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Genomics data provide great opportunities for translational research and

the clinical practice, for example, for predicting disease stages. However,

the classification of such data is a challenging task due to their high dimen-

sionality, noise, and heterogeneity. In recent years, deep learning classifiers

generated much interest, but due to their complexity, so far, little is known

about the utility of this method for genomics. In this paper, we address this

problem by studying a computational diagnostics task by classification of

breast cancer and inflammatory bowel disease patients based on high-

dimensional gene expression data. We provide a comprehensive analysis of

the classification performance of deep belief networks (DBNs) in depen-

dence on its multiple model parameters and in comparison with support

vector machines (SVMs). Furthermore, we investigate combined classifiers

that integrate DBNs with SVMs. Such a classifier utilizes a DBN as repre-

sentation learner forming the input for a SVM. Overall, our results provide

guidelines for the complex usage of DBN for classifying gene expression

data from complex diseases.

Technological progress in the generation of genome-

scale high-throughput data has led to a flood of data

on the DNA, RNA, and protein levels [1]. These data

provide new and exciting opportunities for studying

molecular mechanisms to enhance our understanding

in basic biology and medicine [2–5]. Particularly for

the latter field, new avenues open toward a personal-

ized or precision medicine, both heavily based on

genomic medicine [6–9]. However, challenges for the

analysis of such data, for example, for classifying

disease stages of patients, are their high dimensional-

ity, noise, and the heterogeneity of the underlying

patient samples, especially for gene expression data.

For this reason, the major purpose of this paper was

to investigate deep learning (DL) classifiers for the

computational diagnostics of two complex disorders,

breast cancer and inflammatory bowel disease (IBD),

based on gene expression data.

Deep learning is a new methodology currently

receiving much attention [10]. DL corresponds to a set
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of learning algorithms that can be used to learn com-

plex representations, for example, via multilayer neural

networks with many hidden units [11,12]. So far, DL

has been successfully applied to many problems where

it achieved excellent results. For instance, a DL

method set a new record for the classification of hand-

written digits of the MNIST data set with an error

rate of 0.21% [13]. Further application areas are image

recognition [10,11,14], speech recognition [15], natural

language understanding [16], and acoustic modeling

[17]. Also in computational biology, DL has been used

for analyzing DNA data [18–20]. For instance, in

molecular biology regulatory mechanisms have been

studied, for example, for understanding forms of alter-

native splicing or predicting protein binding sites.

However, very little is known about analyzing gene

expression data [21]. Only recently [22] investigated the

tumor classification of different cancers by introducing

methods called sample expansion-Based SAE and sam-

ple expansion-based 1DCNN (SE1DCNN), both based

on autoencoders. Unfortunately, their analysis was

conducted for very small data sets making the statisti-

cal interpretation difficult. It is revealing that a recent

review by [23] does not provide one example for the

classification of gene expression data by any DL

method and the review by [24] merely mentioned the

study by [21]. This illustrates the current lack of

understanding about DL in genomics.

In this paper, we will study deep belief network

(DBN), a particular form of DL methods. A DBN is

an artificial neural network (ANN) model that is

trained in two phases. In the first phase, called pre-

training, a restricted Boltzmann machine (RBM) is

used to initialize the network model. This phase is

unsupervised. In the second phase, called fine-tuning,

this model is then processed in a supervised manner.

We examine two algorithms for computing the error

gradients of stochastic gradient descent (SGD), used

for optimizing the model in the fine-tuning phase.

These two algorithms are called backpropagation

(Bprop) and resilient backpropagation (Rprop),

whereas the latter is a more efficient advancement of

Bprop [25]. In addition, we examine autoencoders that

are learned by a similar two-phase process [26]. For

reasons of comparison, we study support vector

machines (SVMs) using the efficient LIBSVM imple-

mentation [27].

Deep learning methods are known to be very com-

plex models compared to conventional methods, for

example, SVMs or random forests [28]. This complex-

ity comes with respect to the choice of the available

model parameters (architecture of the neural network,

number of neurons per unit, learning rates, etc.) but

also the required computational resources for their

execution, usually, demanding the usage of a computer

cluster – as is needed for our analysis. In order to

obtain insights into the working mechanisms of DL

methods for the diagnostic classification of gene

expression data, we perform comprehensive analyses

centered around DBNs. Major aspects of our investi-

gations include studying the influence of the network

architecture, choice of the algorithm for the fine-tuning

phase, and regularization methods.

A second major objective of this paper was to inves-

tigate the integration of DBNs with SVMs. Put simply,

this means we are using a hidden unit of the learned

network structure as input layer for a SVM. This can

be seen as a feature selection mechanism for the SVM

because the DBN is used as a representation learner.

Specifically, we investigate the integration of DBN

with Bprop and SVM, DBN with Rprop and SVM,

RBM-learned representations and SVM, and auto-

encoder-learned representations and SVM.

In order to obtain robust results, for our analysis

we are using two gene expression data sets for complex

disorders: (a) breast cancer and (b) IBD. In contrast

to single-gene disorders, for example, sickle cell anemia

or cystic fibrosis, complex or multifactorial disorders

are caused by the synergy of genetic, environmental,

and lifestyle factors [29,30]. One common property of

complex disorders is that the genetic predisposition is

inheritable, but the development is determined by the

lifestyle and environment of individuals. Another fea-

ture is that the predisposition or susceptibility is deter-

mined by multiple genes, sometimes by hundreds.

Cancers are different from most complex disorders in

that most of them are nonhereditary (sporadic) can-

cers. In contrast, hereditary cancers are caused by

mutations in DNA repair genes, whereas most of the

sporadic cancers have currently an indefinite molecular

basis for their genetic instability that promotes their

development [31]. Also IBD is a complex disorder.

Two of its main subtypes are ulcerative colitis (UC)

and Crohn’s disease. In our analysis, we will study the

classification of both IBD types, also in combination

with samples from control patients.

In contrast to previous investigations analyzing DL

for genomics data, our study is different with respect

to the following points. First, we are using gene

expression data from DNA microarray experiments,

which are currently understudied in genomics. This

complements studies using DNA sequence data, for

example, [18–20]. Second, the sample size of the data

sets we are studying is sufficiently large allowing to

obtain statistically robust results. In genomics, this

does not hold for every data set, especially, in a
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clinical context when the data are derived from patient

– as is the case for our data sets. Third, we study the

integration of a DBN with a SVM. This complements

studies focusing on either of these classifiers in isola-

tion or using nongenomic data [16]. Our results will

provide guidelines for the complex usage of DL meth-

ods for diagnosing gene expression data from breast

cancer and IBD patients.

Our paper is organized as follows. In the next sec-

tion, we present the methods we use to analyze the

data. Then, we present our results and a discussion

thereof. We finish this paper with concluding remarks.

Methods

Deep learning models

There are a number of different learning algorithms avail-

able that can be used to build DL models for supervised

learning problems. Examples for such models are convolu-

tional neural networks (CNNs), DBNs, multilayer percep-

trons (MLPs) and recurrent neural networks (RNNs)

[11,32]. Each of these four models could be used to build a

supervised DL model. In the following, we discuss them

briefly and explain why we selected a DBN for our analy-

sis.

Currently, CNNs are the dominating model for tasks

involving computer vision [11]. CNNs are particularly

effective in situations where the data consist of multiple

arrays and nearby values of data arrays are correlated with

each other, as can be found in images, videos, or sound

data. Originally, CNNs were developed to simulate the

visual cortex of humans and CNNs take advantage of the

properties exhibited by natural signals. The name ‘convolu-

tion’ indicates that CNNs apply mathematical convolution

operations for the processing of information.

Recurrent neural networks are commonly used in tasks

involving sequential input data, such as speech data, music,

or text data [33]. Also, such a sequential input implies a

certain correlation structure between the input data because

the order of the data is fixed and cannot be arbitrarily cho-

sen. In contrast to MLPs and CNNs which are feedforward

networks, RNNs are recurrent networks containing cycles

and feedback loops. This makes them potentially more

complex models than feedforward neural networks, but

introduces also problems making them more difficult to

handle [11].

Only recently, DL models have been used in computa-

tional biology. For instance, in [34] binding sites of RNA-

binding proteins were predicted using DBNs. For their

analysis, they used different types of RNA data to make

the predictions. Specifically, they used the primary

sequence, the secondary structure, and the tertiary structure

of RNAs as input data. Another interesting fact of their

analysis is that they used a multimodal DBN, whereas the

input comes from multiple separate layers which are corre-

lated with each other, as is the case for the different types

of RNA data. Another example study used a deep convolu-

tional network for predicting protein binding on DNA and

RNA sequences [20].

Considering the brief history of DL models for general

applications and specifically for problems in computa-

tional biology, there is currently no verdict about the

best DL model for gene expression data. From the avail-

able information of previous studies, it looks that RNNs

are not the best choice for analyzing gene expression

data, because RNNs have been used mainly for sequen-

tial data with a correlation structure of nearby input

data. Gene expression data do not possess such a

sequential ordering and, hence, lack the properties of

sequential data entirely. Similar arguments can be raised

against CNNs [20]. This leaves MLPs and DBNs as

potential candidates, because both models have been used

successfully in versatile tasks. For our study, we decided

to use DBNs and autoencoders as DL models because

among the few conducted studies in computational biol-

ogy some utilize DBNs and our study can further enrich

the literature to come to a more complete understanding

of DBN for genomics data.

In the following sections, we discuss DBNs in more

detail, and then, we study their abilities in isolation and

combination with SVMs.

Deep belief networks

Neural networks have been studied since many years [35–

37], but recently, they gained new interest due to method-

ological progress in DL [10]. For our analysis, we are using

DBNs. DBNs use, first, a RBM to initialize the model and

then a supervised method for tuning of the parameters [32].

These steps are called pretraining and fine-tuning. For fine-

tuning, the SGD and the basic backpropagation (Bprop)

algorithm are commonly used. In addition, we are using

the Rprop algorithm, which is a faster variation of the

basic backpropagation algorithm.

Unsupervised pretraining

Neural networks can be trained via purely supervised learn-

ing methods; however, a suitable initialization of the model

parameters, that is, the weights and biases, can make the

learning faster and improve the performance [11]. The

introduction of the RBM for an unsupervised initialization

of the parameters [10,38] allowed the training of deep

architectures that achieved better performance than shallow

architectures.

Pretraining of DBNs consists of stacking RBMs, so that

the next RBM in a chain is trained using the previous
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hidden layer as its visible layer, in order to initialize param-

eters for each layer. It can be shown that this is an efficient

approach [39]. The choice of how many layers are trained

and in what order can be decided freely. For example, the

last layer can be trained first and then after a number of

epochs the remaining preceding layers [10]. The RBM

model we study uses binary units and the contrastive diver-

gence (CD) algorithm, a method for approximating log-

likelihood of the RBM.

Supervised fine-tuning

After the neural network parameters for each layer – the

weights W and the biases b – have been initialized by

RBMs, the parameters can then be tuned more in order to

improve the model further. This second stage of DBN

learning is called fine-tuning, which uses the class-label

information of the training data set that was omitted in

pretraining.

We want to build models that can fit new samples well,

that is, generalize well. This requires mathematical opti-

mization. We achieve this by minimizing an error function

(sometimes called loss function). The mean squared error

(MSE) is given by:

E ¼ 1

n

Xn
i¼1

koi � tik2: ð1Þ

In Eqn 1, oi = f(xi) is the ith output from the network

function f : Rm ! R
n given the ith input xi from the train-

ing set D ¼ Dtrain ¼ fðx1; t1Þ; . . .ðxl; tlÞg and ti is the desired

(target) output.

Similarly to maximizing the log-likelihood of RBM via

gradient ascent, we use gradient descent to find the parame-

ter configuration that minimizes the error function.

hðtþ1Þ ¼ hðtÞ � DhðtÞ

¼ hðtÞ � g
o

ohðtÞ

�Xl

i¼1

EðvijhðtÞÞ
�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{DhðtÞ

�khðtÞ þ mDhðt�1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{Regularization

ð2Þ
Here, the parameters are the learning rate g, the

weight-cost k, and momentum m.
Usually, the gradient is not calculated using the whole

training data set D at once, but instead via SGD with smal-

ler mini-batches. For estimating the gradient of the error

function with respect to the weights and biases in each hid-

den layer and output layer, the backpropagation algorithm

is the standard approach for this [11].

Let us denote ai
l the activation of the ith unit in the lth

layer (l ε {2, . . ., L}), bti the corresponding bias, and wl
ij the

weight for the edge between the jth unit of the (l � 1)th layer
and the ith unit of the lth layer. If the neuron has an activation
function, φ, then the activation of the lth layer with the (l � 1)
th layer as input is al ¼ uðzðlÞÞ ¼ uðwðlÞaðl�1Þ þ bðlÞÞ. The fol-
lowing four equations can be derived, see [40]:

dðLÞ ¼ raE � u0ðzðLÞÞ
dðlÞ ¼ ððwðlþ1ÞÞTdðlþ1ÞÞ � u0ðzðlÞÞ
oE
obðlÞ

i

¼ dðlÞi
oE
owðlÞ

ij

¼ x
ðl�1Þ
j dðlÞi

8>>>>><
>>>>>:

: ð3Þ

In Equation 3, dL is the vector of errors of the output

layer (L), dl of the lth layer, * is the elementwise product of

vectors, and φ0 derivative of the activation function. Thus,

the activation function is required to be differentiable. The

gradient of the error with respect to the activations for the

output layer is:

Algorithm 1 Backpropagation algorithm (Bprop).
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raE ¼
n oE

oaðLÞ1

; . . .;
oE

oaðLÞk

o
: ð4Þ

For instance, for the MSE one obtains oE
oaðLÞj

¼ ðaj � tjÞ.
Using the previous definitions, we can write a pseu-

docode for the backpropagation algorithm that is presented

in Algorithm 1 [40]. The estimated gradients from Algo-

rithm 1 are then used to update the biases and weights in

SGD Eqn. 2. More updates are performed using mini-

batches until the training data have been used entirely.

The Rprop algorithm is a modification of the backprop-

agation algorithm that was originally introduced to speed

up the basic backpropagation (Bprop) algorithm [25]. Fur-

thermore, there exist at least four different versions of

Rprop [41] (Rprop, iRprop�, Rprop+ and Rprop� (all are

supported by the darch package [42])). However, previous

studies have shown that the iRprop+ algorithm is faster

than Bprop and performing best [41].

It has been shown that the backpropagation algorithm

with SGD can learn good neural network models even

without a pretraining stage, when appropriate activation

Fig. 1. Stages of DBN learning. Two

stages of DBN learning. The two edges in

fine-tuning denote the two stages of the

backpropagation algorithm: the input

feedforwarding and the error

backpropagation.

Fig. 2. Combining DL representations and SVM. Three ways of combining three types of deep neural network representations with a SVM.
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functions are used, and an adequate amount of data are

available for the training [11]. In Fig. 1, we show an over-

view of the overall DBN learning procedure.

Network architecture

At present, there does not seem to be a general consensus

among DL researchers about the shape of the architecture

of a neural network. In some studies, a decreasing architec-

ture is used [39], whereas others use an increasing architec-

ture [43] or even a constant architecture [44]. For this

reason, we tested a vast number of different architectures

to find the best one for a given constellation. In the results

section, we provide more information about the architec-

tures we studied.

For ANNs, the last output layer can be of arbitrary size,

but for a binary classification, a good choice is either one

node or two nodes. If the activation function is chosen to

be the logistic function, the values are in the range [0, 1].

The outputs are then set to be ti ε {0, 1} or ti ε {p, 1 � p}
with p ε [0, 1]. If we use the former form, the predicted class
is the single output node value rounded, that is, 0 or 1. If we
use the latter form, the predicted class is the index of the out-
put vector yielding the higher value. From studies, we observed
that the difference between both was negligible.

Combining deep networks with support vector

machines

The idea when combining deep networks with SVMs is to

utilize the neural network as a representation learner com-

pressing the original input vector. In this way, the SVM

can utilize processed information. In our study, we investi-

gate the influence of different types of deep neural network

representations on the combination with a SVM. Specifi-

cally, we study RBMs, DBNs, and autoencoders.

Fundamentally, all of them perform a dimensionality

reduction, since they gradually transform the original repre-

sentation into higher level representations.

Regarding the choice of the input layer for the SVM,

there are different possibility. For instance, for DBNs we

can use the last hidden layer with as an input for the

SVM. For autoencoders, a good choice is to use the code

layer as input. In Fig. 2, we give three examples that

show how a deep neural network can be combined with

a SVM. As one can see, the combination is simple. In

the analysis section, we will present results for many dif-

ferent configurations.

In Algorithm 2, we show pseudocode for the training and

testing of the combined classifier. Here, the models dDBN

and dSVM denote the learned classifiers and dDBN(i-th hidden

layer of DBN|Xtraining) is a mapping from an input vector,

given by Xtraining to an output, which is defined as the i-th

hidden layer of the DBN. These steps summarize the visual-

ization shown in Fig. 2.

Software and hardware

All calculations were carried out in R. The R package darch

(versions 0.9.1 and 0.10.0) [42] provided the DL methods,

that is, DBNs and the autoencoders. The R package e1071

(version 1.6–7) [45] provided the SVMs including LIBSVM.

For our analysis, we used the Tampere center for scientific

computing providing the local grid computing resources

(TUTGrid).

Results

For our analysis, we use two DNA microarray data

sets, one from breast cancer and one from IBD. In the

following two sections, we provide a brief description

of both.

Breast cancer

The breast cancer DNA microarray data we are using

for our analysis are from [46]. They generated gene

expression of lymph-node-negative primary breast can-

cer patients with Affymetrix Human U133a GeneChip.

The data can be accessed from the Gene Expression

Omnibus (GEO) database, accession number GSE2034.

The data set consists of 286 samples for which raw

CEL files are available. We processed the raw data with

the affy R-package [47] for preprocessing. Robust multi-

array average was used for the background correction,

quantile normalization for removing any systematic

trends arising from the microarray technology and med-

ian polish for summarization of the expression values.

The data set includes the following clinical patient

parameters: lymph node status (all negative), relapse

Algorithm 2 Combining a DBN with a SVM.

Input: training data Xtraining, training labels Ytraining, test data

Xtest

Output: predicted test labels Y 0
test

1: Train DBN model with Xtraining and Ytraining ? dDBN
2: Perform feature extraction with dDBN for Xtraining: map

each sample from Xtraining to the model and use the values

from the i-th hidden layer as output ! X i
training ¼ dDBN (i-th

hidden layer of DBN |Xtraining)

3: Train SVM model with X i
training and Ytraining ! dSVM

4: Map each sample from Xtest via dDBN to an output

! X i
test ¼ dDBN (i-th hidden layer of DBN | Xtest)

5: For each sample make a prediction for X i
test via

dSVM to

obtain Y 0
test
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(yes or no), estrogen receptor status (ER+ or ER). The

clinical parameters are summarized in Fig. 3.

Inflammatory bowel disease

The second data set we are using provides DNA

microarray data for IBDs [48]. In total, it consists of

127 samples: 26 UC, 59 Crohn’s disease (CD), and 42

normal patients. The data are accessible via GEO,

accession number GSE3365. The array used was a

Affymetrix Human Genome U133A Array. For these

data, no raw CEL files are available in GEO, but the

data available are preprocessed with the MAS 5.0 algo-

rithm. We transformed the data into a logarithmic

scale.

Performance assessment

For assessing the performance of the classifiers, we use

the following error measures.

Accuracy (Acc) ¼ TP+TN

TP+FP+FN+TN
ð5Þ

True positive rate (TPR) or sensitivity ¼ TP

TP+FN

ð6Þ

True negative rate (TNR) or specificity ¼ TN

TN+FP

ð7Þ

Error rate ðEÞ ¼ FP+FN

TP+FP+FN+TN
: ð8Þ

These values can be obtained from the contingency

table providing information about TP, TN, FP, and

FN [49].

For assessing the variability in the data and for esti-

mating the standard error of the error measures, we

are using cross-validation (CV). CV is the gold stan-

dard approach in estimating the prediction error [50].

In k-fold CV, the data set D is once randomly divided

into k disjoint sets. If jDj ¼ n, then each subset is of

size n/k. The classifier is then trained k times, each

time using one of the k subsets to test the classifier

and the remaining k � 1 sets in training. For our anal-

ysis, we used k = 10, that is, 10-fold CV.

It is known that the imbalance of classes can lead to

problems in the error estimations [51]. For this reason,

undersampling of the data has been suggested to cor-

rect for this imbalance. Some of our data sets are

unbalanced. For instance, the breast cancer data set

(Fig. 3) has 77 ER+ samples and 209 ER- samples.

For this reason, we used undersampling to correct for

this. Specifically, if the larger class consists of n> sam-

ples and the smaller class of n< sample, we randomly

drew n< samples from the larger class to balance the

classes.

Regularization

In order to obtain meaningful results for the classifica-

tion of the disease data, the parameters of our models

need to be estimated from training data. In this

respect, overfitting is a common problem in supervised

learning that can negatively effect the results [52]. Due

to the importance of this problem, we discuss in this

section our counter measures.

In general, regularization is used to adjust parame-

ters for preventing overfitting. The regularization

methods we used for the supervised fine-tuning step

are as follows: momentum, weight-decay, early stop-

ping and weight normalization. For momentum, our

analysis found little affect on the performance. Start-

ing with a default value of 0.5 (see Eqn 2) and

switching after 50 epochs to 0.9 worked in general

well (results not shown). Weight-decay is a method

for controlling the magnitude of the weights W (see

Eqn 2). In Fig. 4A,B, we show two examples for

Rprop for breast cancer data (ER status), how tun-

ing the weight-cost affects the test Acc of a shallow

and a deep architecture. We found that especially for

architectures with one or two hidden layers, increas-

ing k values (see Eqn 2) closer to one help to reduce

overfitting by increasing the test set Acc. The com-

parison indicates that strong weight-decay regulariza-

tion is beneficial in reducing overfitting especially in

shallow architectures. However, with deep architec-

tures using too high values leads to a negative effect.

When the complexity of the network architecture

increases, that is, more hidden layers are used, using

Relapse

Lymph node status

ER status

179

286

77

107

0

209
Negative Positive

Fig. 3. Clinical parameters of the GSE2034

data set. Overview of the clinical

parameters of the breast cancer data

(GSE2034) [46].
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an overly high value decreased the performance. This

may indicate that a strong regularization is needed

for the first network interval between the high-dimen-

sional input and the first hidden layer, but the regu-

larization is not needed as strongly for the

subsequent layers. Weight-decay regularization is also

known as L2 regularization [40].

Another frequently used regularization approach in

ANN is early stopping [53]. For both backpropagation

algorithms (Bprop and Rprop), we found that after a

certain number of epochs, the test Acc usually started

to decrease, although the training Acc increased or

stayed at equilibrium. As the examples in Fig. 4 show,

early stopping is especially helpful for Rprop, and

weight-decay regularization can reduce the need for

using early stopping. We found early stopping to be

useful for the breast cancer data. Stopping the training

after 90 epoch in general improved the results.

Finally, we tested weight normalization to control

the magnitude of the weights. The weights can be
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architecture.
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normalized so that kWðiÞ
�j k2 ¼ 1 holds for each weight

matrix W(i) and column j. Here kxk2 ¼
ffiffiffiffiffiffiffiffi
xTx

p
is the

L2-norm of a vector. We found that weight normaliza-

tion improves the test Acc for Bprop; for an example

see Fig. 4C. For Rprop, this normalization increased

overfitting, but in combination with early stopping, the

performance improved (results not shown).

Breast cancer

For the breast cancer microarray data set (lymph-

node-negative patients), we assessed the performance

for two different classifications tasks: (a) ER status,

comparing ER+ vs ER�, and (b) relapse status, com-

paring yes vs no.

The results for the best performing DL classifiers,

SVMs and other classifiers are summarized in

Table 1. For reasons of comparison, we added to

Table 1 also results from previous studies [21,54,55]

(highlighted in blue) that used the same data set. In

this table, a* or † indicates that for this method fea-

ture selection was used. For *, 1000 genes having the

highest variance were selected and for †, 10 918 genes

showing the largest differential expression by utilizing

a t-test. For instance, DBN: Bprop* means that a

DBN has been trained with the backpropagation

(Bprop) algorithm and 1000 genes with the highest

variance have been selected as input features for the

classifier.

Overall, our results show that the prediction of

breast cancer relapse is substantially more difficult

than predicting the ER status. This is consistent with

previous findings [21,54]. For ER status, our DBN

with Bprop and SVM obtained the best results when

feature selection was used, but other variations with

DBN and Rprop and with or without SVM per-

formed good as well. Also, a SVM with feature

selection shows good results. All of these results are

better than the previously obtained results in [21,54],

see Table 1.

For the relapse task, our DBN with Rprop and

SVM without feature selection obtained the best

results. For this data set, the differences are in gen-

eral larger and the standard errors are higher, but

also here several other combinations perform simi-

larly well. We want to highlight that a SVM without

feature section performs remarkably well. The refer-

ence study by [55] used the same SVM library as

we, LIBSVM, and their best result is close to ours,

67%. However, the difference is that they selected

10 918 genes with a t-test (significance level of 0.05),

hence removing over half of the features. In compar-

ison, our SVM model without feature extraction per-

forms equally. The Boosting result by [54] performs

worse compared with our best results and the results

by [55].

The results in Table 1 summarize our results

from comprehensive investigations of a multitude of

Table 1. Summary of the results for breast cancer for undersampling the training sets.

The best results are highlighted in green and previous results from the literature are highlighted in blue.
aFeature selection: 1000 genes with the highest variance were selected.
bFeature selection: 10 918 genes were selected with a t-test.
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different model configurations. Further details of

these investigations can be found in Table 2I,II.

Table 2I shows results for different network archi-

tectures for DBN, and DBN and SVM and differ-

ent learning algorithms (Bprop and Rprop). The

layer highlighted in bold has been used as input for

the SVM. In Table 2II, we show results for SVM

with radial basis function kernel (RBF) and linear

kernel functions. Overall, one sees that there are

configurations that do not perform well at all, for

example, DBN with Bprop and architecture A-500-

250-100-1 results in Acc = 37.38% for the ER task

(see Table 2I). This means that a fine-tuning effort

is needed in order to obtain very good results. The

best results in Table 2I,II are italicized. We want to

note that all four results are obtained for under-

sampled data.

There are a few differences between the methods of

the reference studies and our methods we would like

to mention. Only we and [54] used the undersampling

method for the data to correct for imbalanced classes.

Another difference is that CV among the studies var-

ied. Two studies used a fivefold CV [54,55] and one a

10-fold CV [21].

Table 2. Results for breast cancer data. I: Results for DBN & DBN and SVM. Here A = 22 283 and training sets were undersampled. II:

Results for SVM.
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Inflammatory bowel disease

The gene expression data for IBD consists of samples

for Crohn’s disease (CD), UC, and normal samples.

We tested all three binary classifications, that is, UC

vs CD, UC vs Normal, and CD vs Normal. In addi-

tion, we classified them combined, that is, UC vs CD

vs Normal. In Table 3, we show a summary of the

best results. Similar to our analysis for breast cancer,

we performed also here comprehensive investigations

for many model parameters and classifier combina-

tions. The results of these analyses are shown in

Tables 4I,II and 5, whereas Table 4I shows results for

DBN and undersampled data, Table 4II shows results

for DBN with Rprop and unbalanced data, and

Table 5 shows results for SVM.

Overall, we find that DBN with Rprop and SVM

and SVM alone provide the best classification results

and the differences are in general smaller than for

breast cancer. In [48], a similar analysis was conducted

by classifying CD vs UC for the same data set. For

this analysis, the weighted voting method from the

GENECLUSTER 2.0 gene expression analysis software was

used. They tested their classifier for different feature

sizes of the input vector varying between 1 and 200

genes and found Acc values between 65% and 94%.

The highest Acc of 94% was achieved for a feature

size of 14 (highlighted in blue in Table 3).

In the original study, the data set was not balanced.

For this reason, we performed more tests comparing

results for the unbalanced data and balanced data for

Bprop and Rprop. The results are shown in the

Tables 4I,II. One can see that especially for classifying

UC vs CD, there is a large difference showing the

influence of unbalanced data. This effect is also

observable for the SVM, see Table 5.

It is interesting to note that in general the Bprop

algorithm performed poorly compared to Rprop. This

seems to be independent of the network architectures

and combinations with a SVM.

Further investigations for the integration of deep

learning and SVM

For our next analysis, we focus on the integration of

DL and SVM. This results in a new combined classi-

fier that utilizes a hidden layer of the learned neural

network as input for the SVM. Hence, the deep neural

network is used as a representation learner to serve as

a feature selection mechanism for the SVM.

In Table 6I–III, we show results for DBN with

Bprop and SVM (Table 6 I), RBM-learned representa-

tions and SVM (Table 6II) and autoencoder-learned

representations and SVM (Table 6III). These results

show that Rprop benefited more often from a combi-

nation with a SVM than Bprop.

We performed further tests for Bprop to see whether

the architecture of the hidden layers has a significant

influence. As the results in Table 6I show, the

Table 3. Overall summary of the results for IBD. The results are for unbalanced training sets.

The best results are highlighted in green and previous results from the literature are highlighted in blue.
aFeature selection: 14 genes.
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influence of the architecture is moderate regardless of

the configuration and the benefit of combining a DBN

with Bprop and a SVM is small.

In Table 6II, we show results for the ER status and

the relapse task with and without feature selection for

RBM and SVM. In principle, RBM can learn a fair

representation usable for the SVM. The results for ER

status are compatible with the best results in Table 1,

but results for relapse status are clearly worse. Fur-

thermore, the results in Table 6II indicate that RBM

Table 4. Results for IBD. I. Results for DBN. Here A = 22 283 and undersampled training sets. II: Results for DBN with Rprop and SVM.

1243FEBS Open Bio 9 (2019) 1232–1248 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

J. Smolander et al. Comparing DBN with SVM for complex disorders



performed much worse when no feature selection was

used (indicated by ‘A’ in the architecture).

In Table 6III, we show results for the autoencoder

and SVM for the ER task. We found that the autoen-

coders performed overall worst, although reasonable

good results can be obtained. This is a bit surprising,

since the original autoencoder was shown to give sig-

nificantly better results for learning 2D-representations

from complex data sets with many classes compared to

PCA. An explanation for these negative results could

be the data requirements of the autoencoder. Specifi-

cally, in [39] it has been found that autoencoders

require large data sets to function properly.

Our analysis of the autoencoder shows that much

more effort would be needed in order to make it com-

petitive. For instance, the same regularization methods

as used for Bprop and Rprop could be applied to

reduce overfitting in autoencoders, that is, weight nor-

malization, dropout, and weigh-decay. Both backprop-

agation algorithms can be used to adjust the

parameters in the steepest descent direction, that is,

negative of the gradient (see Eqn 2). Another alterna-

tive is to increase them along the conjugate directions.

These methods are called conjugate gradient methods.

Particularly with autoencoders, conjugate gradient has

been shown to yield a better performance than gradi-

ent descent [56].

There are previous studies combining a DBN with a

SVM, however, outside genomics. For instance, in [57]

it has been shown that a SVM with linear kernel per-

formed better than a SVM with RBF kernel, when

used with DBNs. Interestingly, the DBN alone outper-

formed the combined classifiers, but the combined

classifiers were still better than a SVM alone. Another

study by [16] reported similar results. Their combined

classifier performed slightly better than a DBN alone

and better than a SVM. Considering these results, it is

not surprising that our combined classifiers did not

show vast improvements.

Discussion

Our analyses demonstrated that DBNs can successfully

classify complex disorders as represented by gene

expression data. Specifically, our results indicate that

the top-performing classifier can predict the ER status

of lymph-node-negative primary breast cancer with

90% Acc and its relapse with almost 68% Acc. Fur-

thermore, the two principal types of IBD – Crohn’s

disease and UC – can be distinguished with 95% Acc

from each other, and they both can be distinguished

from normal patients with over 97% Acc. Moreover,

all three classes can be predicted with at least 95%

Acc when including them all in the same task.

Overall, the main findings of our comprehensive

analysis are as follows. First, no classification method

is for all studied conditions always the best. Instead,

the best classifier varies in dependence on the condi-

tions. Second, using a SVM alone is the most efficient

approach in the sense that the overall usage and set-up

is simple, the needed computational resources are little

and the execution time is faster compared to other

approaches. We should emphasize that this efficiency

is not present in all SVMs but specific to the LIBSVM

implementation [27]. Third, the general combination of

DL with SVM gives always the (marginally) best

results. However, there is a considerable effort needed

to obtain these results. This includes the finding of the

optimal architecture and the learning of the deep net-

work. In addition, large computational resources in

form of a computer cluster are required. Fourth, the

LIBSVM is capable of dealing very efficiently with

high-dimensional input vectors, either without feature

selection or with a moderate selection.

Our results are in contrast to studies in image classifi-

cation, where DL methods clearly outperformed other

classifiers, including SVMs [13]. A reason for this dif-

ference might be due to the available sample size of the

data. Whereas for image classifications ten thousands

Table 5. Results for IBD. Results for SVM. Here A = 22 283 and undersampled training sets
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or even millions of images are available, for genomics

studies only hundreds of samples are available. It is

important to note that for general genomics studies

such a sample size can be considered as high and there

is no increase in the near future possible that would

increase these sample sizes by four orders of magnitude

(a factor of 10 000) that would lead to comparable

sample sizes as for image data sets. Hence, genomics

data sets will always be much smaller in this sense.

The DL model we analyzed in this study was a DBN.

We used a SGD for the optimization of the model in the

fine-tuning stage, and we used two different backpropa-

gation algorithms for minimizing the error, Bprop and

Rprop. We found that only Rprop was able to classify

data without feature selection, while Bprop needed fea-

ture selection. Notably, Rprop worked well even with

very small hidden layer sizes. The operability of Bprop

seems to be strongly dependent on the RBM-based pre-

training. From performing additional analyses, we found

that the reason why Bprop has problems without feature

selection is because the pretraining is suboptimal. On the

other hand, Rprop appears to be much less dependent on

the pretraining, and therefore, it manages to classify the

data even without feature selection.

Our second objective was to study how DL repre-

sentations and SVMs can be combined together.

Table 6. I: Combining DL (DBN with Bprop) and SVM. II: Combining RBM-learned representations and SVM. III: Combining autoencoder-

learned representations and SVM (ER status). - All results are for breast cancer.

1245FEBS Open Bio 9 (2019) 1232–1248 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

J. Smolander et al. Comparing DBN with SVM for complex disorders



Although some of our results support the conclusion

that this combination is beneficial, some of the results

show SVMs perform better. The results appear to be

task-specific. Similar results have been obtained previ-

ously when combining DBNs and SVMs [57,16]. Nei-

ther RBM-learned representations nor autoencoder-

learned representations seem to be better than DBN-

learned representations, but still provide fair results.

The overfitting problem we identified for the autoen-

coder could be an indicator that the data sets are too

small for overfitting methods to work properly. The

models consisting of RBM-learned representations and

SVMs support the conclusion that the pretraining has

problems without feature selection, and this in turn

causes problems for Bprop.

Interestingly, we found that Rprop produces good

results with a very small number of hidden layers. Usu-

ally, in all DL studies the total number of hidden units is

close to the number of input units [10,14,17,19,43,58].

However, our results show that Bprop in general benefits

only little from a larger number of hidden units. A possi-

ble reason for this is that the network begins to co-adapt

more; hence, the impact of overfitting increases. In fact,

when using Rprop with larger networks we found no

beneficial improvement in the performance. This could

be also due to data-specific characteristics, because no

previous study investigated gene expression data from

genomics.

Finally, we want to remark that DBNs perform

an internal feature selection, which enables this

method to cope with very high-dimensional input

data. For our analysis, we used varying input sizes

between 1000 genes and over 22 000 genes. In order

to present a fair comparison between a DBN and

other classifiers, it is important to select a classifica-

tion method that can also handle such high-dimen-

sional input data without an explicit feature selection

step because otherwise performance differences might

be attributed to this differing analysis step. As dis-

cussed above, the LIBSVM provides such a classifi-

cation method.

The results obtained in this paper are based on the

analysis of two independent data sets from two different

diseases. The first data set is from breast cancer and the

second from IBD. The sample sizes of both data sets

(286 for breast cancer and 127 for IBD) can be consid-

ered of reasonable size for gene expression data allowing

the application of CV. Importantly, none of our results

was data set (disease) specific, but both independent

data sets lead to the same overall conclusions regarding

the applied classification methods. Hence, one data set

could be considered a validation case for the other with

respect to our technical results.

Conclusion

In this paper, we studied the classification of high-di-

mensional gene expression data from genomics from

breast cancer and IBD. This is an important computa-

tional diagnostics task for translational research with

possible applications in personalized and precision med-

icine. We provided a comprehensive analysis of the clas-

sification performance of DBNs in dependence on its

multiple model parameters and in comparison with

SVMs. Based on this analysis, we found the combina-

tion of DBN and SVM performs tendentially best, but

requires a substantial analysis effort and a thorough

technical understanding of DL. In contrast, the

LIBSVM implementation of a SVM provides compati-

ble results, which are much easier to attain. Classifiers

using only a DBN led to a middle performance but

require a similar effort as the combination of DBN and

SVM.

Whether other DL classifiers perform differently to

DBNs or whether sample expansion methods as, for

example, suggested by [22] may lead to different results

is left for future studies.
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