524 .

itsche, T. , Cordeiro, C. , B Flores, A. , Knightly, E.W. , Perahia, E. , Widmer, J. , 2014.
IEEE 802.11 ad: Directional 60 GHz Communication for multi-Gigabit-per-

Second Wi-Fi. IEEE Commun. Mag. 52 (12), 132–141 .
metov, A. , Bezzateev, S.V. , Kannisto, J. , Harju, J. , Andreev, S. , Koucheryavy, Y. , 2017.

Facilitating the Delegation of Use for Private Devices in the Era of the Internet

of Wearable Things. IEEE Internet Things J. 4 (4), 843–854 .
Ometov, A. , Masek, P. , Urama, J. , Hosek, J. , Andreev, S. , Koucheryavy, Y. , 2016a. Im-

plementing Secure Network-assisted D2D Framework in Live 3GPP LTE Deploy-
ment. In: Proc. of IEEE International Conference on Communications Workshops

(ICC). IEEE, pp. 749–754 .
Ometov, A. , Olshannikova, E. , Masek, P. , Olsson, T. , Hosek, J. , Andreev, S. , Kouch-

eryavy, Y. , 2016b. Dynamic Trust Associations over Socially-aware D2D Technol-

ogy: a Practical Implementation Perspective. IEEE Access 4, 7692–7702 .
Ometov, A. , Orsino, A. , Militano, L. , Araniti, G. , Moltchanov, D. , Andreev, S. , 2016c.

A Novel Security-centric Framework for D2D Connectivity Based on Spatial and
Social Proximity. Comput. Netw. 107, 327–338 .

metov, A. , Orsino, A. , Militano, L. , Moltchanov, D. , Araniti, G. , Olshannikova, E. ,
Fodor, G. , Andreev, S. , Olsson, T. , Iera, A. , et al. , 2016d. Toward Trusted, So-

cial-aware D2D Connectivity: Bridging Across the Technology and Sociality

Realms. IEEE Wirel. Commun. 23 (4), 103–111 .
Ometov, A. , Zhidanov, K. , Bezzateev, S. , Florea, R. , Andreev, S. , Koucheryavy, Y. , 2015.

Securing Network-assisted Direct Communication: the Case of Unreliable Cellu-
lar Connectivity. In: Proc. of IEEE Trustcom/BigDataSE/ISPA. IEEE, pp. 826–833 .

alviainen, J., Väänänen-Vainio-Mattila, K., Peltola, H., 2013. Social Devices: a Lab-
oratory Study on User Preferences of Device Proactivity. In: Extended Abstracts

on Human Factors in Computing Systems. ACM, New York, NY, USA, pp. 223–

228. doi: 10.1145/2468356.2468397 .
etri, I. , Diaz-Montes, J. , Rana, O. , Punceva, M. , Rodero, I. , Parashar, M. , 2017. Mod-

elling and Implementing Social Community Clouds. IEEE Trans. Serv. Comput.
10 (3), 410–422 .

http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0008
https://doi.org/10.1109/MCC.2017.27
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0011
https://doi.org/10.1109/MPRV.2010.11
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0019
https://doi.org/10.1109/MC.2016.245
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0026
https://doi.org/10.1145/857076.857078
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0034
http://services.google.com/fh/files/misc/multiscreenworld_final.pdf
https://doi.org/10.1145/2491266.2491270
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0042
https://doi.org/10.1016/j.jpdc.2018.09.004
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0050
https://doi.org/10.1109/PERCOM.2004.1276864
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0061
https://doi.org/10.1145/2468356.2468397
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0063

N. Mäkitalo, T. Aaltonen and M. Raatikainen et al. / The Journal of Systems and Software 157 (2019) 110391 25

P

R

S

S

S

S

S

S

S

S

T

T

T

V

V

W
Z

N

m

U

n

s

c

w

n

T

v

c

a

f

M

G

i

q

i

C

A

l

m

m

n

(

s

h

a

S

A

b

s

a

f

S

p

n

Y

r

h

l

o

I

i

E

e

T

H

o

d

g

1999. Contact him at tommi.mikkonen@helsinki.fi
yattaev, A. , Galinina, O. , Johnsson, K. , Surak, A. , Florea, R. , Andreev, S. , Kouch-
eryavy, Y. , 2014. Network-assisted D2D over WiFi Direct. In: Smart Device to

Smart Device Communication. Springer, pp. 165–218 .
aatikainen, M. , Mikkonen, T. , Myllärniemi, V. , Mäkitalo, N. , Männistö, T. ,

Savolainen, J. , 2012. Mobile Content as a Service a Blueprint for a Vendor-neu-
tral Cloud of Mobile Devices. IEEE Softw. 29 (4), 28–32 .

adri, F., 2011. Ambient Intelligence: A Survey. ACM Comput. Surv. 43 (4), 36:1–
36:66. doi: 10.1145/1978802.1978815 .

atyanarayanan, M. , Bahl, P. , Caceres, R. , Davies, N. , 2009. The Case for VM-based

Cloudlets in Mobile Computing. IEEE Pervasive Comput. 8 (4) .
atyanarayanan, M. , et al. , 2001. Pervasive Computing: Vision and Challenges. IEEE

Pers. Commun. 8 (4), 10–17 .
aurez, E. , Gupta, H. , Mayer, R. , Ramachandran, U. , 2017. Demo Abstract: Fog Com-

puting for Improving User Application Interaction and Context Awareness. In:
Proc. of IEEE/ACM Second International Conference on Internet-of-Things Design

and Implementation (IoTDI). IEEE, pp. 281–282 .

hi, W. , Cao, J. , Zhang, Q. , Li, Y. , Xu, L. , 2016. Edge Computing: Vision and Challenges.
IEEE Internet Things J. 3 (5), 637–646 .

hi, W., Dustdar, S., 2016. The Promise of Edge Computing. Computer 49 (5), 78–81.
doi: 10.1109/MC.2016.145 .

oto, J.A.C., Jentsch, M., Preuveneers, D., Ilie-Zudor, E., 2016. CEML: Mixing and Mov-
ing Complex Event Processing and Machine Learning to the Edge of the Network

for IoT Applications. In: Proc. of 6th International Conference on the Internet of

Things. ACM, New York, NY, USA, pp. 103–110. doi: 10.1145/2991561.2991575 .
tojmenovic, I. , Wen, S. , Huang, X. , Luan, H. , 2016. An Overview of Fog Computing

and its Security Issues. Concurrency Comput. 28 (10), 2991–3005 .
ai, S. , 2017. Continuous, Trustless, and Fair: Changing Priorities in Services Comput-

ing. In: Proc. of Advances in Service-Oriented and Cloud Computing (ASOCC).
Springer .

aivalsaari, A., Mikkonen, T., 2017. Beyond the Next 700 IoT Platforms. In: Proc.

of IEEE International Conference on Systems, Man, and Cybernetics (SMC),
pp. 3529–3534. doi: 10.1109/SMC.2017.8123178 .

solkas, D. , Passas, N. , Merakos, L. , 2016. Device Discovery in LTE Networks: A Radio
Access Perspective. Comput. Netw. 106, 245–259 .

an Cutsem, T. , Mostinckx, S. , Boix, E.G. , Dedecker, J. , De Meuter, W. , 2007. Ambi-
entTalk: Object-oriented Event-driven Programming in Mobile ad hoc Networks.

In: Proc. of XXVI International Conference of the Chilean Society of Computer

Science (SCCC’07). IEEE, pp. 3–12 .
outilainen, J.-P. , Mikkonen, T. , Systä, K. , 2016. Synchronizing Application State Us-

ing Virtual DOM Trees. In: Proc. of 1st International Workshop on Liquid Soft-
ware .

eiser, M. , 1991. The Computer for the 21st Century. Sci. Am. 265 (3), 94–104 .
hang, A. , Chen, J. , Hu, R.Q. , Qian, Y. , 2016. SeDS: Secure Data Sharing Strategy for

D2D Communication in LTE-advanced Networks. IEEE Trans. Veh. Technol. 65

(4), 2659–2672 .

iko Mäkitalo is a Postdoctoral researcher at the University of Helsinki, Depart-

ent of Computer Science. He received Ph.D. in Computer Science from Tampere
niversity of Technology, Finland, in 2016. Nikos main interests are Web tech-

ologies in the context of Fog Computing and IoT programming. Recently his re-
earch focus has been on making the interactions with the IoT more human-

entric with a novel programming model. Niko is Associate Editor of IEEE Soft-

are Blog and a member of ACM and IEEE Computer Society. Contact him at
iko.makitalo@helsinki.fi
imo Aaltonen is a University lecturer at Tampere University, Laboratory of Per-
asive Computing where he is responsible in teaches databases, data-science and

loud-related courses. His main research interests are distributed systems, data an-
lytics, the Internet of Things, and multi-machine interactions. Timo has a Ph.D.

rom Tampere University of Technology. Contact him at timo.aaltonen@tuni.fi

ikko Raatikainen is a researcher at Empirical Software Engineering Research

roup of University of Helsinki, Department of Computer Science. His research

nterests include software product lines, variability, software architecture, and re-
uirements engineering. He is especially interested in conducting empirical research

n industrial settings in which software-intensive systems or services are developed.
ontact him at mikko.raatikainen@helsinki.fi

leksandr Ometov is a Postdoctoral Researcher at Tampere University (TAU), Fin-

and focused on H2020 A-WEAR project. He received his Dr.Sc. (Tech.) in Telecom-
unications (2018) and M.Sc. in Information Technology (2016) from the Depart-

ent of Electronics and Communications Engineering, Tampere University of Tech-
ology (TUT), Finland. He also holds the Specialist degree in Information Security

2013) from the St. Petersburg State University of Aerospace Instrumentation, Rus-

ia. His major research interests are wireless communications, information security,
eterogeneous networking, cooperative communications, wearable and blockchain

pplications. Contact him at aleksandr.ometov@tuni.fi

ergey Andreev is an assistant professor of communications engineering and

cademy Research Fellow at Tampere University, Finland. Since 2018, he has also
een a Visiting Senior Research Fellow with the Centre for Telecommunications Re-

earch, King’s College London, UK. He received his Ph.D. (2012) from TUT as well

s his Specialist (2006) and Cand.Sc. (2009) degrees from SUAI. He serves as editor
or IEEE Wireless Communications Letters (2016-) and as series editor of the IoT

eries (2018-) for IEEE Communications Magazine. He (co-)authored more than 200
ublished research works on intelligent IoT, mobile communications, and heteroge-

eous networking. Contact him at sergey.andreev@tuni.fi

evgeni Koucheryavy received the Ph.D. degree from TUT, in 2004. He is cur-

ently a Professor with the Unit of Electrical Engineering, Tampere University. He

as authored numerous publications in the field of advanced wired and wire-
ess networking and communications. His current research interests include vari-

us aspects in heterogeneous wireless communication networks and systems, the
nternet of Things and its standardization, as well as nanocommunications. He

s an Associate Technical Editor of the IEEE Communications Magazine and an
ditor of the IEEE COMMUNICATIONS SURVEYS AND TUTORIALS. Contact him at

vgeny.kucheryavy@tuni.fi

ommi Mikkonen is a Professor of Software Engineering at the University of
elsinki, Finland. Tommi’s research focuses on software architectures, agile method-

logies, web technologies, and connected devices. He has published over two hun-
red peer-reviewed conference and journal papers. Tommi received his doctoral de-

ree in information technology from Tampere University of Technology, Finland, in

http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0065
https://doi.org/10.1145/1978802.1978815
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0070
https://doi.org/10.1109/MC.2016.145
https://doi.org/10.1145/2991561.2991575
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0073
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0073
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0073
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0073
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0073
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0074
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0074
https://doi.org/10.1109/SMC.2017.8123178
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0076
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0076
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0076
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0076
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0079
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0079
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0080
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0080
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0080
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0080
http://refhub.elsevier.com/S0164-1212(19)30166-9/sbref0080

	Action-Oriented Programming Model: Collective Executions and Interactions in the Fog
	1 Introduction
	2 Background: qualities of human-centric Fog Computing
	3 Abstract-level example: photo sharing
	4 Programming model for collective executions in the Fog
	4.1 Computation model
	4.1.1 Key concepts
	4.1.2 Conceptual example

	4.2 Coordination model
	4.3 Coalescence and disintegration
	4.4 Programming with actions

	5 Runtime for collective executions
	5.1 Architecture of the new Fog Computing based AcOP runtime
	5.2 Details of new runtime framework
	5.3 Establishing trusted device coalitions for collective executions

	6 Evaluation and discussion
	6.1 Comparison with original AcOP
	6.2 Revisiting qualities of human-centric Fog Computing
	6.3 Discussion on key research challenges of Fog Computing
	6.4 Overhead analysis
	6.4.1 Coalescence and disintegration overheads
	6.4.2 Fog Computing environment overheads
	6.4.3 Coordination latency
	6.4.4 State and data synchronization overhead

	6.5 Feedback and experiences from developers
	6.6 Future work on the evaluation

	7 Related work
	7.1 Network technology for ad hoc communication
	7.2 Programming approaches
	7.3 Middlewares and platforms for interactions

	8 Conclusions
	Acknowledgment
	References

