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1. Introduction

In our recent papers [5,6], we started to study octonion algebraic methods in
analysis. This work is a continuation of our studies in this fascinating field.
Over the years, many results of octonion analysis have been published and
studied since the fundamental paper of Dentoni and Sce [2] was published.
One thing which has remained unclear to us is what is octonion analysis all
about? A consensus has been that octonion, quaternion and Clifford analyses
are similar from a theoretical point of view and, maybe for this reason, octo-
nion analysis has received less attention. Our aim is to prove that octonion
analysis and Clifford analysis are different theories from the perpective of reg-
ular functions. Thus, octonion analysis is a completely independent research
topic.

We start by recalling preliminaries of octonions and Clifford numbers
and their connections via triality. We define our fundamental function classes,
i.e., left-, right- and bi-regular functions. We give chararacterizations for func-
tion classes in biaxial quaternion analysis and in Clifford analysis. The clas-
sical Riesz system of Stein and Weiss is used as a familiar reference to clearly
see the differences.

The topic of this paper is highly technical, but we have tried to write
everything as simply as possible. Hopefully we have succeeded in this job.
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Many questions remain open and the reader may find a lot of open research
problems between the lines. We expect to answer some of these questions
when the saga continues.

2. Preliminaries: Octonion and Clifford Algebras

In this algebraic part of the paper, we first recall briefly the basic definitions
and notations related to octonion and Clifford algebras. In the second place,
we study their connections in detail. In the whole paper, our principle is
to consider the standard orthonormal basis {eg,e1,...,er} for R® equipped
with multiplications which lead to nonisomorphic algebras. We will denote
the octonion product by e; o e;, and the Clifford product by e;e;.

2.1. Octonions

The algebra of octonions O is the non-commutative and non-associative 8-
dimensional algebra with the basis {1,e1,...,e7}, where ¢q is denoted by 1
(the identity) and omitted whenever clear from the context, and multiplica-
tion given by the following table.

o) 1 €1 €9 €3 €4 €5 €g €7
1 1 el es es ey es e e7
el e1 -1 es —é9 es —ey —er e
es €9 —eg3 -1 el e er —ey —es
€3 €3 €9 —€1 -1 er —€g €5 —€4
€y €4 —€j5 —€g —e7 -1 €1 €9 €3
es es ey —er € —eq -1 —e3 es
€g e er ey —es —é9 es -1 —eq
er er —eg es ey —eg3 —ey el -1

Let us point out that there are several ways to define an octonion prod-
uct such that ej = 1. Our choice is historically made, justified by tradition,
and, for this reason, we may call it the canonical one. However, for instance,
Lounesto uses a different multiplication table in his famous book [8].

For 1 <1i,5 <7 we have

eioei:ef:fl, and ejoej =—ejoe; ifi#j.
An element = € O may be represented in the forms
T =xg+ X161 + T2y + T3€3 + T4eq4 + T5€5 + Tgeg + T7€7
=x0t+zx
= (xo + z1€1 + T2€2 + w3€3) + (4 + T5€1 + T2 + T7€3) O €4
=u-+voey
= (up +u) + (vo + v) o e4.

Here, xg,...,x7 € R, xq is the real part, z is the vector part, and v and v € H
are quaternions. The last form is called the quaternion form of an octonion.
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The conjugate of x is denoted and defined by T = x¢y — z. Furthermore, the
product of two octonions can be written as

zoy=(zo+z)o(yo+y) = Z LiYj€i© €5 = Zmzyze + Z LilYj€i © €;

,7=0 %,7=0
i#]
= ZTolYo — me% + xo zyzez + Yo ZI e + Z T;Yj€i 0 €y
1,j=1
i#]
=ZoYo — LY+ Toy + Yo+ X y, (1)

where z -y is the dot product and z X y the cross product of vectors x and y
in R7.
Denote the quaternion forms of the octonions x and y by
z = (ug +u) + (vo +2) o ey,
y=(ao+a)+ (bo +b) o ey4.
In Lemma 2.3 we will write the cross product z X y of octonion vector parts

z and y using the classical 3-dimensional cross products of the vector parts
u, v, a, and b of quaternions (see, e.g., [3,8,10]).

(2)

Lemma 2.1. ([5, Lemma 2.10]) Let u,v € H. Then
€40U =0 ey,
eso(uoey) =—T,
(uoey)oes = —u,
uo(voey) = (vou)oey,
(uoeqg)ov = (uod)oey,

(uoeq)o(voey) =—Tou.

Lemma 2.2. If z,y € O are written as in (2), then
U X €4 = UO €y,
€4 X 4 = —Q0 €y,
ux(boes)=—(uxb)oes— (u-be,

€4 X (9064) :ba

(voes) xa=—(vxa)oes+ (a-v)eq,
(voey) X ey = —u,
(voeq) X (boes) =—v xb.

Proof. On the one hand, the first two equalities are direct consequences of
(1). On the other hand, Lemma 2.1 implies

e;o(ejoes) =(ejoe;)oey,
eso (ejoeq) = ej,

(e;oeq)oej = —(e;oej)oey,
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(e;0eq4) 064 = —ey,
(e;oeq)o(ejoes) =ejoey

for 1 <i4,5 < 3. Then

3 3
X (boeyq) = uibje;o(ejoeq) = ubjejoe; | oes
j J 5 €5
i,j=1 i,J=1

3
- Z uibje; o e; — Zuz i | oea=—(uxb)oes— (u-b)ea,

i,j=1
1]
3 3
e4x(boe4):2bje4o(ejoe4 Z i =0,
j=1 j=1
3
(voes)xa= szaj(eloez; oej = sza]ezoe] oeyq
i,j=1 i,7=1

=Y viazeioe;+ Y via; [ oea=—(vxa)oes+ (a-v)es,

4,j=1
1#]

3
(yoe4)><e4:2 i(e;0eq)0eq = — 201612*77
i=1

and
3 3
(voey) x (boey) = Z vibj(e;oeq) o (ejoey) = Z vibje; o e;
ij=1 i,j=1
1#] i#]
3
= — Z vibjei C€j
ij=1
1#£]
=—v Xxb.

O
Lemma 2.3. Consider the quaternion representations of the vectors x and
y € O as in (2). Then the cross product in quaternion form is
zXy=uvob—vbg+uxa—uvxb € span{e, ez, e3}
. +(v-a—u-bles € span{e, }
+ (ubg —voa —uxb—uvxa)oes € span{es,eq,er}
Proof. By Lemma 2.2, we obtain
zxy=uxa+ux (boes) +ux (boey)
+ (voeq) X a+ (voeq) X (bpes) + (voeq) X (boey)
+(woey) xa+ (voey) x (boes) + (voey) x (boey)
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=uxa+ubyoes —(uxb)oey
—vpa o e+ 0+ vob
—(uxa)oes —wbp—uxb

X a—vxb+vob— vby

+ =

(v-a—wu-bey
+ (ubgp —vpa —u X b— v X a)oey. O

Corollary 2.4. If z,y € O are written as in (2), then

Toy =upag —vobp —u-a—v-b €R
+ upa + apu + vob —vbg +u xa—v x b € span{ey, ez, e3}
+ (uobo + agvg +v-a —u-b)ey € span{es}

+ (uob + apv +ubg —voa —u xb—v xa)oes € spanfes, e, €7}
2.2. The Clifford Algebra C£g 7 and Triality

Since the dimension of the underlying vector space of the octonions and
Clifford paravectors is 8, they behave similarly as vector spaces. Moreover,
we may ask if there is a connection between the octonion product and the
Clifford product? The answer is given by Pertti Lounesto in his book [8].
We will recall his ideas here in detail. Let us recall the basic definitions and
properties of Clifford algebras.

We continue working with the basis {eg, ey, . ..,e7} for R8. The Clifford
product is defined by

€i€j + €€, = —2517', Z,j = ]., .. .,7,
where d;; is the Kronecker delta symbol. Here, ¢y = 1. Then, similarly to
the case of octonions, e = 1, and e? = —1for all j =1,...,7. The Clifford
product e;e; is not necessarily a vector or a scalar. This product generates
an associative algebra, called the Clifford algebra, denoted by Cly 7. The
dimension of this Clifford algebra is 27, and an element a € Cly7 may be
represented as a sum

of a scalar part [a]o, generated by 1, a 1-vector part [a]1, generated by e;’s
a 2-vector part [a]s, generated by the products e;e;, where 1 < i < j <7,
etc. Clifford numbers of the form [a]; are called wvectors and those of the
form [a]o,1 = [a]o + [a]1 are called paravectors. The set of paravectors may be
identified with RS.

The Clifford product of two paravectors z and y can be written as

Yy = (:170 +x)(yo + y Z TiYj€i€;
4,j=0

= szyze + Z T;Yj€i€;

4,j=0
i#]
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7 7 7 7
= ToYo — Z TiYi + To Z yiei + Yo Z Tiei + Z TiYjci€j
i=1 i=1 i=1

i,5=1
i#j
=Toyo — Z - Y+ Toy + Yoz +z Ay, (3)

where x A y is the wedge product of vectors x and y. In particular, zy =
TNy —z-y.

The reader can see that formally the octonion and the Clifford products
are similar, and a reasonable question is "how they are connected?”. We
would like to construct the octonion product using the Clifford algebra C/ 7.
Let us consider the octonion product of the basis elements e; and e;, where
1<4, <7, i#3:

€;0€; = €.
Then 1 <k <7,and ¢ # k # j. The corresponding Clifford product e;e; may
be mapped to e; by multiplying it by the trivector e;e;ey, i.e.,
(eiej)(ejeier) = e?egek = ep.
Using the same trivector, ej;e; is mapped to —ey. If @ and b are vectors, then
ab(ejeier) = (a;bj — ajbi)ex + [ab(ejeier)]s + [ablejeier)]s.
Picking the 1-vector part
lab(ejeier)]r = (aib; — azbi)er,

we get a part of the kth component of the octonion product a o b. Using this
idea, we may express the octonion product aob as the paravector part of the
Clifford product ab(1 — W), where W is a suitable 3-vector.

Lemma 2.5. ([8, Sec 23.3], [12, Lemma 4.1]) Define
W = e123 + €145 + €176 + €246 + €257 + €347 + €365.
Let a = ag 4+ a and b = by + b be paravectors. Then
aob=1[ab(l—W)lo1
and in particular, a x b = —[(a Ab)W1;.

Lounesto states Lemmas 2.5 and 2.7 without proofs at pages 303-304
in [8]. He uses a different multiplication table of octonions, and therefore the
seven basis vectors e;;, have different indices 4, j, and k in his trivector W.
Venéldinen gives a proof for Lemma 2.5 in her licentiate thesis [12]. For the
convenience of the reader, we give a proof of Lemma 2.5 here.

Proof. To begin with, we have
[ab(l — W)]OJ = [ab]071 — [abWh = aobo —a- Q—F aob—F bo@ — [abW]l

By (1) and (3), it is enough to show that a x b = —[(a A b)W];. Consider the
triplets

v = 123,145, 176, 246, 257, 347, 365.



On the Structure of Octonion Regular Functions Page 7 of 17 7

The product e;eje, is a vector only if the pair of indices ¢j belongs to the
triplet v. Since the cross and the wedge products

7 7
axb= g (a;ibj —ajbi)e;oe; and aAb= E (a;bj — a;b;)ee;
4,J=1 4,j=1
i<j i<j

have the same coefficients, and each pair ij, 1 <7 < j < 7, is contained in
exatly one of the triplets v, say vy, it is enough to check that e;eje,, = —e;oe;
for all such pairs 7. O

A straightforward computation shows:

Lemma 2.6. The trivector W = ej93 + €145 + €176 + €246 + €257 + €347 + €365
is invertible with

1
Wil = ?(W - 6612...7).

In the above, we identified octonions O with the 8-dimensional paravec-
tors. The dimension 8 plays a special role in the theory of spin groups, since
Spin(8) has the so called exceptional automorphisms. This feature is called
triality, and the first time it was noticed was in the book of Study [11]. For
modern references, see [4,8,10]. The triality means that in addition to par-
avectors, we may identify octonions with the spinor spaces S*. The spinor
spaces may be realized by

Si == CE(]j Ii,

where I* is a primitive idempotent,
1
16

see [1,8]. A straightforward computation shows that the octonion product in
spinor spaces may be determined as follows.

I = —(1+ Weiar)(1 £ e12..7), (4)

Lemma 2.7. [8, Sec 23.3] For paravectors a and b, we have

aob=16[abl ]y 1. (5)

3. Octonion Analysis

In this section, we recall basic facts of octonion analysis, i.e., the theory of
Cauchy—Riemann operators in the octonionic setting. After that, we carefully
study the general structure of the null solutions of these operators and de-
fine four different classes of regular functions: left-, right-, B-, and R-regular
functions. R-regular functions are just solutions of the classical Riesz system.
We use the Riesz system here as a familiar reference to better understand the
structure of octonion regular functions. In Clifford analysis the correspond-
ing function classes are equal. This structural difference is a fundamental
difference between octonion and Clifford analyses.
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3.1. Cauchy-Riemann Operators

A function f: R® — Q is of the form f = fo + fiex + - + frez = fo + [,
where fj: R® — R. We define the Cauchy-Riemann operator

Dy =0, +€100, +---+e700;,.
Its vector part,
Dy =e100y + -+ €700y,

is called the Dirac operator. If the coordinate functions of f have partial
derivatives, then D, operates on f from the left and from the right as

7 7
sz = Z €; O e,]amzf,] and fDSE = Z ej o elaﬂilfj’

i,7=0 1,7=0
Decomposition (1) gives (see [7])

Dof =04y fo—Da- f+0uyf + Dufo+ Dy x f and (6)
fDI:azofO_D;'i""aa:oi"_Dgf(]_Dgxiv (7)

where 0., fo — D, - f is the divergence of f and D, x f is the rotor of f.
If D,.f =0 (resp., fD, =0), then f is called left (rvesp., right) reqular.
In Clifford analysis one studies functions f: R® — Cly 7. We define the
Cauchy—Riemann operator similarly as in octonion analysis:

Op = Oy + €10z, + -+ + €70y, = Oy + Os.
Functions satisfying 9, f = 0 (resp., f0, = 0) on R® are called left (resp.,

right) monogenic. In this paper we only need to consider paravector valued
functions

f=fo+ fies + -+ frer.

3.2. Left-, Right-, B- and R-Regular Functions

Comparing the real and vector parts in (6) and (7) yields the following well
known results.

Proposition 3.1. A function f: R® — O is left reqular if and only if it satisfies
the Moisil-Teodorescu type system

Oz fo— Dy - f =0, <
Opo f + Dyfo+ Dy x f =0, (8)
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whose componentwise form is

Opofo— Oz f1 — ... — Oz, fr =0,
Ozo f1 4 Oz, fo + Ouy f3 — Oy f2 + Oy f5 — Oxy fa — Ozg f7 + Ouy fo = 0,
Ozo f2 4 Ozy fo — Oxy f3 + Oy f1 + Oxy f6 — Ozg fa + Ous f7 — Ouy f5s = 0,
Ozo 3 + Ops fo + On, fo — Ony f1 + Ony f7 — Ony fa — Ozy f6 + Ong f5 =0,
Ozo fa + Oz, fo — Oz, f5 + Oy f1 — Oz, f6 + Ozg fo — Oxy fr + Ou, f3 = 0,
Ozo f5 4 Ozs fo + Ouy fa — Ouy f1 — Oy f7 + Ozy f2 4 Ous fo — Oue f3 =0,
Oz f6 4 Ozg fo + Ouy f7 — Oy f1 + Oxy fa — Oz, f2 — Ozs f5 + Ouy f3 = 0,
Ozo f7 4 Ozr fo — Ouy f6 + Oug f1 + Ony f5s — Ozy fo + Ouy fa — Ou, f3 = 0.
(9)
We will denote the space of left regular functions by M, and similary,
right regular functions by M ().

Proposition 3.2. A function f: R® — O is both left and right reqular if and
only if it satisfies the system

8I0 fO - D£ ' i

8930i + D&fO

D, x i =

0,
0, (10)
0,
whose componentwise form is
Oz fo— 0z, f1 — ... = Ouy f7 =0,
Opo fi + 0z, f0=0, i=1,....7,
Oy f3 — Ozg fo + Ony f5 — Ouy fa — Oug fr + Ory fo = 0,
— Oz, f3 + Ouy f1 + Oy fo — Oug fa + Ouy f7 — O, f5s = 0,
Oz, f2 — Ouy J1 + Oy f1 — Ouy fa — Oy fo + O f5 = 0, (11)
— Oz, f5 + Ous f1 — Oy fo + Oug fo — Ouy f7 + O, f3 =0,
Oz, fa — Ouy J1 — Oy 1+ Ouy fo + Oy f6 — O f3 = 0,
Oz, f1— Ouy f1 + Ony fa — Ouy f2 — Ouy fs + Oy f3 = 0,
= Oy Jo + Oue f1 + Ouy f5 — Ong fo + Ony fa — Oz, f3 = 0.

We will call functions satisfying (11) B-regular, and denote the space of
such functions by M p. Naturally

Mp = MO AM",

The fundamental difference between octonion and Clifford analyses is
that in Clifford analysis the paravector valued null solutions to the Cauchy—
Riemann operator satisfy the Riesz system and are at the same time left
and right monogenic, which is not true in octonion analysis. The following
well-known proposition follows from the definitions, similarly as in octonion
analysis, by comparing the scalar parts, 1-vector parts, and 2-vector parts.
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Proposition 3.3. Suppose f: R® — Cly7 is a paravector valued function.
Then O, f = 0 if and only if fO, = 0, and this is equivalent to f satisfy-
ing the Riesz-system

Ozofo — 0z - [ =0,
Oz f + Orfo =0, (12)
O N\ f=0,
whose componentwise form is
Opgfo— Oz, f1 — . = Ouy f1 =0,
Opo fi + 0, fo=0, i=1,...,7, (13)

O fj — 02, [i =0, i,j=1,...,7, i #],

Functions satisfying (13) are called R-regular, and the space of such
functions is denoted by Mpg.

To convince the reader about the existence of these function classes, we
recall the following classical method from Clifford analysis.

Remark 3.4. (Cauchy—Kovalevskaya extension) If f: 0 — R is a real analytic
function defined on an open Q@ C R” =2 O N {zy = 0} we may construct its
Cauchy—Kovalevskaya extension analogously to Clifford analysis (see [1]) by
defining

CK[f)(z) = e~ P=f(x).

It is easy to see that since f is real valued, D,CK[f] = CK[f]D, = 0, i.e.,
CK[f] € Mp. Since O is an alternative division algebra, that is z(zy) = 2y
for all z,y € O, the Cauchy—Kovalevskaya extension may be extended to
octonion valued real analytic functions. A necessary condition for CK[f] €
M@ is that f is an octonion valued real analytic function with f # 0. This
condition is not sufficient since, e.g., N

CKlz](z) = Tzo + z
belongs to Mp.

We may conclude that although Clifford and octonion analyses have
formally very similar definitions, the corresponding function spaces are dif-
ferent.

Proposition 3.5. Mz C Mp C M©

Proof. Two inclusions follow from Propositions 3.1-3.3. The examples show-
ing that the inclusions are strict, respectively, are: if f = xoe; — x7ey, then
D.f = fD, = 0, but 0y, f1 — Oz, fo = 1 # 0, and if f = z1 — x2e3, then
D,.f =0, but fD, =2e; #0. O

This result is crucial in understanding the fundamental character of oc-
tonion analysis and the structural differences between octonion, quaternion,
and Clifford analyses.
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Remark 3.6. (Quaternion analysis) If we make the corresponding definitions
for quaternion regular function classes by considering the Cauchy—Riemann
operator D, = 0y, + €1 00y, +e200,, + e300, acting on quaternion valued
functions f = f1 + fie1 + foea + fzes, then, by comparing (11) and (13), we
observe immediately that

Mp=MgC MD,

Remark 3.7. (Clifford analysis) If we make the corresponding definitions for
paravector valued monogenic functions, then, by Proposition 3.3,

Mp=Mp =M.

4. Function Classes in Biaxial Quaternion Analysis

In the preceding section we gave characterizations for left-, B-, and R-regular
functions using componentwise and vector forms. In this section we write the
three systems of Sect. 3.2 in quaternion forms. The use of the quaternion
forms of the function and the Cauchy—Riemann operator is called the biazial
quaternion analysis.

Consider the Cauchy-Riemann operator D, and the function f: R%® —
O in the quaternion forms:

Dy = 0yy + Ou + (Oyy + 0y) © €4,
f=g90+g+ (ho+h)oey.

According to Corollary 2.4, we can write

Dy f =0u,90 — Ovygho —Ou-g— 0 - h
+ Ouyg + Ougo + Ovyh — Opho + Oy X g — Oy X I
+ (Oupho + Ovygo + 0y - g — Oy - h)ey
+ (auoﬁ‘f' 9ygo + Ouho — 5vog— Oy X b — 0y x Q) O éy.

This implies the quaternion forms (14) and (15) of, respectively, the
Moisil-Teodorescu type system (8) and the system (10).

Proposition 4.1. f: R® — Q is left reqular if and only if it satisfies the system

6u0h0+8v090+82'ﬂ_81'ﬁ:0;
3u090—3v0h0—3g'g—3g'ﬁ=0;
Ouog + Ougo + Ovyh — Ouho + 0y X g — 0y X h
Ouoh + 090 + Ouho — Duyg — Oy X h — 9y X

(14)

0,

NS}

Proposition 4.2. f: R® — O is left and right regular if and only if it satisfies
the system
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Ougho + Opygo + 0y - g — Oy - h = 0,

Oug 9o — Ovyho — Oy - g — 0y - h =0,

Ouog + Ougo + Oush — Oyho = 0,

Bush + Bugio + Buho — Buyg = 0, (15)

Oy X g—0, xh=0,
Oy X h+ 0y x g=10.

One example of the use of biaxial quaternion analysis is the proof of the
following vector calculus identity in the octonionic case.

Lemma 4.3. Let the coordinates of f: R® — O and g: R® — Q have partial
derivatives. Then

Dy (fxg)=(Dex[f)-g—f (Dsxg).

Proof. We use quaternion decompositions
> = Oy + Oyp€a + Oy © €y,
J =/ 1+ Foeq + Fyoey,
g=g1+Goes +Gioey.

On the left-hand side we apply Lemma 2.3 to the cross product f x g, and
use the classical vector calculus identity

Ve(uxv)=(Vxu) - -v-—u-(Vxv)

for u,v: R3 — R3:

Dy (f x g) = (Ou+ Ovpea+Opoes) - (FoG1— FiGo+ f1 X g1 — F1 x G1
+(F1-g1— f1-Gi)es
+ (f1Go — Fogi — f1 x G1 — F1 X g1) o ea)
:ai'(FOQ)_ag'(&G0)+ag‘(ﬁxﬂ)_al'(ﬂxﬁ)
+8vn(ﬂ'ﬂ)*avo(ﬁ'@)
+0u - (J1Go) = Ou - (Fog1) — Ou - (f1 X G1) — Ou - (F1 X g1)
= (0uko) - G1+ Fo(Ou - G1) — (Ou - F1)Go — F1 - (9uGo)
+(8£Xﬁ)'971*ﬁ’(auxﬂ)*(aﬂxﬂ)'@Jrﬂ’(auxﬁ)
+ (Ou F1) - g1 + Fi - (Oue91) = (Ovp f1) - G1 — 1+ (00, G1)
+ (Ou - f1)Go + f1 - (0uGo) — (0uF0) - g1 — Fo(Ow - g1)
—(Ou X f1)-G1+ f1+(Ou X G1) = (Ou X F1) - g1 + F1 - (9u X g1).
On the right-hand side we apply Lemma 2.3 to the rotors D, x f and Dy X g:
(Dy X f) g = (OugF1 — 0uFo+ 0y X f1 — Oy x Fy
+ Oy~ f1 = 0u-Fi)ey
+ (OuFo — Oy f1 — Ou X F1 — Oy X f1) 0 €4)-
(971+G064 +&oe4)
= (OuF1) - g1 = (0uF0) - g1+ (O X f1) - 91 — (O X F1) - 1
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+ (ay'ﬁ)GO - (82-&)
+ (0uFd) - G1 = (Do f1) - G1 = (Ou X F1) - G1 — (0 X f1) - G,
and
[+ (Dpx g) = (fu+ Foea+ Fioea):
(00,G1 — 0uGo + 0y x g1 — 0y X Gy
(s g1 = 0u-Grea
+(5LLG0—31,0971—3lx@—82><g71)oe4)
= f1-(00,G1) = f1- (0uGo) + f1- (Ou X g1) — f1 - (0 X G1)
+F0(6g'971)_F0(81'@)
+ﬂ'(auGO)_ﬂ'(avoﬂ)_ﬂ'(auxﬁ)_ﬂ'(azxﬂ)-
O

Remark 4.4. (The set of Regular functions is not a module) In quaternion
analysis 0,9 = 0 implies 9, (g 0 a) = 0 for all @ € H (see Lemma 4.5). The
same does not hold in octonion analysis. For example, define g: H — H,
g(z) = 1 — x9e3. Then D,g = e; — eses = 0, but D,y(goes) = D,(z164 —
Toer) = e1e4 — exe7 = 2e5.

For quaternion functions we have the product rules (16) and (17) for
the Cauchy—Riemann operator. Remark 4.4 suggests that we do not have any
kind of a non-trivial product rule for octonion valued functions. In practice,
one way to compute D, (fg) for octonion valued functions is to use biaxial
quaternion analysis, and then to apply (16)—(24).

Lemma 4.5. (/3, Thim 1.3.2]) Let the coordinates of f: H — H and g: H — H
have partial derivatives. Then

Au(fog) = (0uf)og+ [o(dug) —2(f g (16)
and

(f09)0u = (fou) oG+ fo(g0u) —2(g-0u)f. (17)
3
Here, (f - 0u)g = ;fﬁmg,

Corollary 4.6. Let the coordinates of f: H — H and g: H — H have partial
derivatives. Then

Ou((foes)og) =I[(fOu) o g+ fo(90u) +2(g-0u)floes (18)

9u(fo(goes)) =[(9du) o f+go0(fOu) —2(f du)gloes (19)

Ou((foes)o(goes)) =—(0ug)of—go(Ouf)—2(g-0u)f (20)

(Ouoea)(fog)=10.9) 0 f+go(0uf)+2(g-0,)f] (21)

(Ouoeq)((foes)og)=—(90u) o f —g(fO,) —2(f - )y (22)

(Ouoes)(folgoes))=—(fOu)og—fo(g0s) —2(g-0u)f (23)
Jo (

(B0 ea)((f o ea) 0 (g0 €a)) = [~ (0uT)g — F(Bug) — 2(f - )] 0

Proof. Apply Lemmas 2.1 and 4.5, and use the fact fg =g f.

2O
o &
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5. Function Classes in Clifford Analysis

In this last section, we study the classes of left-, B-, and R-regular functions
using Clifford analysis. We begin with the following algebraic lemma.

Lemma 5.1. Let I be the primitive idempotent
1
16
where W = €123 + €145 + €176 + €246 + €257 + €347 + €365, and let a = ag +a

and b= by + b € Cly 7 be paravectors. Then

I = (1 + Welg...7)(1 — 612...7),

16[abl]o = apbp — a - b, (25)
16[abI]; = apb + aby — [(a A b)W ]y, (26)
16[abl]2 = a A b — [(aph + abo) W2 + [(a Ab)Wey...7]2, (27)
16[abl]3 = —(apbg — a - D)W + [(apb + abo)Wey..7]s — [(a AND)W]3,  (28)
16[abl]s = (aobo — a - b)Weq...r — [(aob + abo)Wls + [(a Ab)Wer..7]la,  (29)
16[abl]s = [(apb + abo)Wer..7]s — [(a AND)W]s — (@ Ab)er..7,  (30)
16[abl]e = —(aob + abo)er...7 + [(a A D)Wei...7]s, (31)
16[abl]7 = —(apbyp — a - b)ey...7, (32)

and
[abl]y =0 & [abl]r_p =0, k=0,1,...,7. (33)

If [abIly = 0, then the conditions [abl]; = 0, j = 2,3,4,5, are pairwise
equivalent. In particular, if [abl]p 1.2 =0, then abl = 0.

Proof. Write the real part and the 1- and 2-vector parts of ab using (3), and
expand the definition (4) of I using the fact €%, . = 1:
ab = (agby — a - b) + (aph + abo) +a A b,
161 =1—-—W +Weqg..t —e12..7.

Here, W is a 3-vector and Weqs...7 is a 4-vector. Then, for example, aWW
only contains 2- and 4-vector parts, and therefore [aW]3 = 0. This kind of
reasoning implies (25)—(32).
Now, (33) follows from the facts that for any ¢ € Cly 7,
c=0% cepp..7 =0, and
[C]k612~-~7 = [6612'“7]7—]67 k= 07 17 LR 7.

To prove the last claim, it is now enough to show that in the case [abl]y = 0,
[abI]s = 0 if and only if [abI]3 = 0. This can be seen by computing

16[abl]s = (agby + a1bg + asbs — agbs + a4bs — asby
— agbr + arbg)(e23 + 45 — €o7)
+ (agbe — a1bs + asby + aszby + asbg
+ asby — agbs — azbs)(—e13 + es6 + €57)
+ (aobs + arby — azb1 + azbo

+ asby — asbs + agbs — azbs)(e12 + €7 — esp)



On the Structure of Octonion Regular Functions Page 15 of 17 7

+ (aobs — arbs — azbs — asby
+ asbo + asby + agbe + azbz)(—e15 — €26 — e€37)
+ (agbs + a1by — asb; + asbg
— a4y + asby — agbs + arbz)(e14 — earesq)
+ (apbg + a1br + asby — asbs
— agby + asbs + agbo — azby)(e17 + 21 — e35)
+ (aoby — arbs + azbs + azby — asbs
— asby + agby + arbo)(—e16 + €25 + €34),
and in the case [abl]o =0,
16[abl]3 = (apb1 + a1bg + azbs — agbs + asbs — asby
— agby + arbe ) (€247 — €256 — €346 — €357)
+ (apby — a1bs + asbg + asby + asbg
+ asby — agby — azbs)(—e1a7 + €156 + €345 — €367)
+ (agbs + a1by — asby + asby
+ agbr — asbg + agbs — azbs)(e146 + €157 — €245 + €267)
+ (apbs — arbs — azbs — azbr + asby
+ asby + agba + arbz)(e127 — €136 + €235 — €567)
+ (apbs + a1by — asbr + agbs — asby
+ asbo — agbs + arba)(—e126 — €137 — €234 + €467)
+ (aobs + aiby + azby — azbs — asbs
+ asbz + agbo — arby)(e125 + €134 — €237 — €4s57)
+ (agby — a1bg + asbs + azby — asbs
— asby + agby + arbo)(—e124 + €135 + €236 + €456)-

O

We infer that left-, B-, and R-regularity can be studied by considering
paravector-spinor valued functions f1I.

Theorem 5.2. Suppose that f: R® — R® is a paravector valued function such
that the coordinate functions have partial derivatives.

(a) f is left-reqular if and only if

[0:f1]; =0 for j =0,1. (34)
(b) f is B-regular if and only if
[0 fI; =0 for j =0,1, and [0,fW]1 =0. (35)

Proof. (a) follows using Lemma 2.7:

D, f =16[0, fI]o + 16[0; fI]1.
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(b) From (3) and (26), we obtain
[axfW]l = [(arofO - (9£~i)W]1 + [(aa:oi"‘ ang)W]l + [(3£/\i)W]1
= [0z A /)W
_16[6xf1]1 + 8zoi+ D&fO-

Since Dy x f = —[(O A f)W]1 (Lemma 2.5), the claim now follows from
(a) and Propositions 3.1-3.2.

O

Remark 5.3. If 0, f = 0, then (trivially) [0,fI]; = 0 for all j =0,1,...,7.
The converse does not hold. This follows from the fact that the equation
al = 0 does not have a unique solution ¢ = 0 in the Clifford algebra. Hence,
paravector spinor valued solutions of the Cauchy—Riemann equations form a
bigger function class, and the class of R-regular solutions is

Mpr C{f 0., fI =0} ={f:[0.fI]; =0, j=0,1,....7}
={f:[0:1]; =0, j =0,1,2}.

The equality of the latter two function classes follows from Lemma 5.1. An
example showing that the inclusion is strict: if f = xg9e; — x7ey, then 0, f =
ese7 — e1ez, but [0, fI]; =0 for j =0,1,2.

6. Conclusion

The key idea of this paper is to study differences between octonion and Clif-
ford analyses. This leads us to observe the fundamental difference between
octonion regular and Clifford monogenic functions. The structure of octonion
regular functions is studied by comparing left-, right-, B-, and R-regular func-
tions. The existence of these classes is a consequence of different algebraic
properties of the algebras. In the heart of octonion analysis is the study of the
properties of these function classes and their relations, which distinguishes it
essentially from Clifford analysis.
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