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Abstract: The preparation of unprecedented 6,12-disubstituted methanodibenzo[b,f ][1,5]dioxocins
from pyrrolidine catalyzed self-condensation of 2′-hydroxyacetophenones is herein described. This
method provides easy access to this highly bridged complex core, resulting in construction of two
C–O and two C–C bonds, a methylene bridge and two quaternary centers in a single step. The
intricate methanodibenzo[b,f ][1,5]dioxocin compounds were obtained in up to moderate yields after
optimization of the reaction conditions concerning solvent, reaction times and the use of additives.
Several halide substituted methanodibenzo[b,f ][1,5]dioxocins could be prepared from correspondent
2′-hydroxyacetophenones.
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1. Introduction

Heterocyclic compounds possess fascinating complex structural architecture and are key structural
motifs in an array of biologically active natural products and pharmaceutically active compounds [1],
which drives the development of improved and new synthetic methodologies [2–9]. In recent years,
cascade reactions [10–16] and bio-inspired technologies [17–23] have been employed to access structural
complexity in compounds of biological importance.

Methanodibenzo[b,f ][1,5]dioxocin is a highly strained bridged polycyclic skeleton present in
numerous biologically active natural products and pharmaceuticals (Scheme 1). Some of these
natural products exhibit inhibition against β-amyloid aggregation, antibacterial activity, potent anti-
methicillin-resistant staphylococcus aureus (MRSA) activity, etc. [24–35]. After Nair et al. [29] reported
that cyanomaclurin, a compound isolated from the heartwood of Artocarpus integrifolia (jackwood) [36],
possessed a methanodibenzo[b,f ][1,5]dioxocin core, considerable attention was paid to its construction.
Hennis and co-workers obtained the neutral 6H,12H-6,12-methanodibenzo[b,f ][1,5]dioxocin and its
derivatives after a condensation reaction of either o-vinylphenol or o-coumaric acid and salicylaldehyde
under acidic conditions [37,38].
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Scheme 1. Selected reported biologically relevant methanodibenzo[b,f][1,5]dioxocins. 

The catalytic preparation of the methanodibenzo[b,f][1,5]dioxocin core has been recently 
explored (Scheme 2a). A bioinspired cascade sequence of ethylenediaminediacetic acid (EDDA)-
catalyzed olefin isomerization/hemiacetalization/dehydration/[3+3]-type cycloaddition driven by an 
in situ generated chromenylium intermediate has been reported by Liu et al. in the synthesis of 
methanodibenzo[b,f][1,5]dioxocin flavonoids from phloroglucinol and 2-hydroxycinnamalaldehyde 
[39]. Du and co-workers explored o-quinone methide and electron rich phenols as reactants in a silver 
triflate catalyzed tandem process for the construction of such a core. The formation of alkynyl o-
quinone methide catalyzed by silver triflate triggers the following intermolecular cascade: 1,4-
conjugate addition/6-endo cyclization/1,3-aryl shift/intramolecular 1,4-conjugate addition, providing 
the 2-substituted methanodibenzo[b,f][1,5]dioxocin [40]. Notwithstanding these recent 
developments, more synthetic strategies to access this intricate polycyclic ring system are worth 
pursuing as accessing [1,5]-dioxocins with different substituents in the bridgehead carbons is still an 
open issue. Likely due to the limited synthetic methodologies available, the 
methanodibenzo[b,f][1,5]dioxocin motif has received little attention as a structural scaffold in drug 
design.  

In our previous endeavor towards the development of a reductive amination protocol for the 
synthesis of tertiary alkylphenolmethyl amines [41] using a recently developed pinacol-derived 
chlorohydrosilane (PCS) [42], we were intrigued by the absence of the desired reductive amination 
product under our hydrosilylation conditions with 2′-hydroxyacetophenone and pyrrolidine 
(Scheme 2b). Despite the successful use of such a protocol for the synthesis of several tertiary 
alkylphenolmethyl amines, careful inspection of a reaction mixture containing pyrrolidine and the 
ketone showed the formation of a 2′-hydroxyacetophenone self-condensation product.  

Scheme 1. Selected reported biologically relevant methanodibenzo[b,f ][1,5]dioxocins.

The catalytic preparation of the methanodibenzo[b,f ][1,5]dioxocin core has been recently
explored (Scheme 2a). A bioinspired cascade sequence of ethylenediaminediacetic acid
(EDDA)-catalyzed olefin isomerization/hemiacetalization/dehydration/[3+3]-type cycloaddition
driven by an in situ generated chromenylium intermediate has been reported by Liu et al.
in the synthesis of methanodibenzo[b,f ][1,5]dioxocin flavonoids from phloroglucinol and
2-hydroxycinnamalaldehyde [39]. Du and co-workers explored o-quinone methide and electron rich
phenols as reactants in a silver triflate catalyzed tandem process for the construction of such a core. The
formation of alkynyl o-quinone methide catalyzed by silver triflate triggers the following intermolecular
cascade: 1,4-conjugate addition/6-endo cyclization/1,3-aryl shift/intramolecular 1,4-conjugate addition,
providing the 2-substituted methanodibenzo[b,f ][1,5]dioxocin [40]. Notwithstanding these recent
developments, more synthetic strategies to access this intricate polycyclic ring system are worth
pursuing as accessing [1,5]-dioxocins with different substituents in the bridgehead carbons is still an open
issue. Likely due to the limited synthetic methodologies available, the methanodibenzo[b,f ][1,5]dioxocin
motif has received little attention as a structural scaffold in drug design.

In our previous endeavor towards the development of a reductive amination protocol for the
synthesis of tertiary alkylphenolmethyl amines [41] using a recently developed pinacol-derived
chlorohydrosilane (PCS) [42], we were intrigued by the absence of the desired reductive amination
product under our hydrosilylation conditions with 2′-hydroxyacetophenone and pyrrolidine
(Scheme 2b). Despite the successful use of such a protocol for the synthesis of several tertiary
alkylphenolmethyl amines, careful inspection of a reaction mixture containing pyrrolidine and the
ketone showed the formation of a 2′-hydroxyacetophenone self-condensation product.

Aware of the limitations of the available methods for the preparation of
methanodibenzo[b,f ][1,5]dioxocin, and intrigued by the singular reactivity of pyrrolidine in promoting
the self-condensation reaction, we set out to investigate and optimize the reaction conditions to efficiently
construct such a polycyclic core from the self-condensation of three 2′-hydroxyacetophenone molecules.
Importantly, previously reported attempts to dimerize β-hydroxy ketones using acidic/dehydrating
conditions proved unsuccessful, although 6H,12H-6,12-epoxydibenzo[b,f ][1,5]dioxocins could be
obtained from the dimerization of salicylaldehydes [43,44].
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2. Results and Discussion 

We began our synthetic efforts to optimize the reaction conditions after obtaining 
methanodibenzo[b,f][1,5]dioxocin 1 at a 9% yield in a failed attempt to aminate 2′-
hydroxyacetophenone with pyrrolidine under hydrosilylation conditions, followed by crystallization 
and unambiguous characterization of the product through single crystal X-ray diffraction analysis 
(Table 1). The crystal structure of 1 showed an intramolecular hydrogen bond and similar geometric 
features of the methanodibenzo[b,f][1,5]dioxocin core to 7,9-dimethoxy-6H,12H-6,12-
methanodibenzo[b,f][1,5]dioxocin-4-ol [26], except for the interplanar angle between benzene rings. 
The interplanar angle was almost ten degrees higher value in 1, which was rather close to 
orthogonality (~88°) and corresponded to the value found from (E)-2-(4-((12-methyl-6H,12H-6,12-
methanodibenzo[b,f][1,5]dioxocin-6-yl)methylene)-4H-chromen-2-yl)phenol [45]. 

Using 2-hydroxyacetophenone as substrate, we investigated the reaction conditions in the 
hydrosilylation protocol and their effect on the formation of compound 1 (Table 1). The initial use of 
stoichiometric amounts of 2′-hydroxyacetophenone and pyrrolidine in refluxing acetonitrile gave 
compound 1 with a 24% yield (Table 1, entry 1). The importance of pyrrolidine and molecular sieves 
(MS) was verified after not detecting the desired product when running the reaction in the absence 
of any of these components (entries 2 and 3). Replacing pyrrolidine with anhydrous p-toluenesulfonic 
acid, or use of pyrrolidine as a solvent led to similar outcomes (entries 4 and 5). Decreasing the 
amount of pyrrolidine to 0.3 equiv. had a positive effect on the formation of 1, with a yield of 42% 
(entry 6). Harsher reaction conditions, namely using a sealed tube at 80 °C in the absence of solvent 
and increased reaction times, allowed formation of product with up to 59% yield (entry 7). Decreasing 
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(a) and our enamine catalyzed approach (b).

2. Results and Discussion

We began our synthetic efforts to optimize the reaction conditions after obtaining
methanodibenzo[b,f ][1,5]dioxocin 1 at a 9% yield in a failed attempt to aminate
2′-hydroxyacetophenone with pyrrolidine under hydrosilylation conditions, followed by
crystallization and unambiguous characterization of the product through single crystal
X-ray diffraction analysis (Table 1). The crystal structure of 1 showed an intramolecular
hydrogen bond and similar geometric features of the methanodibenzo[b,f ][1,5]dioxocin core to
7,9-dimethoxy-6H,12H-6,12-methanodibenzo[b,f ][1,5]dioxocin-4-ol [26], except for the interplanar
angle between benzene rings. The interplanar angle was almost ten degrees higher value in
1, which was rather close to orthogonality (~88◦) and corresponded to the value found from
(E)-2-(4-((12-methyl-6H,12H-6,12-methanodibenzo[b,f ][1,5]dioxocin-6-yl)methylene)-4H-chromen-2-
yl)phenol [45].

Using 2-hydroxyacetophenone as substrate, we investigated the reaction conditions in the
hydrosilylation protocol and their effect on the formation of compound 1 (Table 1). The initial use
of stoichiometric amounts of 2′-hydroxyacetophenone and pyrrolidine in refluxing acetonitrile gave
compound 1 with a 24% yield (Table 1, entry 1). The importance of pyrrolidine and molecular sieves
(MS) was verified after not detecting the desired product when running the reaction in the absence of
any of these components (entries 2 and 3). Replacing pyrrolidine with anhydrous p-toluenesulfonic
acid, or use of pyrrolidine as a solvent led to similar outcomes (entries 4 and 5). Decreasing the amount
of pyrrolidine to 0.3 equiv. had a positive effect on the formation of 1, with a yield of 42% (entry
6). Harsher reaction conditions, namely using a sealed tube at 80 ◦C in the absence of solvent and
increased reaction times, allowed formation of product with up to 59% yield (entry 7). Decreasing the
amount of the pyrrolidine catalyst did not improve the yield of the desired product (Table 1, entries
8–10). Other reaction conditions tested, including use of additives such as acetic acid or Cu(OAc)2,
replacing molecular sieves beads with powder and using different amounts of sieves, invariably led to
lower yields.
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Table 1. Initial optimization of reaction conditions.
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both the starting material and product soluble in the reaction media, more polar solvents were 
initially tested in both vessel types, sealed tube and round bottom flask, under argon (Table 2). 
Interestingly, ethanol, the only protic solvent tested, failed to provide any of the product, and 
dichloroethane did not provide more than a 15% yield of 1 after 24 h. Other polar solvents, such as 
acetonitrile and methyl tert-butylether, could provide the product in yields of up to 43%, but slightly 
better yields could be obtained for hexane, while toluene and dioxane were comparable. From the 
reaction optimizations so far, it appeared that hexane as a solvent favored the yield of compound 1 
compared to the others screened in both closed and reflux reaction conditions. A more dilute reaction 
media in hexane did not affect the yield of 1 considerably (Table 2, entry 7). Thus, we identified the 
use of 0.3 equiv. of pyrrolidine as a catalyst in refluxing hexane to be the optimal reaction conditions 
for the synthesis of 1 based on the optimization reactions carried out and also our quest to avoid 
reactions under neat conditions.  

Entry b Pyrrolidine (equiv.) Solvent Conditions Time (h) Yield (%) c

1 1 CH3CN Reflux d 18 24
2 1 CH3CN Reflux d, no MS 18 n.d. e

3 none CH3CN Reflux d 18 n.d. e

4 none CH3CN dry p-TSA (0.2 equiv) d 48 n.d. e

5 - Pyrrolidine g Reflux 21 n.d. e

6 0.3 CH3CN Reflux 24 42
7 0.3 none Sealed tube 24 41 (59) f

8 0.15 none Sealed tube 24 29
9 0.15 CH3CN Sealed tube 24 36
10 0.05 CH3CN Sealed tube 24 25

a Thermal ellipsoid diagram of the molecular structure of 1-(2-hydroxyphenyl)-2-(12-methyl-6H,12H-6,12-
methanodibenzo[b,f ][1,5]dioxocin-6-yl)ethan-1-one (1). b Unless otherwise noted, 2′-hydroxyacetophenone (6.22
mmol) in refluxing CH3CN (0.75 mL), 3 Å molecular sieve (MS, 362 mg) c Isolated yield. d 1 mL of solvent used. e

not detected f after 72 h. g Pyrrolidine used as solvent (2 mL).

At this point, the best conditions identified were the use of 30 mol% pyrrolidine to catalyze
the transformation and a solvent-free protocol. While the model compound tested is liquid at room
temperature, many 2′-hydroxyacetophenones are solid, which could likely pose reproducibility, heat
and mass transfer issues in a solvent free process. Furthermore, after considerable product formation,
it is solidified in the mixture, trapping the molecular sieves and hampering efficient stirring of the
reaction mixture. Due to this, we decided to search for solvents suitable for the reaction, which would
solubilize the starting materials and prevent decomposition of the product. With the aim of getting
both the starting material and product soluble in the reaction media, more polar solvents were initially
tested in both vessel types, sealed tube and round bottom flask, under argon (Table 2). Interestingly,
ethanol, the only protic solvent tested, failed to provide any of the product, and dichloroethane did not
provide more than a 15% yield of 1 after 24 h. Other polar solvents, such as acetonitrile and methyl
tert-butylether, could provide the product in yields of up to 43%, but slightly better yields could be
obtained for hexane, while toluene and dioxane were comparable. From the reaction optimizations
so far, it appeared that hexane as a solvent favored the yield of compound 1 compared to the others
screened in both closed and reflux reaction conditions. A more dilute reaction media in hexane did
not affect the yield of 1 considerably (Table 2, entry 7). Thus, we identified the use of 0.3 equiv. of
pyrrolidine as a catalyst in refluxing hexane to be the optimal reaction conditions for the synthesis
of 1 based on the optimization reactions carried out and also our quest to avoid reactions under
neat conditions.
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Entry Solvent
Isolated Yield (%)

Sealed Tube Open Vessel

1 CH3CN 29 42
2 EtOH n.d. a -
3 DMSO 28 -
4 MTBE 32 43
5 1,4-Dioxane - 30
6 DCE trace 15
7 Hexane 44 b (39) c 53 (50) d

8 Toluene 31 e 27
9 Heptane - 45

a not detected, 2 mL of EtOH used. b same yield obtained after 48 h. c Using 1.5 mL of hexane. d Using 5 mL of
hexane and 48 h. e Powder 3 Å MS and 1.5 mL of toluene were used.

With the established optimal reaction conditions in hand, we proceeded to expand the substrate
scope to other substituted 2′-hydroxyacetophenones (Scheme 3). Notwithstanding the modest yields,
we were pleased to observe the formation of methanodibenzo[b,f ][1,5]dioxocin derivatives 2–7 without
the need to use any metals or strongly acidic conditions. The protocol was demonstrated to be suitable
for obtaining alkyl-substituted methanodibenzo[b,f ][1,5]dioxocin 2, the halide substituted derivatives
3–6 or the electron rich methoxy derivative 7. When attempting to verify the suitability of this method
for strongly electron-withdrawing groups, nitro substituted 2′-hydroxyacetophenones were tested,
resulting only in the isolation of traces of the reduced aniline and unreacted starting material. Also, all
attempts to obtain the methanodibenzo[b,f ][1,5]dioxocin analogue of other 2′-hydroxyketones, such as
2′-hydroxypropiophenone or 2′-hydroxy-3-phenylpropiophenone proved futile, therefore limiting this
protocol to pyrrolidine catalyzed self-condensation of 2′-hydroxyacetophenones.

Although the details of the mechanisms involved require full clarification, the absence of similar
dioxocin products when employing other cyclic secondary amines, such as indoline, morpholine
and tetrahydroquinoline, using our hydrosilylation protocol, suggests that an enamine is likely to be
involved. Pyrrolidine derived enamines are known to be more reactive that other cyclic amines [46,47],
and the protocol for reductive amination from 2′-hydroxyacetophenone and this amine starts with
iminium formation at room temperature under neat conditions [48]. Moreover, the same amine was
previously reported to promote the formation of 4-chromanones from 2′-hydroxyacetophenones and
aliphatic aldehydes and ketones [49].
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3. Materials and Methods

3.1. General Considerations

All syntheses were carried out in oven-dried glassware under an inert atmosphere. All solvents
used were left standing over 3 Å molecular sieves and used without further drying. All other reagents
were purchased from Sigma-Aldrich or TCI and used without further purification. Reactions were
monitored through thin-layer chromatography (TLC) with commercial silica gel plates (Merck silica
gel, 60 F254). Visualization of the developed plates was performed under UV lights at 254 nm and
by staining with cerium ammonium molybdate and vanillin. Flash column chromatography was
performed on silica gel 60 (40–63 µm) as stationary phase. NMR spectra were recorded with JEOL ECZR
500 instruments using CDCl3 as solvent. Chemical shifts (δ) were reported in ppm and referenced to
the CDCl3 residual peak (δ 7.26) or tetramethylsilane (TMS) peak (δ 0.00) for 1H NMR and to CDCl3
(δ 77.16) for 13C NMR. The following abbreviations were used to describe peak splitting patterns:
s = singlet, d = doublet, t = triplet and m = multiplet. Coupling constants, J, were reported in hertz
(Hz). High-resolution mass spectrometry spectra were recorded on a Waters ESI-TOF MS spectrometer.

3.2. General Procedure for the Synthesis of Substituted Methanodibenzo[b,f][1,5]Dioxocin Derivatives 1–7

In a 10 mL round bottom flask equipped with a condenser, the corresponding
2′-hydroxyacetophenone (6.22 mmol) was heated in hexane (5 mL) for 5–10 min to dissolve completely,
after which pyrrolidine (2.08 mmol, 0.33 equiv) and molecular sieves (3 Å beads, 362 mg) were added
while stirring under argon. The resulting mixture was refluxed at 80 ◦C for 24–48 h and then allowed
to cool to room temperature. After cooling to room temperatute (r. t.), ethyl acetate was added to
the reaction mixture, followed by saturated NH4Cl (15 mL). The aqueous layer was extracted with
ethyl acetate (3 × 20 mL) and the combined organic layers were dried over MgSO4, filtered out and
the solvent was removed under reduced pressure. The residue was then purified by flash column
chromatography on silica (Hexane:EtOAc 98:2) to give the desired product. 1H and 13C spectra of all
compounds, 1–7 is available in the supplementary material.
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1-(2-hydroxyphenyl)-2-(12-methyl-6H,12H-6,12-methanodibenzo[b,f][1,5]dioxocin-6-yl)ethan-1-one (1).
Following the general procedure, 2′-hydroxyacetophenone (845 mg, 6.22 mmol) and pyrrolidine
(170 µL, 2.08 mmol) in hexane (1.5 mL) refluxed for 24 h. The purified product was obtained as a pale
yellow crystalline solid at a 53% yield (406 mg, 1.09 mmol). 1H NMR (CDCl3, 500 MHz): δ = 12.12 (s,
1H, OH), 8.08 (d, J = 7.4 Hz, 1H. ArH), 7.44–7.55 (m, 2H, ArH), 7.40 (d, J = 7.4 Hz, 1H, ArH), 7.06–7.16
(m, 2H, ArH), 6.93–7.01 (m, 2H, ArH), 6.78–6.92 (m, 3H, ArH), 6.71 (d, J = 8.0 Hz, 1H, ArH), 4.16 (d, J =

16.0 Hz, 1H, CH2), 3.79 (d, J = 16.0 Hz, 1H, CH2), 2.68 (d, J = 13.7 Hz, 1H, CH2), 2.26 (d, J = 13.7 Hz,
1H, CH2), 1.87 ppm (s, 3H, CH3). 13C NMR (CDCl3, 126 MHz): δ = 202.6, 162.6, 154.0, 152.8, 136.6,
130.7, 129.9, 129.7, 126.5, 125.5, 124.2, 122.7, 120.8, 120.6, 119.9, 118.8, 118.4, 117.4, 116.9, 72.1, 70.3, 45.1,
38.7, 25.2. HRMS (ESI) m/z: Calculated for C24H21O4 [M + H]+ 373.1440. Found 373.1411.

1-(2-hydroxy-5-methylphenyl)-2-(2,8,12-trimethyl-6H,12H-6,12-methanodibenzo[b,f][1,5]dioxocin-6-yl)ethan-
1-one (2). Following the general procedure, 2′-hydroxy-5′-methylacetophenone (934 mg, 6.22 mmol)
and pyrrolidine (170 µL, 2.08 mmol) in hexane (5 mL) refluxed for 48 h. The purified product was
obtained as a pale yellow crystalline solid at a 40% yield (341 mg, 0.82 mmol). 1H NMR (CDCl3,
500 MHz): δ = 11.94 (s, 1H, OH), 7.86 (d, J = 1.7 Hz, 1H, ArH), 7.31 (dd, J = 8.6, 2.3 Hz, 1H, ArH), 7.26
(d, J = 1.7 Hz, 1H, ArH), 7.15 (d, J = 2.3 Hz, 1H, ArH), 6.89–6.95 (m, 2H, ArH), 6.87 (d, J = 8.6 Hz, 1H,
ArH), 6.69 (d, J = 8.0 Hz, 1H, ArH), 6.60 (d, J = 8.0 Hz, 1H, ArH), 4.09 (d, J = 16.0 Hz, 1H, CH2), 3.80
(d, J = 16.0 Hz, 1H, CH2), 2.64 (d, J = 13.7 Hz, 1H, CH2), 2.38 (s, 3H, CH3), 2.22 (s, 3H, CH3), 2.19 (s,
3H, CH3), 2.15 (d, J = 13.7 Hz, 1H, CH2), 1.83 ppm (s, 3H, CH3). 13C NMR (CDCl3, 126 MHz): δ =

202.8, 160.8, 152.1, 150.9, 137.9, 131.0, 130.8, 130.7, 130.2, 129.9, 128.1, 127.0, 125.9, 124.2, 122.7, 119.9,
118.4, 117.3, 116.8, 72.2, 70.5, 45.6, 39.1, 25.6, 20.9, 20.8, 20.7. HRMS (ESI) m/z: Calculated for C27H27O4

[M + H]+ 415.1909. Found 415.1850.

1-(4-bromo-2-hydroxyphenyl)-2-(3,9-dibromo-12-methyl-6H,12H-6,12-methanodibenzo[b,f][1,5]dioxocin-6-
yl)ethan-1-one (3). Following the general procedure, 4′-bromo-2′-hydroxyacetophenone (192 mg,
0.90 mmol) and pyrrolidine (24 µL, 0.3 mmol) in hexane (1 mL) refluxed for 48 h. The purified
product was obtained as a white crystalline solid at a 37% yield (68 mg, 0.11 mmol). 1H NMR (CDCl3,
500 MHz): δ = 12.09 (s, 1H, OH), 7.86 (d, J = 8.6 Hz, 1H, ArH), 7.32 (d, J = 8.6 Hz, 1H, ArH), 7.17–7.22
(m, 2H, ArH), 7.13 (dd, J = 8.6, 1.7 Hz, 1H, ArH), 7.03 (dd, J = 8.3, 2.0 Hz, 1H, ArH), 6.96–7.00 (m, 2H,
ArH), 6.86 (d, J = 1.7 Hz, 1H, ArH), 4.06 (d, J = 16.0 Hz, 1H, CH2), 3.69 (d, J = 16.0 Hz, 1H, CH2), 2.64
(d, J = 13.7 Hz, 1H, CH2), 2.20 (d, J = 14.3 Hz, 1H, CH2), 1.82 ppm (s, 3H, CH3). 13C NMR (CDCl3, 126
MHz): δ = 201.7, 163.3, 155.1, 153.7, 131.7, 131.6, 128.2, 127.0, 124.7, 124.4, 123.7, 123.4, 123.3, 122.8,
122.0, 121.6, 121.0, 120.3, 118.9, 72.6, 70.9, 45.1, 38.5, 25.2. HRMS (ESI) m/z: Calculated for C24H16Br3O4

[M − H]− 606.8580, 608.8561. Found 606.8564, 608.8533.

2-(3,9-difluoro-12-methyl-6H,12H-6,12-methanodibenzo[b,f][1,5]dioxocin-6-yl)-1-(4-fluoro-2-hydroxyphenyl)
ethan-1-one (4). Following the general procedure, 4′-fluoro-2′-hydroxyacetophenone (959 mg, 6.22
mmol) and pyrrolidine (170 µL, 2.08 mmol) in hexane (3 mL) refluxed for 48 h. The purified product
was obtained as a yellow crystalline solid at a 23% yield (199 mg, 0.47 mmol). 1H NMR (CDCl3,
500 MHz): δ = 12.39 (d, J = 1.7 Hz, 1H, OH), 8.06 (dd, J = 9.2, 6.3 Hz, 1H, ArH), 7.44 (dd, J = 8.6, 6.3 Hz,
1H, ArH), 7.30–7.39 (m, 1H, ArH), 6.56–6.74 (m, 4H, ArH), 6.51 (dd, J = 9.7, 2.9 Hz, 1H, ArH), 6.41 (dd,
J = 10.0, 2.6 Hz, 1H, ArH), 4.09 (d, J = 16.0 Hz, 1H, CH2), 3.69 (d, J = 16.0 Hz, 1H, CH2), 2.65 (d, J = 13.7
Hz, 1H, CH2), 2.23 (d, J = 13.7 Hz, 1H, CH2), 1.85 ppm (s, 3H, CH3). 13C NMR (CDCl3, 126 MHz): δ =

201.2, 167.8 (d, 1JC-F = 258.3 Hz), 165.6 (d, 3JC-F = 13.9 Hz), 163.6 (d, 1JC-F = 249.5 Hz), 163.4 (d, 1JC-F =

246.9 Hz), 155.7 (d, 3JC-F = 12.6 Hz), 154.3 (d, 3JC-F = 12.6 Hz), 133.4 (d, 3JC-F = 12.6 Hz), 128.3 (d, 3JC-F =

10.1 Hz), 127.2 (d, 3JC-F = 10.1 Hz), 120.4 (d, 4JC-F = 3.8 Hz), 118.8 (d, 4JC-F = 3.8 Hz), 117.3 (d, 4JC-F = 2.5
Hz), 108.9 (d, 2JC-F = 21.4 Hz), 108.6 (d, 2JC-F = 21.4 Hz), 107.6 (d, 2JC-F = 23.9 Hz) 105.3 (d, 2JC-F = 23.9
Hz), 104.7 (d, 2JC-F = 23.9 Hz), 104.1 (d, 2JC-F = 23.9 Hz), 72.7, 71.0, 45.3, 38.7, 25.4. HRMS (ESI) m/z:
Calculated for C24H16F3O4 [M − H]− 425.1001. Found 425.0961.
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1-(3,5-dibromo-2-hydroxyphenyl)-2-(2,4,8,10-tetrabromo-12-methyl-6H,12H-6,12-methanodibenzo[b,f][1,5]
dioxocin-6-yl)ethan-1-one (5). Following the general procedure, 3′,5′-dibromo-2′-hydroxyacetophenone
(1.83 g, 6.22 mmol) and pyrrolidine (170 µL, 2.08 mmol) in hexane (5 mL) refluxed for 48 h. The
purified product was obtained as a green crystalline solid at a 19% yield (332 mg, 0.39 mmol). 1H
NMR (CDCl3, 500 MHz): δ = 12.67 (s, 1H, OH), 8.29 (d, J = 2.3 Hz, 1H, ArH), 7.92 (d, J = 2.9 Hz, 1H,
ArH), 7.59 (d, J = 2.3 Hz, 1H, ArH), 7.55 (d, J = 2.3 Hz, 1H, ArH), 7.51 (dd, J = 4.0, 2.3 Hz, 2H, ArH),
4.38 (d, J = 14.9 Hz, 1H, CH2), 3.37 (d, J = 15.5 Hz, 1H, CH2), 2.57 (d, J = 14.3 Hz, 1H, CH2), 2.18 (d, J =

14.3 Hz, 1H, CH2), 1.90 (s, 3H, CH3). 13C NMR (CDCl3, 126 MHz): δ = 201.5, 158.7, 150.3, 149.0, 142.5,
136.9, 136.4, 133.5, 129.0, 127.8, 126.8, 125.1, 121.5, 114.1, 113.5, 113.4, 113.1, 112.6, 111.1, 73.4, 71.9,
45.5, 37.8, 25.3. HRMS (ESI) m/z: Calculated for C24H13Br6O4 [M −H]− 842.5875, 844.5855, 846.5837,
848.5820. Found 842.6132, 844.5813, 846.5826 and 848.5784.

1-(5-chloro-2-hydroxy-4-methylphenyl)-2-(2,8-dichloro-3,9,12-trimethyl-6H,12H-6,12-methanodibenzo[b,f][1,5]
dioxocin-6-yl)ethan-1-one (6). Following the general procedure,
5′-chloro-2′-hydroxy-4′-methylacetophenone (1.15 g, 6.22 mmol) and pyrrolidine (170 µL,
2.08 mmol) in hexane (5 mL) refluxed for 48 h. The purified product was obtained as a brown
crystalline solid at a 43% yield (464 mg, 0.90 mmol). 1H NMR (CDCl3, 500 MHz): δ = 11.90 (s, 1H, OH),
8.00 (s, 1H, ArH), 7.39 (s, 1H, ArH), 7.24–7.31 (m, 1H, ArH), 6.86 (s, 1H, ArH), 6.67 (s, 1H, ArH), 6.60 (s,
1H, ArH), 4.06 (d, J = 16.0 Hz, 1H, CH2), 3.59 (d, J = 16.0 Hz, 1H, CH2), 2.55 (d, J = 13.7 Hz, 1H, CH2),
2.38 (s, 3H, CH3), 2.22 ((s, 3H, CH3), 2.21 ((s, 3H, CH3), 2.13 (d, J = 13.7 Hz, 1H, CH2), 1.80 ppm (s, 3H,
CH3). 13C NMR (CDCl3, 126 MHz): δ = 201.1, 161.3, 152.6, 151.3, 146.5, 138.5, 138.3, 130.6, 126.8, 126.4,
125.8, 124.5, 123.3, 121.8, 120.7, 119.9, 119.3, 119.0, 72.1, 70.6, 45.4, 38.4, 25.4, 21.0, 20.1, 20.0. HRMS (ESI)
m/z: Calculated for C27H22Cl3O4 [M − H]− 515.0583, 517.0559. Found 515.0589, 517.0613.

2-(3,8-dimethoxy-12-methyl-6H,12H-6,12-methanodibenzo[b,f][1,5]dioxocin-6-yl)-1-(2-hydroxy-4-
methoxyphenyl)ethan-1-one (7). Following the general procedure, 2′-hydroxy-4′-methoxyacetophenone
(1.03 g, 6.22 mmol) and pyrrolidine (170 µL, 2.08 mmol) in hexane (5 mL) refluxed for 48 h. The
purified product was obtained as a yellow crystalline solid at a 38% yield (365 mg, 0.79 mmol). 1H
NMR (CDCl3, 500 MHz): δ = 12.69 (s, 1H, OH), 7.96 (d, J = 9.2 Hz, 1H, ArH), 7.36 (d, J = 9.2 Hz, 1H,
ArH), 7.29 (d, J = 9.2 Hz, 1H, ArH), 6.49–6.53 (m, J = 2.3 Hz, 1H, ArH),) 6.41–6.47 (m, 2H, ArH), 6.40 (d,
J = 2.9 Hz, 1H, ArH), 6.30 (d, J = 2.9 Hz, 1H, ArH), 6.21 (d, J = 2.3 Hz, 1H, ArH), 4.06 (d, J = 15.5 Hz,
1H, CH2), 3.84 (s, 3H, OCH3), 3.69 (s, 3H, OCH3), 3.68 (s, 3H, OCH3), 3.57 (d, J = 15.5 Hz, 1H, CH2),
2.58 (d, J = 13.7 Hz, 1H, CH2), 2.20 (d, J = 13.2 Hz, 1H, CH2), 1.82 ppm (s, 3H, CH3). 13C NMR (CDCl3,
126 MHz): δ = 200.9, 166.4, 165.9, 161.0, 160.9, 155.6, 154.4, 132.8, 127.6, 126.7, 117.0, 115.6, 114.6, 108.5,
108.2, 107.9, 101.4, 101.3, 100.9, 72.7, 71.0, 55.7, 55.3, 55.2, 45.1, 39.2, 25.6. Calculated for C27H25O7 [M −
H]− 461.1600 Found 461.1604.

3.3. Single Crystal X-Ray Diffraction

The crystal data for 1 were collected on an Agilent SuperNova single-source diffractometer
equipped with an Eos CCD detector at 120(2) K using mirror-monochromated Mo-Kα (λ = 0.71073 Å)
radiation. Data collection (ω scans) and reduction was performed using the program CrysAlisPro [50].
The analytical face-indexing-based absorption correction method was applied. The structure was
solved by intrinsic phasing methods [51] and refined by full-matrix least squares on F2 using
SHELXL-2018/1 [52]. Anisotropic displacement parameters were assigned to non-H atoms. All
hydrogen atoms (except O–H) were constrained to their idealized positions and refined using riding
models with Ueq(H) of 1.5Ueq(C) for terminal methyl groups and of 1.2Ueq(C) for other groups.
Hydrogen atoms bonded to O atoms were found from the electron density maps, restrained to their
ideal distance (0.84 Å) from the parent atom and refined with Ueq(H) of 1.5Ueq(O). Deposition Number
CCDC-1922829 contains the supplementary crystallographic data for this paper. These data are provided
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free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum
Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

Crystal data for 1: C24H20O4 (M = 372.40 g/mol), triclinic, space group P-1 (no. 2), a = 6.8635(3) Å,
b = 8.5812(4) Å, c = 16.4282(7) Å, α = 84.240(4)◦, β = 82.066(4)◦, γ = 72.435(4)◦, V = 911.86(7) Å3, Z = 2,
ρcalc = 1.356 g/cm3, 14,061 reflections measured (3.4◦ ≤ θ ≤ 29.9◦), 4703 unique (Rint = 0.0329, Rsigma =

0.0351, I > 2σ(I) = 3781) which were used in all calculations. The final R1 was 0.0467 (I > 2σ(I)) and
wR2 was 0.1222 (all data).

4. Conclusions

We have developed a simple, metal-free synthetic route to the highly complex
methanodibenzo[b,f ][1,5]dioxocin skeleton from the self-condensation of readily available
2′-hydroxyacetophenones catalyzed by pyrrolidine. Notwithstanding the moderate yields and narrow
scope of the transformation, this strategy furnishes, in one-pot, unprecedented 6,12-disubstituted
methanodibenzo[b,f ][1,5]dioxocin derivatives with potential usefulness in medicinal chemistry or in
the development of bioactive substances.

Supplementary Materials: The following are available online. 1H and 13C spectra of compounds 1–7.
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