
 
Abstract— Low voltage operation and low processing

temperature of metal oxide transistors remains a challenge.
Commonly metal oxide transistors are fabricated at very high
processing temperatures (above 500°C) and their operating
voltage is quite high (30 – 50 V). Here, thin film transistors (TFT)
are reported based upon solution processable indium oxide (In2O3)
and room temperature processed anodized high-κ aluminum oxide
(Al2O3) for gate dielectrics. The In2O3 TFTs operates well below
Vds of 3.0 V, with on/off ratio 105, subthreshold swing (SS) 160
mV/dec, and low threshold voltage Vth 0.6 V. The electron mobility
(µ) is as high as 3.53 cm2/V.s in the saturation regime and
transconductance gm 53 µS. Furthermore, the detailed capacitance
voltage (C-V) analysis also investigated, the measurements shows
low leakage gate current. Additionally, the interface trap density
(Dit) in the oxide/semiconductor interface was quite low i.e. 0.986
× 1011 – 2.98 × 1011 eV-1.cm-2, signifying decent compatibility of
In2O3 with anodic Al2O3.

Index Terms— Metal oxide semiconductors, Solution processable
indium oxide (In2O3), Low voltage TFT, anodization.

I. INTRODUCTION

etal oxide semiconductors have been extensively studied
in the last few years for a wide range of devices and

device applications such as thin film transistors (TFT) for
transparent and flexible electronics, active matrix and flat panel
displays, bio/medical sensors, and radio frequency (RF) circuits
[1-3]. Metal oxide semiconductors gained special attention due
to their diverse spectrum of properties that distinguishes them
from those of conventional silicon, such as wide band gap, wide
optical transparency, high mobility and low temperature
solution processable deposition [4]. They have paved the way
for the next generation thin film and printed electronics [5].
Amongst all the metal-oxide semiconductors, indium oxide
(In2O3) is the most favorable n-type semiconductors for thin
film transistors with a band gap 3.6 – 3.75 eV and high carrier
mobility [6]. However, most of the reported research on indium
oxide thin film transistors has been based upon vacuum
deposition techniques and high temperature annealing, with
very high operating voltage 30 – 50 V [7, 8]. On the other hand,
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thin film transistors based on solution processes has many
desirable manufacturing advantages over the conventional
vacuum deposition processes, such as low cost, high yield and
ease of processing [9, 10]. Although remarkable progress has
been made, metal oxide thin film transistors still pose
significant challenges, such as operating voltage, switching
speed and on/off ratio.
 Here we fabricated TFTs based upon In2O3 channels by
combining the solution-processing route for the semiconductor
and an anodization technique for the high-κ aluminum oxide
Al2O3 gate dielectric, which enables a low operating voltage i.e.
< 3V device operation. The anodization process was carried out
as reported previously [11]. Anodization empowers the room
temperature deposition of dielectric, bypassing high
temperature, high vacuum processes, with added advantages
such as nanoscale deposition, high quality and denser oxide
layers to prevent gate leakage current [12]. Furthermore, the
anodization process is a low cost, room temperature process,
compatible with flexible and printed electronics devices. The
detailed analysis of its electrical performance and thorough
analysis of MOS capacitors for the interface strap states density
was also investigated.

II. EXPERIMENTAL

The bottom gate, top contact (BGTC) topology was used here
for the device fabrication as shown in Fig. 1. TFTs were
fabricated on glass substrates. Prior to device fabrication, the
glass substrates were ultrasonically cleaned with acetone, IPA
and deionized water for 30 minutes sequentially. Initially, to
form a gate contact, 100 nm of aluminum (Al) metal was
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Fig. 1.  a) Schematic structure of the ln2O3 TFT with Al2O3 gate dielectric. b)
Optical image of the fabricated ln2O3 TFT with 70 µm gate length.



deposited on a glass substrate using a shadow mask for
patterning.

The anodization process was performed next to convert a top
surface (~10 nm) of the aluminum metal into a high-κ dielectric,
Al2O3. After the anodization, the substrates were thoroughly
washed with deionized water. Subsequently, the solution
processed In2O3 semiconductor channel was deposited atop by
first spin coating, followed by two-step annealing at 90 °C and
at 300 °C for 15 min and 30 min in air, respectively.
Furthermore, the In2O3 solution was prepared by dissolving
Indium (III) nitrate hydrate In(NO3)3·xH2O in anhydrous 2-
methoxyethanol 99.8% in 0.2 M concentration as reported by
Ari Alastalo et al. [13]. The solution was stirred for 12 hours at
75 °C prior to spin coating. All the precursors were purchased
from Sigma-Aldrich and used as-is without any further
distillation. Finally, 100 nm of Al metal was deposited to form
the drain and source electrodes. The channel width (W) and
length (L) was 700 µm and 70 µm, respectively. The Al metal
evaporation was performed using an e-beam evaporator under
a high vacuum 10-6 Torr. Under the same conditions as the
TFTs, MOS test structures consisting of Al/Al2O3/In2O3/Al
were also fabricated on the same substrates.

The electrical characterization (I-V and C-V) of the In2O3

TFTs were performed using a Cascade probe station connected
to the semiconductor device parameter analyzer (Keysight
B1500A) with triaxially shielded probes.

III. RESULTS AND DISCUSSION

The transfer (Id vs Vg) and output (Id vs Vd) characteristics of
the TFTs devices consisting of In2O3 as the semiconductor
channel with anodized Al2O3 as the gate dielectrics are shown

in Fig. 2. The devices exhibits n-channel behavior, with a very
low operating voltage, 3 volts, and the threshold voltage, Vth is
determined to be 0.6 V, which is much smaller than that of TFTs
fabricated with conventional SiO2 gate dielectric [14]. The
operating voltage of the In2O3 TFTs with Al2O3 make them an
ideal choice for integrated circuits (IC) applied to wearables and
IoT applications where autonomous power sources would be
depleted by TFTs operating at low voltages.

The devices exhibits on/off ratio ~105 and the electron
mobility (µ) was measured as high as 3.53 cm2V-1s-1 in
saturation regime calculated using the equation

Where, ID is the drain current, VG is the gate voltage, CG is
the gate oxide capacitance, and W/L is the ratio of width to
length of the TFT channel. The gate oxide thickness were
estimated from the capacitance voltage curve shown in Fig. 3
(a) and was extracted to be ~ 8 nm. The Al2O3 formed with
anodization, exhibits a very low leakage current below the
measured breakdown field of 6.07 MV/cm [Fig 3 (a) inset]. The
TFT transconductance (gm) gain is as high as 53 µS.
Furthermore, the subthreshold swing S was only 0.16 V/dec.,
which is comparatively quite low compared to the previously
reported [15]. This implies there is a lower defect density of
states within the gate oxide. As shown in the Fig. 3 (b) inset,
the capacitance per area of the MOS structure show high values
(0.6 - 0.8 µF/cm2) over a flat frequency response from 1 KHz to
1.3 MHz shows the good dielectric properties.

To investigate this further, we have calculated the interface
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Fig. 2.  a) Transfer characteristics of In2O3 TFTs with 70 µm gate lengths and
b) Output characteristics for In2O3 TFTs with 70 µm gate lengths.

Fig. 3.  a) Capacitance voltage characteristics of In2O3/Al2O3 MOS device
measured at 1 KHz frequency. Inset: Breakdown voltage and b) G/ω vs ω
characteristics representing conductance at selected bias voltage. Inset:
capacitance vs. frequency
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trap density (Dit) in the oxide by using the conductance method
by sweeping from 1 KHz to 5 MHz [16],

Where, Gp is the peak conductance per unit area, ߱ = ݂ݎߨ2
(f - frequency), and q is the electronic charge. To calculate the
interface trap density (Dit), (Gp/ω) was plotted as a function of
frequency. As shown in the Fig. 3 (b), as the frequency
increases, Gp/ω also increases and reaches its maximum and as
expected with an interface trap model, Gp/ω starts to decrease
with further increase in frequency [17].

The interface trap density extracted using the measured
maximum conductance [18] was about 0.986 × 1011 – 2.98 ×
1011 eV-1.cm-2. The subsequent relationships among trap states
densities with biasing voltage dependence and their energy
levels are represented in the Fig. 4. Summarized results of In2O3

TFT performance parameters are shown in Table 1.

IV. CONCLUSION

Thin film transistors (TFTs) based on low-temperature,
solution-processable indium oxide (In2O3) with a very thin (<
10nm) anodic aluminum oxide Al2O3 as gate dielectric were
demonstrated here with very low voltage device operation. The
TFTs shown very good low voltage performance below 3.0 V
and the electron mobility (µ) is as high as 3.53 cm2/V.s.
Furthermore, we also investigated that the dielectric properties
of the anodic aluminum oxide Al2O3 and its estimated interface
trap density, Dit about 0.986 × 1011 – 2.98 × 1011 eV-1.cm-2,
suggests a very good compatibility of indium oxide (In2O3) with
anodic aluminum oxide Al2O3. This study shows the low
temperature fabrication compatibility for solution-processable
metal oxide semiconductors for flexible and printed electronics
devices.
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Fig. 4.  Trap states density as function of biasing voltage, Inset: Trap
states density as a function of energy.
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TABLE I
SUMMARIZED IN2O3 TFT PERFORMANCE PARAMETERS

Vth

(V)
µsat

(cm2V-1s-1)
Gm
(µS)

SS
(V/dec) Ion/Ioff

Dit

(eV-1.cm-2)
0.6 3.5 53 0.16 ~105 0.986 – 1011
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