
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 81 (2019) 282–287

2212-8271 © 2019 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.
10.1016/j.procir.2019.03.049

© 2019 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.

52nd CIRP Conference on Manufacturing Systems

A method to evaluate interface compatibility during production system
design and reconfiguration

 Niko Siltalaa,*, Eeva Järvenpääa, Minna Lanza
aFaculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, 33720 Tampere, Finland

* Corresponding author. Tel.: +358-40-536-6017 . E-mail address: niko.siltala@tuni.fi

Abstract

Manufacturing companies operate in volatile environment, where agility and responsiveness to change are desired from the production systems.
Such responsiveness could be facilitated by computerized methods for resource selection and system design. We have developed a capability
based matchmaking method, which compares the product requirements against resource capabilities, and which proposes resource combinations
meeting these requirements. One part of this method is interface matchmaking algorithm, which is presented in this paper. Interface matchmaking
method evaluates if the proposed set of resources can be connected physically together. It utilizes the formalized interface information provided
by the resource descriptions.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.

 Keywords: resource interfaces; interface matchmaking

1. Introduction

Responsiveness of manufacturing is an important strategic
goal for manufacturing companies operating in a highly
dynamic environment characterized by constant change. Such
responsiveness and adaptivity is related to the need to
reconÞgure and adjust the production and corresponding
production system as efficiently as possible to the required
changes in processing functions, production capacity, and the
dispatching of the orders. [1, 2] To do this, the production
system needs an inherent ability to facilitate continual and
timely change in its structure and in its functional operations.

Traditionally, the production system design and
reconfiguration has been purely a human-driven and time-
consuming process, relying on the expertise and tacit
knowledge of the system integrators and the end users of the
system [3]. Meeting the requirements of fast adaptation calls for
new methods and solutions that would drastically reduce the
time and effort put into system design [2, 4], both in brownfield
and greenfield scenarios. Plug and play interfaces, modern

information and communication technologies, formal
information models representing resources and products, as
well as simulations and other computer-aided intelligent
planning tools can all contribute to such methods and solutions
[2, 4]. During the system design and re-conÞguration, new
structural conÞgurations are built to fulÞl the functional
requirements set by the product [4]. Similar to the design of
modular products [5]; consideration of interfaces plays an
important role in enabling the interchangeability and
independence of resource elements. Thus, in order to achieve a
feasible structural conÞguration, the combined production
resources must have compatible interfaces.

Within the past decade, there have been multiple different
projects and research [6-9] trying to provide computerized
support for system design and reconfiguration planning
process. According to [6], the modular architecture paradigm
for new production systems, which focuses on the clear
functional decoupling of equipment module functionalities and
the use of standardized interfaces to promote
interchangeability, presents the possibility for developing

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.

52nd CIRP Conference on Manufacturing Systems

A method to evaluate interface compatibility during production system
design and reconfiguration

 Niko Siltalaa,*, Eeva Järvenpääa, Minna Lanza
aFaculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, 33720 Tampere, Finland

* Corresponding author. Tel.: +358-40-536-6017 . E-mail address: niko.siltala@tuni.fi

Abstract

Manufacturing companies operate in volatile environment, where agility and responsiveness to change are desired from the production systems.
Such responsiveness could be facilitated by computerized methods for resource selection and system design. We have developed a capability
based matchmaking method, which compares the product requirements against resource capabilities, and which proposes resource combinations
meeting these requirements. One part of this method is interface matchmaking algorithm, which is presented in this paper. Interface matchmaking
method evaluates if the proposed set of resources can be connected physically together. It utilizes the formalized interface information provided
by the resource descriptions.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.

 Keywords: resource interfaces; interface matchmaking

1. Introduction

Responsiveness of manufacturing is an important strategic
goal for manufacturing companies operating in a highly
dynamic environment characterized by constant change. Such
responsiveness and adaptivity is related to the need to
reconÞgure and adjust the production and corresponding
production system as efficiently as possible to the required
changes in processing functions, production capacity, and the
dispatching of the orders. [1, 2] To do this, the production
system needs an inherent ability to facilitate continual and
timely change in its structure and in its functional operations.

Traditionally, the production system design and
reconfiguration has been purely a human-driven and time-
consuming process, relying on the expertise and tacit
knowledge of the system integrators and the end users of the
system [3]. Meeting the requirements of fast adaptation calls for
new methods and solutions that would drastically reduce the
time and effort put into system design [2, 4], both in brownfield
and greenfield scenarios. Plug and play interfaces, modern

information and communication technologies, formal
information models representing resources and products, as
well as simulations and other computer-aided intelligent
planning tools can all contribute to such methods and solutions
[2, 4]. During the system design and re-conÞguration, new
structural conÞgurations are built to fulÞl the functional
requirements set by the product [4]. Similar to the design of
modular products [5]; consideration of interfaces plays an
important role in enabling the interchangeability and
independence of resource elements. Thus, in order to achieve a
feasible structural conÞguration, the combined production
resources must have compatible interfaces.

Within the past decade, there have been multiple different
projects and research [6-9] trying to provide computerized
support for system design and reconfiguration planning
process. According to [6], the modular architecture paradigm
for new production systems, which focuses on the clear
functional decoupling of equipment module functionalities and
the use of standardized interfaces to promote
interchangeability, presents the possibility for developing

 Niko Siltala et al. / Procedia CIRP 81 (2019) 282–287 283
2 Niko Siltala et al. / Procedia CIRP 00 (2019) 000–000

automated system design and reconfiguration methods.
Important steps towards modular assembly equipment and
standardized hardware and control interfaces was made, for
example, in EU-funded project EUPASS [7]. In SkillPro
project, an approach basing on relation between product,
process, resource, and skill was proposed [8]. The recently
finished project ReCaM [9], whose results this paper also
reports, aimed to develop a set of integrated tools for rapid and
autonomous reconfiguration of production systems. The
approach relies on a formal unified functional description of
resources [10], providing a foundation for rapid creation of new
system configurations through capability-based matchmaking
of product requirements and resource offerings [11].

The first objective of this paper is to present how the
interface concept for production resources can be utilized as
part of our capability matchmaking [12] procedure. Second, to
present the algorithm used to filter out those production
resource combinations (e.g. manipulator and gripper)
generated by the capability matchmaking, which cannot be
physically connected with each other.

The paper is organized as follows. The second chapter
introduces our overall capability matchmaking approach and its
associated concepts. Chapter three focuses on the interface
matchmaking method in general and associated ontology (data
model). In chapter four we describe the underlying interface
matchmaking algorithm, including some implementation
aspects. In the final chapter we conclude the work done and its
implications to the science and technology in general.

2. Capability Matchmaking

The matchmaking system intends to ease up the system
design and reconfiguration procedure by automatically
suggesting alternative resource combinations for specific
product requirements. The matchmaking utilizes as an input
formal representation of product requirements as well as
resources and their capabilities and interfaces, and proposes a
suitable match between these by using rule-based reasoning.
We will explain these aspects shortly in the following sections.

2.1. Involved information models

We have defined several ontologies as connected
information models [13]. A central model of them is
Manufacturing Resource Capability Ontology (MaRCO) [13],
which is a Web Ontology Language (OWL)-based information
model that can be used to describe capabilities, i.e.
functionalities, of resources and resource combinations.
MaRCO imports another ontology called Process Taxonomy
Model, which categorizes different manufacturing and
assembly processes in a hierarchical structure. MaRCO model
defines relations between simple (atomic) and combined
capabilities. For instance, robot has a simple capability
“Moving” and gripper has a simple capability “Grasping”.
Together they have a combined capability “Transporting”.
Based on these relations, the potential device combinations that
have a certain combined capability can be identified
programmatically by utilizing information provided by
SPARQL (SPARQL Protocol and Resource Description

Framework Query Language) queries. Detailed information
about MaRCO can be found from our earlier publications [13,
14]. While the MaRCO models the capabilities of resources,
Resource Interface ontology [15] models the interfaces of
production resources. The latter will be opened more in details
in next sections. MaRCO imports also the Resource Interface
ontology.

We have developed another ontology to describe the product
requirements. A Product Model ontology [12] describes the
parts and their basic characteristics, sub-assemblies and their
contained parts, processes related to the parts and sub-
assemblies, capability requirements related to the processes,
and sequence of the processes. Also, the Product Model imports
the same Process Taxonomy as the Capability Model. This
allows to build a link between the requirements and provided
capabilities. All our ontologies can be found from [16].

2.2. Overall matchmaking process

The overall matchmaking process [11] has three stages,
which all require their specific algorithms and rules: 1)
Defining the combined capabilities and calculating their
parameters when new resource combinations are formed [17];
2) Checking the interface compatibility of the resources when
new resource combinations are formed [15]; and 3) Matching
the product requirements against the capabilities of the
combined resources [18]. This paper focuses on elaborating the
actions performed during the second stage.

The matchmaking process takes inputs from external design
and planning systems, which control the matchmaking process.
The required inputs are a Product Requirement Description
(PRD) and Resource Descriptions (RDs) of the production
resources as a Resource Pool. In case of reconfiguration
scenario, a description of the existing production system (a
System Layout) should also be provided as an input. These
inputs form the search space for the matchmaking. The search
space is read into a Matchmaking Ontology. The Matchmaking
Ontology imports both the MaRCO and the Product Model
ontologies and contains rules that are used to compare the
product requirements against the provided capabilities, and to
make match between those. [12]

The capability-matching process takes the capability
requirements and matches them with the existing capabilities or
create new resource combinations that match with the
requirements. The found matches to each process step are then
provided back to the external design tools, which will then show
the results to the system designer for resource selection and
system configuration e.g. sorted by the availability or other
valued criteria. The interface matchmaking is one of the sub-
processes for the overall matchmaking process, and it is
presented in the next sections.

3. Interface matchmaking

The interface matchmaking refers to process of Þnding out
physically connectable and compatible production resources
from the hardware interface point of view. This can be
illustrated with a few use case scenarios, which are opened
more in [15]:

284 Niko Siltala et al. / Procedia CIRP 81 (2019) 282–287
 Niko Siltala et al. / Procedia CIRP 00 (2019) 000–000 3

1) To Þnd all resources, which can be connected with the
selected resource;

2) To Þnd all resources, which can be connected with one
particular interface of the selected resource, instead of all
resourceÕs interfaces;

3) To Þnd all possible resource combinations, which can be
connected together. This is generalized case of the Þrst.

4) To analyze if the connections in the proposed system
layout or a set of resources are connectable from the
interface point of view. This case focuses on two selected
resources, and their connection.
In the overall matchmaking process, the interface

matchmaking is done in together with the resource combination
generation. The capability matchmaking finds out possible
resource combinations, which are then tested for the interface
connection. Thus, in this paper, we will focus the use case
scenario 4 (from above), even the other scenarios are also
touched by the implementation of interface matchmaking
algorithm. List of resources to be combined will come as an
input and the output should be true or false, depending on if
these resources can be connected from the interface point of
view or not.

In all these four scenarios, the interface matching can be
done at two different levels of detail. At Þrst, coarse level
matching analyses only the interface identifier (ID) and the
gender information. The second level is Þne level matching,
which uses additionally the interface characteristics
information and associated rules
(ifCompatibilityCheckOperator). Section 3.3 focuses on the
coarse level and Section 3.4 on the Þne level matching, but first
we explain some necessary preparations before interface
matchmaking can take place.

3.1. Resource Interface Ontology

Fig. 1 represents the data model of the Resource Interface
ontology, which is used to provide formalized information for
interface matchmaking. [15] presents it in details, and only the
main points for interface matchmaking are highlighted here. A
production resource is presented as a DeviceBlueprint class. It
has one or more InterfaceDefinitions, which present an
implementation of IFStandard. IFStandard is a definition of
international, de-facto, or company specific interface
specification. The Resource Interface ontology formalizes the
main characteristics of such specification through IFStandard
and IfStdCharacteristic classes. The latter captures interface
characteristics including the variant information provided in
the specification, like mechanical size, type of electrical
connection, or communication protocol used. While the
IfStdCharacteristic presents all possible values for a variant,
the corresponding IfCharacteristic class picks the value used
for this specific InterfaceDefinition. This information is used to
evaluate the physical fit between two resource modules, such
as mechanical connections and their dimensions.

Fig. 1. Resource Interface Ontology (Modified from [15]).

3.2. Preparations for interface matchmaking

One input for the interface matchmaking is a populated
Resource Model ontology containing the description of
resource interfaces in format of Resource Interface ontology.
Therefore, it needs to be prepared before the interface
matchmaking can start. The search space for our matchmaking
is a resource pool(s) and optionally a system layout. Each
physical production resource present on the search space has its
own formalized Resource Description (RD). A RD contains
comprehensive description of characteristics and capabilities of
a resource. The resource provider provides it and publishes
them through a Resource Catalogue(s). The Resource
Description concept is discussed in details in [10, 19], and
utilization and value proposition of it in [20].

In the preparation phase, all resources belonging to the
matchmaking search space are processed. The RD of each
resource is read in and new or linked instances corresponding
the Resource Interface ontology are created and populated on a
new ontology. This ontology is then provided as one input for
the interface matchmaking.

3.3. Coarse level matching

There are two property values of interface, which are used
at the coarse level interface matching. The first is the
stdCodeFull from IfStandandard class, which is the primary
linking factor when judging, if two interface implementations,
present in two resources, can be connected together. The
second is the gender (ifGender) from InterfaceDeÞnition class,
and it can have one of the three enumerated values - male,
female, or neutral. This deÞnes polarity of the interface, and
which implementations of the same IfStandard can be
connected together. The rule is simple - male and female or two
neutrals can be connected together. Examples of appointing a
gender are such as: a plug is male, a socket is female, and a
plain ßange with mounting through holes could form an
interface with neutral gender.

 Niko Siltala et al. / Procedia CIRP 81 (2019) 282–287 285
4 Niko Siltala et al. / Procedia CIRP 00 (2019) 000–000

3.4. Fine level matching and rules for interface
characteristics

The Þne level interface matching needs further information
from the interface implementation, and the choices made by the
resource provider. The concept of interface characteristic
provides this additional information. It provides not only the
IDs and values of the characteristic, but also a compatibility
check operator (=rule) that deÞnes how these values must
relate against each other in case of a positive match. The two
resources are connectable at Þner level, if and only if all
(mandatory) IfCharacteristics of an interface provide a positive
match. Each of the IfCharacteristic has one
ifCompatibilityCheckOperator. The operator speciÞes how the
values from the source resource are compared with the target
resource. The comparison follows a template - <Source>
is/contains <Operator> (as) <Target>?

In [15] we have deÞned twelve different compatibility check
operators with mathematical formulation, which can be used as
an interface matching rule. Fig. 2 illustrates a few selected
operators, and matching with sets and numerical values. For
example, the operator ÒSAME_SETÓ expects at both sides of
the connection (i.e. source and target sides) exactly same value
or set of values. It applies also if characteristic is a numerical
value or a range. Practical application of operator
ÒSAME_SETÓ could be a gripper (source), which implements
an interface with size variant 20. This can be connected only
with manipulators (target) having the same size variant 20
defined as implementation. Another example of operator is
ÒINSIDE_RANGEÓ, which is applicable only for numerical
values. In this case, interfaces are connectable only and only if
the source side value or range remains inside range of the
target. Source set S2.1 [3,5] is inside range of the target set (T)
[2,5] in Fig. 2. Thus, in such case a positive match can occur.
If source set is S2.3 [4,6], interface match is not possible with
the same operator and target set (T), because S2.3 extends above
the T.

Fig. 2. A few interface compatibility operators, and illustration how source
interface matches or doesn’t match with target.

4. Interface matchmaking algorithm

SPARQL is used to make queries to the Resource Interface
ontology. An interface matchmaking Application Program
Interface (API) has been developed to run and process them in
sequences, and to provide additional Þltering of the results.
This API hides from user the SPARQL queries, as one request
requires running several different queries, calling them and
analyzing the acquired results. In addition, intermediate
information is cached internally for subsequent interface
matchmaking calls.

Certain level of optimization is performed with the share of
API side processing versus SPARQL queries. For example,
analyzing possible connections between multiple resources in
use case scenarios one and three from beginning of Chapter 3,
one can run sequence of queries associated to the scenario 1

Fig. 3. Interface matchmaking procedure.

A
B

C

Source(S) Target(T)
Interface match for Sets:

A
B

C
SAME_SET

A
B

C
A
B

C
ALL_FROM_SET

D

Target set (T): [2,5]	
IF match for Values:

SAME_SET [2,5]	

Source set (S):Operator OK values

INSIDE_RANGE [3,5];	 3	

PART_OF_RANGE [1,2];	 4;	
[1,6]

PART_OF_RANGE_
OR_LOWER

[1,4];	
1;	 3

1 2 3 4 5 6

Operator

B
CD

B
CD
A

[6,7]	

Not OK

Comparing Source
with Operator
against Target

[4,6]	

3	

Check one resource combination
(list of resources)

INPUTS

• Make rough interface match to whole
interface ontology. [1x SPARQL].• Resource Model ontology populated

with the available resource pool
(RES_MODEL)

List of resources Ids for the combination
(INPUT_LIST, having N x RD ID)
• Resources to be connected together
e.g. one resourceCombination from
matchmaking

• Can have same ID multiple times à
same resource X times. (not the case
with capability matchmaking)

• Select next Resource Nq from query result
• Find Resource Nq from INPUT_LIST
• Find does it pair with other resource on
INPUT_LIST.

• Store possible coarse connections at both ends

More query
result?

NO

YES

More resources on
INPUT_LIST? (N)

NO

YES

Parameters:
• only mechanical IF : bool
• End after rough interface match: bool
• End after fine interface match: bool
• MatchAtIFportlevel : bool
• MakePhysicalHierarchy : bool

All resources
’connected fine’?

No match
YES

All resources on
INPUT_LIST are ’connected

rough’?
NO

NO

YESInterface match: Coarse

Interface match: Fine

For each resource on INPUT_LIST
• Search and update internal data from Ontology
(Nx SPARQL)

• Finally make preparations for MatchResult

1. Select 1st resource from INPUT_LIST. Mark it as ’connectedRough’ + add
connectedResourceTypeCount

2. Make recursive search through resource’s all connections, which are not
yet marked as connected.

3. Mark connected resource(s) as ’connectedRough’ and add net_Rough ID.
4. End when recursion finish

• Select next interface Std M from ’possibleConnectionsRough’
• Get Std characteristics for M. This is working as reference list of
expected characteristics for match. (1x SPARQL per M.)

• Compare INPUT_LIST Resource N with each possible rough
connection resources on the INPUT_LIST. Make fine interface
match between two resources. M* (N*(N-‐1) x SPARQL)

• Check if all required Standard characteristics exists -‐> if not
continue to next M

• NOTE: This can compare only with resources appearing later on
list. Connections with earlier ones are already checked.

• If match, store possible fine connections at both ends

Pick Resource N from INPUT_LIST

More Interface
standards on list? (M)

NO

YES

connectedResourceTypeCount =
IfMatchResult.ResourceTypes[].size

1. Select 1st resource from INPUT_LIST. Mark it as ’connectedFine’ +
add connectedResourceTypeCount

2. Make recursive search through resource’s all connections, which are
not yet marked as connectedFine.

3. Mark connected resource(s) as ’connectedFine’ and add net_Fine ID.
4. End when recursion finish

Return Match

1.

2.

3.

4.

5.

7.

6.

286 Niko Siltala et al. / Procedia CIRP 81 (2019) 282–287
 Niko Siltala et al. / Procedia CIRP 00 (2019) 000–000 5

and conclude the result by combining these results together.
Alternative is to run only one SPARQL query (scenario 3) and
then pick the interested resources out from the results and
collect the final result. If the processing cost of a single
SPARQL query is very high, then it is beneficial to follow the
latter strategy.

Fig. 3 illustrates the algorithm for the interface
matchmaking both at coarse and fine levels. The algorithm is
divided in two phases. The steps from 1 to 4 (orange circles at
right top corner of process) forms the coarse level interface
matching phase and steps from 5 to 7 correspondingly the fine
level phase. Next, the key points of the algorithm are explained.

4.1. Inputs for algorithm

First, the input request from outside is processed (three
document blocks in top left corner of Fig. 3). The input contains
three parts. The first is a list of resource IDs (INPUT_LIST)
establishing a resource set for the tested resource combination.
The second is the Resource Model ontology (RES_MODEL)
including the Resource Interface ontology populated with
resource instance information, as presented in section 3.2. The
ontology can be the same for many adjacent interface
matchmaking requests, and only the list of resource IDs will
change. The third input is the control and configuration
information, which is used to influence the operation of the
algorithm, such as terminating the algorithm after coarse
interface matching phase.

4.2. Coarse level interface matching

The first step of the algorithm (in Fig. 3) is still for the
preparations. A SPARQL query is executed for each resource
(N) provided on the INPUT_LIST. This query is used to collect
information about each resource from the ontology and to
initialize the internal data structures before the execution of the
algorithm. Other internal initializations are performed like the
initiation of the MatchResult object.

The second step executes one SPARQL query for searching
all coarse level matches within the given RES_MODEL. It uses
the standard’s ID code and gender information for determining
the coarse interface match. Fig. 4 shows the SPARQL query
used in this step, and it works as the following: Line 2 starts the
SPARQL query and selects what information is shown on the
resulting records. Lines 4..8 select the resource(s), which are
used as source resource for the interface matching, and all its
interface descriptions. Line 9 deÞnes which gender is accepted
as the counterpart. Lines 10..13 look for counter part resources
implementing the appropriate interface, and selects such
resources as a target resource. Finally, line 14 Þlters out the
records connecting the source to itself.

1 # Interface match: coarse. Find connectable

interfaces of all modules AND find toMOs having
connecting interface: NEUTRAL-NEUTRAL or MALE-
FEMALE

2 SELECT DISTINCT ?fromMO ?fromIF ?fromIFStdCode
?fromGender ?toGender ?toIF ?toIFStdCode ?toMO

3 WHERE {
4 ?fromMO rdf:type/rdfs:subClassOf*

rm:DeviceBlueprint .
5 ?fromMO rm:hasInterface ?fromIF .

6 ?fromIF rim:implementsStd ?fromIFStd ;
 rim:ifGender ?fromGender .
7 OPTIONAL { ?fromIF rim:hasPurpose ?purpose . }
8 ?fromIFStd rim:stdCodeFull ?fromIFStdCode .
9 bind(xs:string(if(?fromGender="NEUTRAL","NEUTRAL",

xs:string(if(?fromGender="MALE", "FEMALE",
"MALE")))) as ?toGender) .

10 { ?toIFStd rim:stdCodeFull ?fromIFStdCode . }
UNION {?toIFStd rim:hasCompatibleStd ?fromIFStd.}

11 ?toIFStd rim:stdCodeFull ?toIFStdCode .
12 ?toIF rim:implementsStd ?toIFStd ;
 rim:ifGender ?toGender .
13 ?toMO rm:hasInterface ?toIF .
14 FILTER (?fromIF != ?toIF) . }

Fig. 4. SPARQL example finding all interface matches at coarse level.

In the step 3, each record of the query result from step 2 is
analyzed. First, each source resource (Nq) is searched from the
INPUT_LIST. If it is found on the list, next is checked that can
it be connected with the other resources on the INPUT_LIST.
I.e. is the target resource found also on the INPUT_LIST? The
possible coarse connection between these two resources is
marked and stored internally at side of both resources.

In the step 4, resources on the INPUT_LIST are iterated and
analyzed recursively for finding out if they create a single
network. The procedure is illustrated in Fig. 5. The analysis
starts from the first resource on the list and continues spreading
recursively. A box represents a resource and number in an arc
the recursion round. Always, when a new resource is reached,
it is marked with flag connectedRough and its netID is set. If
any of the resources is left orphan (like Res X in Fig. 5) after
processing through the whole list, ‘no match’ (false) is returned
and algorithm terminates. If single network is created out of all
resources on the INPUT_LIST and only coarse level
matchmaking is requested, ‘match’ (true) is returned. In other
cases, the process will continue to the fine level interface
matchmaking.

Fig. 5. Algorithm marking resources belonging to a connected network.

4.3. Fine level interface matching

The results from the coarse level interface matchmaking are
utilized as input for the fine level interface matchmaking. Next,
each resource N on the INPUT_LIST is processed one at the
time (Step 5.). In the step 6, each standard M of the resource N,
which has been marked as connectedRough, will be processed
further. This means that through this standard interface there
exist a connection with another resource at rough level, so it is
a potential candidate for fine level connection.

First, in the step 6, a list of interface standard characteristics
is figured out for each involved interface standard M. If the
characteristic information does not yet exist in the cache, it is

1

3

7

2

4
5

6
8

Res A

netID=1

Res B

netID=1

Res E

netID=1

Res C

netID=1

Res F

netID=1

Res G

netID=1

Res D

netID=1

Res H

netID=1

Res X

netID=?

 Niko Siltala et al. / Procedia CIRP 81 (2019) 282–287 287
6 Niko Siltala et al. / Procedia CIRP 00 (2019) 000–000

queried with a SPARQL query, processed, and stored to the
cache. This creates an objective of the standard’s
characteristics for later comparisons. Then a parametric
SPARQL query is executed between all resources marked as
connected with resource N with interface standard M. It is
enough to compare only with the resources appearing further
on the INPUT_LIST, because the former are already marked as
connected, if a connection between the resources does exist. In
maximum N*M*(N-1) queries are executed in this phase. For
each query result, it is analyzed, if all mandatory interface
standard characteristics do exist. If they do, flag
‘possibleFineConnection’ is marked at both resource’s ends for
this pair of connection. Otherwise, this resource connection is
rejected. Then the iteration continues with next standard M, and
after standards run out to the next resource N.

Finally, in the step 7, possible fine level connections
information is resolved, with similar method as in coarse level
matching (step 4), to determine if a single network (Fig. 5) is
created out of the input resources. If this is the case, ‘match’
(true) is returned as result of the algorithm, false otherwise.
This terminates the interface matchmaking algorithm.

5. Conclusions

This paper presented an interface matchmaking method for
evaluating if a set of production resources can be connected
physically from the interface point of view. The associated
algorithm for making both coarse and fine level interface
matchmaking was presented. The wider capability
matchmaking method, and the presented approach as part of it,
can facilitate rapid system design and reconfiguration planning,
by allowing computerized methods to find feasible system
configuration scenarios to different product requirements.
Large resource catalogues containing thousands of resources
and their variants can be automatically screened to find out the
few appropriate resources. Using automatic matchmaking
reduces and speeds up the manual design efforts, as the
designer can focus his/her resource selection to truly
connectable and fit resources, instead of searching for
resources, and analyzing their interfaces. Additionally, the
electrical resource catalogues can contain production resources
(formal Resource Descriptions) from multiple vendors, which
increases number of resources to study, but also available
alternatives. Thus, matchmaking opens possibilities for new
and more innovative solutions to be found. The designer is not
bound to “old and known solutions”, which is almost solving
the requirements, but can select the optimum fit.

As a future work, we have some ideas to continue the
interface matchmaking procedure to still finer level of detail
including resource matching at interface port implementation
level. This can extend the procedure for suggesting also
physical layouts.

Acknowledgements

This research has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement no 680759 (www.recam-project.eu).

References

[1] Koren Y, Shpitalni M. Design of reconfigurable manufacturing systems.
J Manuf Syst 2010;29(4):130-41. doi:10.1016/j.jmsy.2011.01.001.

[2] Wiendahl H-P, ElMaraghy HA, Nyhuis P, Zäh MF, Wiendahl H-H, Duffie
N, et al. Changeable Manufacturing - Classification, Design and
Operation. CIRP Ann 2007;56:783–809. doi:10.1016/j.cirp.2007.10.003.

[3] Rösiö C, Säfsten K. Reconfigurable production system design –
theoretical and practical challenges. J Manuf Technol Manag
2013;24:998–1018. doi:10.1108/JMTM-02-2012-0021.

[4] Westkämper E. Factory Transformability: Adapting the Structures of
Manufacturing. Reconfigurable Manuf. Syst. Transform. Factories,
Berlin, Heidelberg: Springer Berlin Heidelberg; 2006, p. 371–81.
doi:10.1007/3-540-29397-3_19.

[5] Pakkanen J, Juuti T, Lehtonen T. Brownfield Process: A method for
modular product family development aiming for product configuration.
Des Stud 2016;45:210–41. doi:10.1016/j.destud.2016.04.004.

[6] Ferreira P, Lohse N, Ratchev S. Multi-agent Architecture for
Reconfiguration of Precision Modular Assembly Systems. In: Ratchev S,
editor. Precis. Assem. Technol. Syst., Springer; 2010, p. 247–54.

[7] EUPASS - Evolvable Ultra-Precision Assembly SystemS - project. EU
FP6, GA No 507978 (2006). http://cordis.europa.eu/project/rcn/75342
en.html. [Accessed 27.12.2018]

[8] Pfrommer J, Schleipen M, Beyerer J. PPRS: Production skills and their
relation to product, process, and resource. 2013 IEEE 18th Conf. Emerg.
Technol. Fact. Autom., Cagliari, Italy: IEEE; 2013, p. 1–4.
doi:10.1109/ETFA.2013.6648114.

[9] ReCaM consortium, ReCaM project web page, http://www.recam-
project.eu. [Accessed 27.12.2018].

[10] Siltala N, Järvenpää E, Lanz M. Formal Information Model for
Representing Production Resources. Adv Prod Manag Syst Initiat Sustain
World APMS 2016 IFIP Adv Inf Commun Technol 2016;488:53–60.
doi:10.1007/978-3-319-51133-7_7

[11] Järvenpää E, Siltala N, Hylli O, Lanz M. Capability matchmaking
procedure to support rapid configuration and re-configuration of
production systems. Procedia Manuf 2017;11:1053-60.
doi:10.1016/j.promfg.2017.07.216.

[12] Järvenpää E, Siltala N, Hylli O, Lanz, M. Product Model Ontology and Its
Use in Capability-Based Matchmaking. Procedia CIRP 2018;72:1094-9.
doi:10.1016/j.procir.2018.03.211

[13] Järvenpää E, Siltala N, Hylli O, Lanz M. The development of an ontology
for describing the capabilities of manufacturing resources. J Intell Manuf
2018; p.1-20. doi:10.1007/s10845-018-1427-6

[14] Järvenpää E, Lanz M, Siltala N. Formal Resource and Capability Models
supporting Re-use of Manufacturing Resources. Procedia Manuf
2018;19:87-94. doi:10.1016/j.promfg.2018.01.013

[15] Siltala N, Järvenpää E, Lanz M. Creating Resource Combinations Based
on Formally Described Hardware Interfaces. In: Ratchev S, editor. Precis.
Assem. Technol. Syst. - 8th IFIP WG 5.5 Int. Precis. Assem. Semin. IPAS
2018, Chamonix, France: Springer Nature Switzerland AG 2019; 2019, p.
29–39. doi:10.1007/978-3-030-05931-6_3.

[16] Järvenpää E, Siltala N, Hylli O. Product, Manufacturing Resource and
Capability Ontologies 2019. http://urn.fi/urn:nbn:fi:csc-
kata20190225154330611362.

[17] Järvenpää E, Hylli O, Siltala N, Lanz M. Utilizing SPIN Rules to Infer the
Parameters for Combined Capabilities of Aggregated Manufacturing
Resources. IFAC-PapersOnLine 2018;51:84-9.
doi:10.1016/j.ifacol.2018.08.239

[18] Järvenpää E, Siltala N, Lanz M. Formal resource and capability
descriptions supporting rapid reconfiguration of assembly systems. 2016
IEEE Int. Symp. Assem. Manuf., IEEE; 2016, p. 120-5.
doi:10.1109/ISAM.2016.7750724

[19] Siltala N. Formal Digital Description of Production Equipment Modules
for supporting System Design and Deployment. Tampere University of
Technology, 2016. http://urn.fi/URN:ISBN:978-952-15-3783-7

[20] Siltala N, Järvenpää E, Lanz M. Value Proposition of a Resource
Description Concept in a Production Automation Domain. Procedia CIRP
2018;72:1106–11. doi:10.1016/j.procir.2018.03.154.

