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Abstract: In this paper we extend earlier results on Hosoya entropy (H-entropy) of graphs, and
establish connections between H-entropy and automorphisms of graphs. In particular, we determine
the H-entropy of graphs whose automorphism group has exactly two orbits, and characterize some
classes of graphs with zero H-entropy.
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1. Introduction

Graphs and networks play an important role in many areas of study. Applications of
graph theory include problems in internet-related social media, computational chemistry, genetics,
data visualization, and many other domains [1–6]. Of particular interest here is research aimed
at characterizing graphs numerically based on their invariants. Quantitative measures of graph
structure, both information-theoretic and non-information-theoretic, have proven to be useful in
various applications [7–9].

Graph measures based on Shannon entropy have been explored extensively. The first
such measure was introduced by Rashevsky [7,9] and further investigated by Mowshowitz [7,9].
This quantitative measure, called information content, captures an important aspect of graph structure
and has been characterized as an index of complexity; it is computed by applying Shannon entropy [10]
to a probability distribution derived from the symmetries of a graph. More precisely, the orbits of the
automorphism group of a graph form a partition of the vertices, and a natural probability distribution
is obtained by dividing the size of each orbit by the number of vertices in the graph. Applying Shannon
entropy to the finite probability scheme formed in this way gives the information content of the graph
and such measures are useful for investigating problems in mathematical chemistry, computational
physics and pattern recognition, see [1,11–14]. Graph entropy measures have now become a staple
feature of network science, used to characterize networks quantitatively [7,15,16]; they have been
investigated extensively and applied successfully in many different domains, see [1,2,17,18] as well
as [3,4,19].

This paper explores a particular graph entropy measure introduced in [8]. The measure,
called Hosoya- or H-entropy, is based on a distance-related partition of the vertices of a graph.
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A general framework for applying the measure is developed and applied to some specific classes of
graphs such as trees and product graphs. In particular, the H-entropy measure is computed for classes
of graphs with two orbits. The special case of trees with two orbits (stars and bi-stars) is examined
in detail. To the best of our knowledge, this paper is the first to characterize graphs with non-zero
H-entropy possessing two vertex-orbits.

2. Preliminaries on Entropy of Graphs

Given a partition of the vertices of a graph, one can define a finite probability scheme and compute
its entropy. Computing group-based entropy or information content of a graph requires knowledge of
the respective orbit sizes. An obvious, but generally inefficient, way to do this is first to determine the
automorphism group and then to find the vertex orbits by observing the action of automorphisms on
the vertices.

All graphs considered in this paper are simple, connected and finite. Let G be a graph with
automorphism group A = Aut(G). The vertex-orbit (or simply orbit) containing vertex v ∈ V(G) is the
set {α(v) : α ∈ A}. An automorphism group Aut(G) with exactly one orbit is called vertex-transitive.
More formally, Aut(G) is vertex-transitive if for each pair of vertices u, v ∈ V(G) there is a g ∈ Aut(G)

such that g(u) = v. An edge-transitive graph can be defined similarly.
Let G = (V, E) be a graph on |V| = n vertices. A classical graph entropy measure, namely the

topological information content elaborated by Mowshowitz [7] has been defined by

Ia(G) = −
k

∑
i=1

ni
n

log
ni
n

, (1)

where ni (1 ≤ i ≤ k) is the size of ith orbit of G. It is well-known that Ia(G) reaches its maximum value
if the graph has no symmetries, i.e., its automorphism group is trivial, consisting of the identity alone,
see [7].

Given a graph G and vertices u, v ∈ V(G), we say that u, v are at distance r, and write d(u, v) = r,
if the shortest path connecting them is of length r. Let G be a graph of diameter ρ = ρ(G); and for u ∈
V(G), let Si(G, u) or briefly Si(u) be the set of vertices at distance i from u. In addition, let si = |Si(u)|.
Then the distance degree sequence of a vertex v is dds(v) = (s0(v), s1(v), . . . , sρ(v)), where s0(v) = 1
and s1(v) = deg(v), see [20].

Two vertices u and v are said to be Hosoya-equivalent or briefly H-equivalent if si(u) = si(v),
for 1 ≤ i ≤ ρ(G), see [8]. The family of sets of H-equivalent vertices constitutes a partition of the
vertices. We call this an H-partition consisting of the H-equivalence classes. Let X1, · · · , Xh be the set
of all H-equivalence classes of G. The Hosoya entropy (or H-entropy) of G is given by [8]

H(G) = −
h

∑
i=1

|Xi|
|V| log

(
|Xi|
|V|

)
. (2)

3. Main Results

The problem of computing H-entropy, like that of determining the information content of a graph,
requires a method for finding partitions, H-partitions in this case [8,21]. In this section, we derive some
basic properties of H-entropy and determine this quantity for several classes of graphs.

3.1. Properties of the H-Entropy

As mentioned earlier, this paper focuses on properties of the H-entropy of graphs related to the
number of orbits of the automorphism group. The H-entropy of a graph G is based on distance between
vertices. For a vertex x ∈ V(G), the total distance of x ∈ V(G) is defined as D(x) = ∑u∈V(G) d(x, u).

Theorem 1. If G is a vertex-transitive graph, then D(u) = D(v) for all vertices u, v ∈ V(G).
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Proof. For any two vertices u, v ∈ V(G), given that G is vertex-transitive, there is an automorphism
ϕ ∈ Aut(G) such that ϕ(u) = v. Hence

D(u) = ∑
x∈V(G)

d(u, x) = ∑
x∈V(G)

d(ϕ(u), ϕ(x)) = ∑
y∈V(G)

d(v, y) = D(v).

Corollary 1. Suppose u and v are in the same orbit of Aut(G), then u and v are H-equivalent. If G is
vertex-transitive, then H(G) = 0.

Although, each pair of similar vertices (i.e., vertices in the same orbit) are H-equivalent,
the converse is not generally true. For example, the two vertices u and v shown in Figure 1 are
H-equivalent, but they are in different orbits. Moreover, the condition D(u) = D(v) for two arbitrary
vertices ∈ V(G) does not guarantee that they are H-equivalent. Figure 2, gives an example in which
D(u) = D(v), but u and v are not H-equivalent.

Figure 1. The vertices u and v are H-equivalent but in different orbits.

u v

Figure 2. Two vertices with the same total distance which are not H-equivalent.

From Corollary 1, it is clear that if G is a vertex-transitive graph, then H(G) = 0. However, there
are many examples of non-vertex-transitive graph with zero H-entropy, see for example the graph
shown in Figure 3.

Figure 3. A non-vertex-transitive graph on 10 vertices with zero H-entropy.

Example 1. Let G be a finite group with binary operation ? and S ⊆ G, a non-empty subset containing an
inverse for every element but no identity element. The Cayley graph X = Cay(G, S) is a graph with vertex set
V(G) = G in which any two vertices x and y are adjacent if and only if y ? x−1 ∈ S. Each Cayley graph is
vertex-transitive and, thus, the H-entropy of X is zero. For example consider the cyclic groupZ4 = {e, x, x2, x3}
and suppose S = {x, x3 = x−1}. The corresponding Cayley graph is isomorphic with the cycle graph C4.
For more details about the Cayley graphs, see [22].
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Example 2. A distance-transitive graph is defined as follows. For pairs of vertices x, y and u, v in V(G),
there exists an automorphism of the graph that carries u to x and v to y, whenever dG(x, y) = dG(u, v).

Every distance-transitive graph G is vertex-transitive and, thus, H(G) = 0.

Example 3. Hamming graphs [23] constitute a special class of graphs used in several branches of mathematics
and computer science. Let S be a set of q elements and n a positive integer. The vertex set of the Hamming graph
H(n, q) is the set of ordered n-tuples of elements of S and two vertices u = (u1, . . . un) and v = (v1, . . . vn) are
adjacent if they differ in one position only. It is a well-known fact that all Hamming graphs are distance-transitive
and, hence, H(G) = 0. For example, the cube Q3 is a Hamming graph, see Figure 4.

000 010

100 110

001 011

111101

Figure 4. The hypercube Q3 is a Hamming graph.

Recall the following theorem stated earlier.

Theorem 2 ([8]). If G is a regular graph with diameter ρ(G) = 2, then H(G) = 0.

A regular graph with n vertices and degree k is said to be strongly regular if there are integers λ

and µ such that every two adjacent vertices have λ common neighbors and every two non-adjacent
vertices have µ common neighbors. The following result can be derived from Theorem 2.

Corollary 2. If G is a strongly regular graph, then H(G) = 0.

Proof. It is well-known that each strongly regular graph is regular of diameter 2. The conclusion
follows from Theorem 2.

Theorem 3. Let G be a connected graph on n vertices with the maximum value of H-entropy. Then Aut(G)

consists of the identity alone.

Proof. Let X1, · · · , Xh be the set of all H-equivalence classes of G. By the definition of H-entropy one
can see that

H(G) = −
h

∑
i=1

|Xi|
|V| log

(
|Xi|
|V|

)

= −
h

∑
i=1

|Xi|
|V| [log (|Xi|)− log (|V|)]

= log (n)− 1
n

h

∑
i=1
|Xi| log (|Xi|) .
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Clearly, H(G) reaches the maximum value log(n) if A = ∑h
i=1 |Xi| log (|Xi|) = 0. Since for each

i(1 ≤ i ≤ h), |Xi| ≥ 1, we have A = 0 if and only if |Xi| = 1, for 1 ≤ i ≤ h. Hence, Corollary 1 implies
that all orbits of Aut(G) are singleton sets and the assertion follows.

The converse of Theorem 3 is not true. For example consider the graph G shown in Figure 5.
Then Aut(G) consists of the identity alone, but H(G) 6= 0, since 2 and 5 are in the same H-partition.

2

3

4 5

1 6

Figure 5. A graph whose automorphism group consists of the identity alone with non-zero H-entropy.

Lemma 1 ([8]). If G is a connected regular graph of degree greater than n/2, then H(G) = 0.

Theorem 4. Let n be an even number and G be an r-regular edge-transitive graph of order n, where r ≥ n/2.
Then H(G) = 0.

Proof. If G is a regular graph of degree greater than n/2, then by Lemma 1 we infer H(G) = 0.
Suppose G is a regular edge-transitive graph of degree n/2. We claim that G is vertex-transitive.
On the contrary, suppose G is not vertex-transitive. Then following [22], G is a regular bipartite graph
of degree n/2, which implies that G is isomorphic to K n

2 . n
2
, thus contradicting our hypothesis. Hence,

G is vertex-transitive and the conclusion follow form Corollary 1.

Theorem 5. Let G be a graph with at least five vertices that is edge-transitive but not bipartite, all of whose
vertices are of odd degree. Then H(G) = 0.

Proof. Similar to the proof of Theorem 4, one can show that G is vertex-transitive and the result
follows from Corollary 1.

3.2. H-Entropy of Product Graphs

In this section, we derive explicit formulas for the H-Entropy of some well known graph
products. Included here are the cartesian product, join, corona and lexicographic product. For detailed
information about these graph products, see [24].

Cartesian Product.
Given graphs A and B, the cartesian product A × B is defined as the graph on the vertex set

V(A)× V(B) with u = (u1, u2) and v = (v1, v2) adjacent if and only if either ([u1 = v1 and u2v2 ∈
E(B)]) or ([u2 = v2 and u1v1 ∈ E(A)]). This operation is illustrated in Figure 6.

Figure 6. The cartesian product of two graphs.
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Theorem 6. Let A and B be graphs in which a and x are H-equivalent in A, and b and y are H-equivalent in
B. Then (a, b) and (x, y) are H-equivalent in A× B.

Proof. Appealing to the definition, we conclude

|Si(x, y)| = |{(a, b) : dA×B ((x, y), (a, b)) = i}|
= |{(a, b) : dA(x, a) + dB(b, y) = i}|

=
i

∑
j=0
|Sj(A, x)| × |Si−j(B, y)|,

where for j, i − j ≥ max{ρ(A), ρ(B)} we have |Sj(x)| × |Si−j(y)| = 0. Since, a is H-equivalent to x,
and b is H-equivalent to y, the result follows.

Corollary 3. Suppose (a, x) and (b, y) are H-equivalent in A× B. If a and b are H-equivalent in A, then x
and y are H-equivalent in B.

Proof. Suppose (a, x) and (b, y) are H-equivalent in A× B. This means that Si(a, x) = Si(b, y) for
1 ≤ i ≤ ρ. Then if a, b are H-equivalent in A, Theorem 6 yields that Si(x) = Si(y) and thus x and y are
H-equivalent.

Lemma 2 ([24]). Let A and B be graphs, satisfying (|A|, |B|) = 1. Then Aut(A × B) is isomorphic to
Aut(A)× Aut(B).

Theorem 7. Let A and B be two graphs and A be vertex-transitive, where (|A|, |B|) = 1. Then
H(A× B) = H(B).

Proof. If A is vertex-transitive, then (x, y)Aut(A×B) = V(A)× yAut(B). Hence,

H(A× B) = − ∑
y∈V(B)

[
|V(A)| × |yAut(B)|
|V(A)| × |V(B)| log

|V(A)| × |yAut(B)|
|V(A)| × |V(B)|

]
= H(B).

Join
The join G = A + B of graphs A and B with disjoint vertex sets V1 and V2 and edge sets E1 and

E2 is the graph union A ∪ B, where each vertex of V1 is adjacent with all vertices of V2, see Figure 7.

Figure 7. The join product of two graphs.

Let A and B be two r-regular graphs with n vertices. Then A + B is r + n-regular of diameter 2
and by Theorem 2, we infer H(A + B) = 0.

Theorem 8. Suppose A and B are r-regular graphs. If vertices a, b ∈ A + B are H-equivalent, then |V(A)| =
|V(B)|.

Proof. By definition, we get |Si(a)| = |Si(b)|, for i = 1, 2. From |S2(a)| = |S2(b)|, we conclude that
|V(A)| − |S1(a)| − 1 = |V(B)| − |S1(b)| − 1. Finally, |S1(a)| = |S1(b)| implies |V(A)| = |V(B)|.
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Corona
Let A and B be graphs with n1 and n2 vertices, respectively. The corona product A ◦ B is a graph

obtained from A and B by taking one copy of A and n1 copies of B and then joining each vertex from
the ith copy of B with the ith vertex of A, see Figure 8.

Figure 8. The corona product of two graphs.

Let uj
i denote the vertex in the jth copy of B corresponding to vertex vi ∈ A, and let Bj represent

the jth copy of B.

Theorem 9. Suppose A and B are two graphs with vertex sets {v1, · · · , vn1} and {u1, · · · , un2}, respectively.
Then

(i) If vr, vs ∈ V(A) are H-equivalent, then vr, vs in A ◦ B are H-equivalent.
(ii) If ur, us ∈ V(Bi) are H-equivalent, then ur, us in A ◦ B are H-equivalent.

(iii) If vr ∈ V(A) and ur ∈ V(Br), then vr, ur in A ◦ B are not H-equivalent.
(iv) If vr, vs ∈ V(A) are H-equivalent, then ur

r ∈ Br and us
s ∈ Bs are H-equivalent in A ◦ B.

Proof. (i) Let vr, vs ∈ V(A) be H-equivalent. It is clear that |S1(A ◦ B, vr)| = |S1(A, vr)|+ n2. For
2 ≤ i ≤ ρ(A ◦ B) and t 6= r, we obtain

|Si(A ◦ B, vr)| = |{vt ∈ A|dA(vr, vt) = i|+ |{ut
k ∈ Bt|dA(vr, vt) = i− 1}|.

So, |Si(A ◦ B, vr)| = |Si(A, vr)|+ n2|Si−1(A, vr)|. This means that for 1 ≤ i ≤ ρ(A ◦ B), we have
|Si(A ◦ B, vr)| = |Si(A ◦ B, vs)|.

(ii) Let ur
r, ur

s ∈ Br be H-equivalent. Then |S1(A ◦ B, ur
r)| = |S1(B, ur

r)|+ 1 and

|S2(A ◦ B, ur
r)| = |S1(A, vr)|+ n2 − |S1(Br, ur

r)|.

If 3 ≤ i ≤ ρ(A ◦ B) and t 6= r, then

|Si(A ◦ B, ur
r)| = |{vt ∈ A|dA(vr, vt) = i− 1}|

+ |{ut
k ∈ Bt|dA(vr, vt) = i− 2}|

This means that, |Si(A ◦ B, ur
r)| = |Si−1(A, vr)|+ n2|Si−2(A, vr)|. Hence, for 1 ≤ i ≤ ρ(A ◦ B),

|Si(A ◦ B, ur
r)| = |Si(A ◦ B, ur

s)|.
(iii) Since the degree of each vertex in V(A) is greater than the degree of vertices in Br, they are not

H-equivalent.
(iv) The proof is similar to the one of (ii).

Corollary 4. The H-entropy of A ◦ B is greater than zero.

Proof. By Theorem 9(iii), the vertices of A are not H-equivalent to the ith copy of B and thus there
are at least two vertices a ∈ A and b ∈ Bi such that a and b are not H-equivalent in G. Hence,
H(A ◦ B) 6= 0.
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Lexicographic product
Let A and B be graphs having disjoint vertex sets V1 and V2 with |V1| = n1, |V2| = n2, and edge

sets E1 and E2 with |E1| = m1, |E2| = m2. The lexicographic product or composition G = A[B] of A
and B is the graph with vertex set V1 ×V2, in which u = (u1, v1) is adjacent to v = (u2, v2) whenever
u1 is adjacent to u2, or u1 = u2 and v1 is adjacent to v2, see Figure 9.

Figure 9. The lexicographic product of two graphs.

Theorem 10. Let u = (u1, v1) and v = (u2, v2) be two vertices of A[B]. If u1 and u2 are H-equivalent in A
and v1 and v2 are H-equivalent in B, then u and v are H-equivalent in A[B].

Proof. From the definition, if u1 = u2 and v1v2 ∈ E(B), then dA[B]((u1, v1), (u2, v2)) = 1; and if
u1 = u2 and v1v2 /∈ E(B), then dA[B]((u1, v1), (u2, v2)) = 2. Also, if u1 6= u2, dA[B]((u1, v1), (u2, v2)) =

dA(u1, u2). This implies that

|S1(u)| = n2|S1(A, u1)|+ |S1(B, v1)|,
|S2(u)| = n2|S2(A, u1)|+ n2 − 1− |S1(B, v1)|,

and if 3 ≤ i ≤ ρ(A[B]), then Si(u) = n2|Si(A, u1)| and the proof is complete.

3.3. H-entropy of Graphs with Two Orbits

In this section, we trace implications of the conditions under which a graph has two vertex-orbits
and at most two H-equivalence classes.

Definition 1. A graph G is called co-distant, if for every pair of vertices u, v ∈ V(G), u and v have the same
total distance, i.e., D(u) = D(v).

It is clear that each vertex-transitive graph is a co-distant, but there are many classes of
non-transitive co-distant graphs. Consider the graph G in Figure 10. This graph has two orbits
namely V1 = {1, 2, 5, 6, 8, 12} and V2 = {3, 10, 4, 7, 11, 9}. The distance matrix of this graph shows that
ρ(G) = 4 and D(1) = D(3) while the H-entropy of G is 1.

11

9

6

7

8

3

4

5

1

212

10

Figure 10. A cubic co-distant graph of diameter 4 with non-zero H-entropy.

Theorem 11. Let G be a graph with two orbits. Then H(G) = 0 or H(G) = Ia(G).

Proof. Suppose G has two orbits V1 and V2. If V1 ∪ V2 is a H-partition of G, then clearly H(G) =

− log 1 = 0. If V1 and V2 are two distinct H-partitions, then H(G) = Ia(G).
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Corollary 5. Let G be a connected edge-transitive graph but not vertex-transitive. Then H(G) = 0 or
H(G) = Ia(G).

Proof. Under the above conditions, one can prove that if H(G) 6= 0, then G is bipartite and Aut(G)

has two orbits that form a bipartition of V(G). Applying Theorem 11 concludes the proof.

Corollary 6. Suppose G is a graph whose H-entropy is zero. Then G is not a tree. More generally, G is a
regular graph.

Proof. If H(G) = 0, then by Theorem 11, H has only one H-equivalence class and thus for two
arbitrary vertices u, v ∈ V, |S1(u)| = |S1(v)|. Hence G is a regular graph and this completes the
proof.

Let G be a graph with two orbits V1 and V2, where |V1| = n1, |V2| = n2 and V1 and V2 are not
H-equivalent. Since |V2| = n2 = n− n1, by substituting n1 and n2 in Equation 2, we have

H(G) =
n1

n
log

n
n1

+
n− n1

n
log

n
n− n1

. (3)

Equation (3) allows for proving the following result.

Theorem 12. Suppose G is a graph with two orbits V1 and V2 and with non-zero H-entropy. Then, H(G) = 1
if and only if n is even and |V1| = |V2| = n/2.

Theorem 13. Let G be a regular graph with two orbits V1 = uAut(G) and V2 = vAut(G), where the diameter of
G is less than 4. If G is co-distant, then H(G) = 0.

Proof. If ρ(G) ≤ 2, then according to Theorem 2, H(G) = 0. Suppose G is an r-regular graph of
diameter ρ(G) = 3. Then the entries of the u-th and v-th rows of distance matrix are 1r, 2a, 3b and
1r, 2a−k, 3b+k, respectively, where a and b are non-negative integers such that a + b = n− r− 1. Since
D(u) = D(v), we have 2(a− k) + 3(b + k) = 2a + 3b which implies k = 0. This means that the number
of 2’s and 3’s in the u-th and v-th rows of the distance matrix are the same and, thus, u and v are
H-equivalent.

3.4. H-Entropy of Trees and Graphs with Two Orbits

Let Sn and Wn be the star graph and the wheel graph on n vertices, respectively. The bi-star graph
Bm,n is a graph obtained from the union of Sn+1 and Sm+1 by joining their central vertices. Also let
Sn,m be a tree with a central vertex of degree n, n vertices of degree m + 1 and nm pendant vertices,
see Figure 11. Finally, suppose, SBm,n is a graph obtained from two copies of Sn,m by joining the
central vertices.

Figure 11. Graph Sn,m, where n = 6 and m = 2.

Theorem 14 ([24]). Every tree T contains an edge or a vertex that is invariant under each automorphism of T.
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In what follows, a 2-graph is defined by having an automorphism group with exactly two orbits.
A k-graph can be defined similarly.

Theorem 15. Let T be a 2-tree on n vertices. Then T is isomorphic to Sn or T is isomorphic to Bt,t, where
t = n

2 − 1.

Proof. Suppose Aut(T) has two orbits and T has a central vertex w. The central vertex forms a
singleton orbit since for each automorphism α ∈ Aut(T), we have α(w) = w. But T has only two
orbits, so the other vertices are in the same orbit. Since every tree has at least two vertices of degree
1, all vertices in the second orbit are pendant and adjacent to the central vertex. This means that T
is isomorphic to Sn. If T has a central edge, a similar argument shows that T is isomorphic to Bt,t,
where t = n

2 − 1.

Corollary 7. Let T be a 2-tree on n ≥ 3 vertices. Then one of the following cases holds:

(i) T is isomorphic to Sn and H(T) =
log n

n
+

n− 1
n

log
n

n− 1
.

(ii) n = 2m + 2, T is isomorphic to Bm,m and H(T) =
1

m + 1
log(m + 1) +

m
m + 1

log(
m + 1

m
).

Theorem 16. Let T be a 3-tree on n vertices. Then T is isomorphic to Sn,m or T is isomorphic to SBn,m.

Proof. Suppose T is a tree with a central vertex w. The other vertices of T include the pendant vertices
and vertices of degree i, where i ≥ 2. We know {w} is a singleton orbit and the vertices of degree 1
also form an orbit. Hence, the other vertices necessarily have the same degree and constitute the third
orbit. This implies that T is isomorphic to Sn,m. If T has a central edge, a similar argument shows that
T is isomorphic to SBn,m.

Theorem 17. Let G be a 2-graph with non-zero H-entropy. Then H(G) =
log n

n
+

n− 1
n

log
n

n− 1
if and

only if G is isomorphic to K1 +H, whereH is a vertex-transitive graph.

Proof. If G = K1 +H, where H is a vertex-transitive, then G has two orbits: A singleton orbit and

an orbit of size n − 1. The conclusion follows from Equation (3). Conversely, if H(G) =
log n

n
+

n− 1
n

log
n

n− 1
, then

H(G) = −(n− 1
n

log
n− 1

n
+

1
n

log
1
n
). (4)

Since Aut(G) has two orbits and H(G) is non-zero, the orbits and H- partitions are the same and
Equation (4) implies that |H1| = 1 and |H2| = n− 1 which completes the proof.

4. Distance Entropy

The H-entropy of a graph G is based on the distance between the vertices of G. We examine here
the well known distance-based Wiener index. This index was originally defined as one half of the sum
of the distances between every pair of vertices in a graph, see [25]. More precisely, the Wiener index
of a graph G is given by W(G) = 1

2 ∑u∈V(G) D(u). Hence, if G is vertex-transitive, W(G) = n
2 D(u),

where u ∈ V(G) is an arbitrary vertex.



Symmetry 2019, 11, 1013 11 of 14

Let G be a graph with Wiener index W(G). Bonchev and Trinajstic [2] developed a distance-based
entropy measure using a partition defined by sets of vertices having the same distance characteristics,
as follows:

ID(G) = − ∑
u∈V(G)

D(u)
2W(G)

log
(

D(u)
2W(G)

)
.

Clearly, if G is vertex-transitive, then

ID(G) = −nD(u)
nD(u)

log
(

nD(u)
nD(u)

)
= 0.

Also, if G has two orbits V1 and V2 where |V1| = n1 and |V2| = n2 then

ID(G) = −n1D(u)
2W(G)

log
(

n1D(u)
2W(G)

)
− n2D(v)

2W(G)
log
(

n2D(v)
2W(G)

)
,

where u ∈ V1 and v ∈ V2. If G is a co-distant graph, then ID(G) = 0 while the H-entropy is not
necessarily zero. For example, consider the graph G shown in Figure 10. This graph is co-distant on 12
vertices with automorphism group C2× S4. The automorphism group Aut(G) has two orbits and G has
non-zero H-entropy. In other words, the vertices 1 and 3 are not H-equivalent. Their distance degree
sequences are (0, 3, 2, 4, 1, 3, 1, 3, 1, 2, 4, 3) and (2, 4, 0, 2, 2, 4, 3, 1, 1, 4, 3, 1), respectively. On the other
hand, D(1) = D(3) = 27 and its Wiener index is 162. In general, if G has n vertices, the total distance
of a vertex in G is D(u) = 3n2/16, if 8 does not divide n, and D(u) = 3n2/16 + n/4, if 8 divides
n. Hence, the Wiener index is W(G) = 3n3/32 if 8 does not divide n, and W(G) = 3n3/32 + n/4,
otherwise. Thus, the distance entropy of this class of graphs is zero while the H-entropy is not zero.

By exhaustive analysis, we have found that up to isomorphism, there are exactly 12 co-distant
regular graphs of order at most 12 with two orbits and diameter ρ(G) ≥ 3.

To obtain this result, we first generated all regular graph up to 12 vertices using the program of
Nauty [26], and then we selected all graphs with diameter greater than 2 and less than or equal n/2
having two orbits. This generation process was done with an R-package [27] called igraph. Graphs
with more than one H-equivalence class were then identified. The only graph in this set having
non-zero H-entropy is the one labeled G in Figure 8; all the others in this set have distance entropy
0. Our results shows that when a graph is co-distant, the distance entropy does not capture enough
structural information to discriminate co-distant graphs, since ID(G) is zero for all of them.

5. Numerical Results

In this section, we investigate some numerical results about the H-entropy of co-distant 2-graphs.
Consider the graph G of order 24 in Figure 12. This graph has two orbits of size 12, where the orbit
representatives are vertices u and v. Hence, the H-entropy is

H(G) = −(12
24

log
12
24

+
12
24

log
12
24

) = 1. (5)
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v
u

Figure 12. A co-distant 2-graph of order 24 with two H-equivalence classes of the same size.

Now consider the graph G of order 21 in Figure 13. This graph has two orbits of sizes 7 and 14,
where the orbit representatives are the two vertices u and v. Hence, the H-entropy is

H(G) = −( 7
21

log
7

21
+

14
21

log
14
21

) ≈ 0.92. (6)

u
v

Figure 13. A co-distant 2-graph of order 21 with two H-equivalence classes of different sizes.

This means that for co-distant 2-graphs of the same order, the H-entropy of a graph X with two
H-equivalence classes of the same size is greater than that of a graph Y whose H-equivalence classes
do not satisfy this condition. In general, the H-entropy of every graph with two H-equivalence classes
can be computed by the following function:

f (i) =
i
n

log
n
i
+

n− i
n

log
n

n− i
, (7)

where i (1 ≤ i ≤ n − 1) and n − i are the size of H-equivalence classes of G. By computing the
first derivative of f in Equation (7), we conclude that i = n

2 is an extremum point and f ( n
2 ) = 1.

The diagram of f for all 1 ≤ i ≤ n− 1 is shown in Figure 14. In general, the following theorem holds.

f (i)

1

0 1 2 3 · · · n
2 · · · n

i

Figure 14. The function f (i) = i
n log n

i +
n−i

n log n
n−i , n = 10 and 1 ≤ i ≤ 9.
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Theorem 18. Let G be a graph on n vertices with k orbits V1, . . . , Vk, where k|n. Then H(G) ≤ log k and
equality holds if and only if |V1| = . . . = |Vk| = n

k .

Proof. Let G have k Hosoya equivalence classes H1, . . . , Hk, where |Hj| = ik and i1 + . . . + ik = n. By
induction on k, one can see that the function

f (i1, . . . , ik) =
i1
n

log
n
i1

+ . . . +
ik
n

log
n
ik

reaches the maximum value if i1 = . . . = ik =
n
k and hence f (i1, . . . ik) = log k, see Figure 15.

Theorem 18 implies that among all co-distant k-graphs on n vertices, a graph whose H-equivalence
classes have the same size is one with the maximum value of H-entropy. This means that the H-entropy
is a powerful measure for discriminating graph structure. In contrast, the distance-entropy for all
co-distant graphs is zero which means that this measure does not capture enough structural information
to discriminate between co-distant graphs.

f (i)

log(k)

...

log(3)

log(2)

0 n
2 n

i

Figure 15. The maximum values of function f (i1, . . . , ik) in Theorem 18.

6. Summary and Conclusions

In this paper we have investigated the Hosoya-entropy of some classes of graphs such as trees and
product graphs. We also characterized the H-entropy of graphs whose automorphism group possesses
exactly two vertex-orbits. In particular, we have solved the problem for trees. Also, we obtained some
new results regarding automorphisms of trees. We showed that up to isomorphism, there exists only
one graph G of order less than or equal 12 that is regular, with diameter greater than 2, and whose
automorphism group has exactly two orbits. Finally, we have investigated the topological information
content ID(G) of a graph. We found that the distance-based entropy ID(G) vanishes for co-distant
graphs, which suggests a need to develop further measures to discriminate co-distant graphs.

In future research, we plan to investigate the Hosoya entropy for more complex graph classes.
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