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Abstract—The challenges of millimeter-wave (mmWave) radio
propagation in dense crowded environments require dynamic re-
associations between the available access points (APs) to reduce
the chances of losing the line-of-sight (LoS) path. However,
the antenna beamsearching functionality in the mmWave sys-
tems may introduce significant delays in the course of AP re-
association. In this work, we analyze user performance in dense
urban mmWave deployments that are susceptible to blockage
by the dynamically moving crowd. Our approach relies on the
ergodic capacity as the key parameter of interest. We conduct a
detailed evaluation with respect to the impact of various system
parameters on the ergodic capacity, such as AP density and
height, blocker density and speed, number of antenna array
elements, array switching time, degree of multi-connectivity, and
employed connectivity strategies. Particularly, we demonstrate
that dual connectivity delivers the desired performance out of
all possible degrees of multi-connectivity, and there is an optimal
density of mmWave APs that maximizes the capacity of cell-edge
users. We also show that the use of low complexity “reactive”
multi-connectivity design, where the beamtracking is only per-
formed when the currently active connection is lost, together
with the utilization of iterative beamsearching algorithms, does
not significantly deteriorate the ergodic capacity.

I. INTRODUCTION

Millimeter-wave (mmWave) communications technology is
expected to provide the basis for fifth-generation (5G) mo-
bile networks that enable extremely high data rates and low
latencies at the air interface [1], [2]. While 3GPP’s standard-
ization process on mmWave-ready New Radio (NR) is almost
complete and vendors are performing test trials to showcase
the capabilities of this emerging system design, researchers
continue exploring the challenges related to enabling advanced
networking options for 5G [3], [4].

In contrast to legacy microwave systems, where base station
re-associations are primarily caused by the mobility of a user
and thus do not occur as often, the specifics of mmWave
propagation may call for much more frequent cell changes.
Indeed, even when the active user is static, the movements of
other nearby objects, such as humans and vehicles, may cause
line-of-sight (LoS) blockage. This, in turn, leads to a rapid
degradation in the received signal strength that could result in
unwanted outages [5]. This problem is aggravated by the fact
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that blocked period durations are expected to be hundreds of
milliseconds [6].

One of the possible solutions to improve mmWave coverage
is to use beamforming [7]. However, beamforming efficiency
highly depends on the number of array elements and the
specifics of beamsearching algorithms, user equipment (UE)
misdetection and discovery delays [8], propagation conditions
(indoor vs. outdoor), and likelihood of channel variations
(interference, direction of arrival, etc.) [9]. To improve beam-
searching speed and efficiency, it is possible to utilize location
information [10] and other network assistance functions [11],
which can bring additional benefits to 5G heterogeneous
networks (HetNets) [12], [13].

Despite the fact that beamforming improves mmWave cov-
erage, it does not significantly increase performance in case
of human body blockage. To ensure user session continuity
in dense mmWave deployments, multi-connectivity techniques
have recently been proposed by 3GPP [14]. This approach
relies on simultaneous active connections to multiple access
points (APs). Even though only one of these might be used at
a time, multi-connectivity may efficiently combat outages by
enabling backup connections whenever needed [15]. However,
practical implementation of multi-connectivity schemes is ex-
pected to add considerable overheads on physical and medium
access control layers at both the UE and the AP.

To support a backup mmWave connection, the UE needs to
(i) acquire a beacon signal from the AP by using omnidirec-
tional antenna mode, (ii) perform AP association procedure
(e.g., via a random-access scheme), and (iii) begin tracking
the AP beam, such that fast switching is possible in case of
LoS blockage [16]. While the first two procedures need to be
performed only once, the latter has to be invoked repeatedly
to keep the backup link active. The time interval between the
beamtracking updates depends on many parameters, including
user mobility and beamwidth, and can be configured to several
microseconds [17]. This places an extreme computational
burden on the UE side, especially when the number of backup
connections is higher than one [18].

In this paper, we propose and analyze “reactive” mmWave
multi-connectivity operation, where the beamtracking for
backup APs is performed on-demand, only when the currently
active connection is lost. This approach may lead to a much
more “lightweight” solution in terms of hardware and software
implementation – potentially allowing to support more backup
connections to further reduce outage times. At the same time,
such reactive nature of the proposed approach may lead to
outages when the beamsearching procedure is just initiated.
Concentrating on the UE that experiences an outage in its
blocked state and assuming dense mmWave AP deployment
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with a moving crowd, we analyze several mmWave connec-
tivity options, including static and dynamic operation.

The main contributions of this work are:
• a mathematical framework for ergodic capacity analysis

of cell-edge users in mmWave deployments with direc-
tional antenna arrays and multi-connectivity capabilities
in dynamic blockage-prone environments;

• an investigation of the effects of system parameters on
ergodic capacity, including mmWave AP density and
height, density and speed of blockers, number of antenna
array elements, array switching time, degree of multi-
connectivity, and connectivity strategies;

• a numerical analysis of reactive multi-connectivity oper-
ation with exhaustive and iterative beamsearching algo-
rithms, where beamsearching is performed only when the
currently active connection is lost;

• a numerical illustration of the fact that dual connectiv-
ity delivers the desired performance out of all possible
degrees of multi-connectivity, and there is an optimal
density of mmWave APs that maximizes the capacity of
cell-edge users.

The rest of this text is organized as follows. Related work
is covered in Section II. We introduce our system model
and the considered multi-connectivity schemes in Section III.
The theoretical framework for ergodic capacity evaluation is
developed in Section IV. Numerical analysis is provided in
Section V. Conclusions are drawn in the last section.

II. RELATED WORK

The initial research works on mmWave communications
concentrated on developing theoretical tools to capture the
intricate specifics of such systems, such as highly direc-
tional transmission, path blockage, and atmospheric absorp-
tion. Applying the Campbell theorem for functionals over
point processes, the moments of aggregate interference in THz
and mmWave systems in presence of molecular absorption,
human-body blockage, and directional transmit and receive
antennas have been derived in [19]. Using the Taylor expansion
approximation, the authors then extended their analysis to the
moments of signal-to-interference ratio (SIR) in [20].

Deriving distributions of aggregate interference and SIR
is a more challenging task. Several research groups have
recently adopted a microwave propagation model in the form
of PR(x) = Ax−γ for the performance analysis of mmWave
communications technology, see, e.g., [21], [22]. Particularly,
the authors in [21] obtained the probability density function
(PDF) of SIR for mmWave systems operating at 28 GHz.
The PDFs of interference and SIR in the absence of blockage
have been reported in [23]. The SIR distribution is further
contributed by [24], where the authors introduced a simple
model of atmospheric absorption that assumes a constant
attenuation coefficient as well as disregards the effect of
blockage.

Later on, by relying on the developed theoretical methods,
mmWave research focused on revealing practical insights into
system-level performance. Assessing the hypothesis of noise-
limited operation in 5G mmWave systems [25], the authors

in [26] developed an analytical framework for characterizing
throughput performance as a function of the AP density. It was
demonstrated that there is an optimal density of the APs that
maximizes the system throughput for a given SINR threshold.
Further, in [27], the authors proposed to employ partial zero
forcing at the UE side to cancel out the interference from
the APs. They also derived the probability of coverage with
directional antennas at both the UE and the AP sides.

Most of the papers studying multi-connectivity focus on a
joint operation of the mmWave RAT and conventional cellu-
lar network by concentrating on higher-layer integration and
overall multi-RAT architecture design [28]. While it becomes
clear that offloaded control signaling to the below-6GHz
networks provides more flexibility in terms of user mobility
and connection reliability [29], there are only a few studies
that address the aspects of simultaneous/alternate multi-AP
mmWave user connectivity strategies. Employing computer
simulations, the authors in [30] demonstrated that in presence
of static blockage by buildings the use of multi-connectivity
may drastically improve performance of mmWave systems in
terms of session reliability.

In [31], the authors assessed the performance of mmWave
systems by using several hard handover algorithms, includ-
ing rate-based, load-based, traditional SNR-based, and novel
Markov Decision Process (MDP)-based solutions. However,
the emphasis of that work is mainly on system-level perfor-
mance indicators. Another interesting example of mmWave
handover is presented in [32], where the authors proposed to
use RGB-D cameras to improve performance by predicting
possible human body blockage. On the other hand, the ana-
lytical model presented by the authors is limited to the “two
APs” scenario and does not allow to capture the effects of
dense deployments as well as varying blocker/AP densities on
the system scale.

Finally, the authors in [14] considered the performance of
dynamic multi-connectivity in urban deployment by using a
mixture of ray-tracing computer simulations, queuing theory,
and stochastic geometry. However, the modeling framework
proposed therein cannot be extended to the case of arbi-
trary degree of multi-connectivity. Despite several attempts
to incorporate the peculiarities of mmWave communications
into analytically tractable frameworks, to the best of our
knowledge, this is the first work that analytically embraces
the main features of mmWave technology, such as directional
antennas and dynamic human body blockage, to evaluate its
system-level performance with multi-connectivity operation.

III. SYSTEM MODEL

In this section, we introduce our system model. We begin
by describing the target deployment, mobility, and blockage
models. Then, propagation, antenna, and beamforming compo-
nents are detailed. Finally, connectivity strategies and metrics
of interest are specified. The notations used in the remainder
of this paper are summarized in Table I.

A. Deployment Model
We assume that locations of mmWave APs follow a Poisson

point process (PPP) in ℜ2 with a certain intensity of λA, see
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Fig. 1. An illustration of elements that comprise our system model.

Fig. 1(a). This assumption is in-line with the recent studies
of dense AP deployments [33], [34]. The height of APs is
assumed to be fixed and set to hA, see Fig. 1(b).

In our study, we concentrate on the performance of a tagged
user that is assumed to be stationary. The height of the UE
is constant, hU . We further assume that the moving crowd in
the area of interest acts as potential blockers to the tagged
user. The spatial intensity of blockers is constant, λB, as they
move according to a certain mobility model. In this work,
we consider the random direction model (RDM) [35] as the
one capturing the essentials of random movement and still
preserving analytical tractability. According to RDM, a blocker
first randomly chooses its movement direction uniformly in
(0,2π) and then travels in this direction for an exponentially
distributed interval of time with the parameter νB = 1/E[τB],
where τB is the mean duration of the movement. The moving
speed is assumed to be constant, vB. By selecting values of
(νB,vB), one can represent crowds with different densities.

To capture the LoS blockage dynamics, we impose that the
radius of human blockers is constant and equals to rB. The
height of blockers is different from that of the UE and is set
to hB, hB > hU . Whenever such blockers cross the direct path
between the tagged user and its serving AP, the LoS mmWave
path is assumed to be blocked.

B. Propagation Model

For any density of mmWave APs, λA, we concentrate on
the cell-edge UE that is located farther away than a certain
distance of RB from the nearest AP, where the blockage leads
to outage, since the signal strength of multipath components
is below the required level. Hence, the terms of blockage
and outage are used interchangeably in what follows. The
distance RB may be obtained by using the propagation model
introduced below and interference is evaluated in Section IV.

The received signal power at the UE can be written as

PR(x) = PT GT GRAx−γ, (1)

where PT is the transmit power, GT and GR are the antenna
gains at the transmit and receive sides, respectively, which
depend on the antenna array, x is the distance between the UE
and the AP, A and γ are the propagation coefficients.

In this paper, we do not consider the non-LoS (NLoS) state
(blockage by large objects, such as buildings) by assuming

an open-space scenario, where there are no massive obstacles.
However, we account for blockage of the LoS signal path by
human bodies. Following [36], the mmWave path loss in dB
is given by

L(x) = 20log10(4π/λ)+21log10(x)+4.9, (2)

where λ is the wavelength and x is the three-dimensional
distance between the UE and the AP.

Therefore, the coefficients A and γ are

A = 10−2log10(π/λ0)+0.49, γ = 2.1. (3)

C. Beamforming and Antenna Models

To complete the parametrization of the propagation model,
one requires antenna gains GT and GR. In this paper, we
assume linear antenna arrays at both the transmit and receive
sides. Following [37], the antenna factor is defined as

AF(θ,β) =
sin(N[πcos(θ)+β]/2)
sin([πcos(θ)+β]/2)

, (4)

where N is the total number of elements in an array, β specifies
the direction of the array, and θ is the azimuth angle. In
what follows, we assume β = 0 and the distance between the
neighboring elements to be λ/2, where λ is the wavelength.

We model the radiation pattern of an antenna array by
using the cone model [38]. The directivity of the mmWave
AP’s transmit antenna is represented as a conical zone with
the angle of αT , as shown in Fig. 2. This model is an
abstraction assuming no side lobes and constant power at a

Fig. 2. Cone antenna radiation pattern model.
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TABLE I
NOTATION USED IN THIS PAPER.

Parameter Definition
λA Spatial density of mmWave APs
hA Height of mmWave APs
λB Spatial density of blockers
hU Height of UE devices
hB Height of blockers
rB Radius of blockers
RB Distance at which blockage leads to outage
E[τB] Mean single run-time in RDM model
νB Intensity of single runs in RDM
vB Speed of blockers
PT AP transmit power
PR(x) Received power at distance x
L(x) Path loss at distance x
GT ,GR Antenna gains at transmit (AP) and receive (UE) sides
λ Wavelength
γ Path loss exponent
A Propagation coefficient
AF(θ,β) Array factor
β Array direction angle
θ Azimuth array angle
αT ,αR Transmit (AP) and receive (UE) antenna directivities
δ Antenna array switching time
TS Beamsearching time
NU ,NA Number of horizontal antenna elements at UE and AP
N Degree of multi-connectivity
C Ergodic capacity
B Available bandwidth
S,S(t) SIR of a user
c A constant to account for MCS imperfections
d(x),SB(x) Length and area of blockage zone
pL(x) Non-blockage probability at distance x
fi(x), fi(x;y) Distance and conditional distance to i-th nearest AP
pL,i Non-blockage probability with i-th nearest AP
ζ(x) Temporal intensity of a single blocker at distance x
µB(x) Temporal intensity of blockers at distance x
fD1 (l;x), fD2 (l;x) pdfs of distances traveled in LoS blockage zone
w1,w2 Weighting coefficients
fT (t;x) pdf of time spent in LoS blockage zone at distance x
FL(t;x),FB(t;x) CDF of non-blockage/blockage time at distance x
fL,i(t), fB,i(t) pdfs of blockage/non-blockage time with AP i
E[Ri] UE capacity when connected to i-th nearest AP
N0 Noise power at 1Hz
PR,i Received power from i-th nearest AP
E[In] n-th moment of aggregate interference
pC(x) Probability of required antenna orientation
RI Non-negligible interference radius
wi Probability that Li is greater than TS
fA,i(x) Active time conditional pdf when connected to AP i
pA,i Fraction of time that link is active
qi Association probability with i-th nearest AP
ui j Transition probabilities of Markov model for N = ∞

~π Steady-state probabilities of Markov model for N = ∞

~e Vector of ones with appropriate size
T1 Uninterrupted period when there is non-blocked AP available
T2 Uninterrupted period when no non-blocked APs are available
B?

i Residual blockage time
ai Probability that T1 ends with i-th nearest AP
~u Absorption probabilities of Markov model for fixed N
D Fundamental matrix of absorbing Markov model for fixed N
bi Probability that T1 starts with i-th nearest AP

certain separation distance from the transmitter. The directivity
of the receiver is modeled by imposing constant sensitivity of
the antenna in the direction of αR.

The crucial coefficients of the antenna model – transmit
and receive directivities αT and αR – need to be related to
the parameters of the antenna arrays. Half-power beamwidth
(HPBW) of the array, α, is proportional to the number of
elements in the appropriate plane and could be established as

α = 2|θm−θ3db|, (5)

TABLE II
ANTENNA HPBW AND ITS APPROXIMATION

Array Value, direct calculation Approximation
64x1 1.585 1.594
32x1 3.171 3.188
16x1 6.345 6.375
8x1 12.71 12.75

where θ3db is the 3-dB point and θm is the location of the
array maximum. The latter is computed as

θm = arccos(−β/π). (6)

Assuming β = 0, we have θm = π/2. The upper and lower
3-dB points are thus

θ
±
3db = arccos[−β±2.782/(Nπ)]. (7)

Accordingly, Table II demonstrates the antenna array
HPBW and its approximation by using 102/M, where M is
the number of array elements. For β = 0, the mean antenna
gain over HPBW is then [37]

G =
1

θ
+
3db−θ

−
3db

∫
θ
+
3db

θ
−
3db

sin(Nπcos(θ)/2)
sin(πcos(θ)/2)

dθ. (8)

The antenna gains are summarized in Table III.

D. Beamsearching Algorithms

We consider two beamsearching algorithms:
• Exhaustive search. In this case, the most beneficial config-

uration from the signal strength perspective is established
by attempting all the available configurations at both the
AP and the UE. The time complexity of this approach
is TS = NU NAδ, where NU and NA are the numbers of
possible UE and AP antenna array configurations and δ

is the switching time.
• Iterative search. As an alternative, we consider iterative

beamsearching realized with sector level sweep and beam
refinement procedures. This solution is used in, e.g., [39],
where Rx and Tx perform beamsearching separately by
forcing the other side to use the omnidirectional mode.
Particularly, the Tx side sends beacon packets through
all possible array configurations, while the Rx measures
the received signal strength in the omnidirectional mode.
At the second step, these roles are inverted. The time
complexity here is TS = (NU +NA)δ.

The array switching time, δ, is a key parameter that depends
on the implementation and may vary from microseconds to
milliseconds. For example, in IEEE 802.11ad (WiGig), δ is
defined as Short Beamforming Interframe Space (SBIFS) with
the default value of 1ms [39]. Here, assuming the typical

TABLE III
ANTENNA ARRAY GAINS

Array Gain, linear Gain, dB
64x1 57.51 17.59
32x1 28.76 14.58
16x1 14.38 11.57
8x1 7.20 8.57
4x1 3.61 5.57
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values of NA = 64 and NU = 4, TS is 4ms and 0.41ms for
exhaustive and iterative search, respectively.

In addition to exhaustive and iterative techniques, there is a
number of hierarchical algorithms [40]. In hierarchical search,
the antenna array codebooks specify not only different beam
directivity options but also several beamwidth configurations.
When sweeping procedure starts, the array is initially locked to
the configuration with the widest beamwidth. When the widest
beam configuration is found, the array is switched to the lower
“layer” by performing an iterative search in the direction of
the established solution. The complexity of hierarchical search
depends on the number of beamwidth “layers”, having the
minimum complexity of O(log2(N)) for log2(N) layers.

E. Connectivity Strategies and Metrics
We assume that whenever the UE utilizes an active connec-

tion to a certain mmWave AP, it maintains backup connections
to a number of other APs in the area, thus alleviating the
need for channel access procedures. We consider the following
connectivity schemes:
• Static, nearest AP. In this scheme, the UE is associated

with its nearest AP. Note that due to the convexity of
the propagation model, this scheme provides the best
possible conditions in the non-blocked state. In practice,
this scheme is implemented by associating with the AP
having the best average signal-to-noise ratio (SNR).

• Static, LoS. In this scheme, upon its session initiation, the
UE selects an AP with the best current SNR. Note that
due to random distances to the APs as well as random
blockage states w.r.t. these APs, the selected AP may not
be the closest one providing the best possible conditions
in the non-blocked state. In practice, this scheme is
implemented by associating with the AP having the best
instantaneous SNR.

• Dynamic, finite N. In this scheme, the UE changes its
association point whenever it enters the blockage state
with the current AP. At both session initiation and re-
association time instants, the closest non-blocked AP out
of the nearest N is chosen.

• Dynamic, N = ∞. In this scheme, the UE also changes its
association point choosing the nearest non-blocked AP
whenever it enters the blockage state with the current
AP. However, the number of APs that it may associate
with is unlimited.

For the considered system model, we are interested in the
downlink performance, that is, from the AP to the UE. Our
parameter of interest is the ergodic capacity defined as

C = lim
t→∞

1
t

∫ t

0
cB log[1+S(t)], (9)

where B is the bandwidth requested by the user from the APs
that it is associated with, S(t) is the signal-to-interference-plus-
noise ratio (SINR) at the UE, and c is a constant that accounts
for any modulation and coding scheme (MCS) imperfections.

IV. PERFORMANCE EVALUATION FRAMEWORK

In this section, we develop a mathematical framework
for the performance evaluation of the introduced mmWave

connectivity strategies by utilizing the ergodic capacity as our
metric of interest. We begin by describing the framework and
then proceed with specifying the sub-models.

A. Framework at a Glance
Our proposed framework comprises three logical steps: (i)

modeling the blockage dynamics by a randomly moving crowd
for the UE of interest, (ii) specifying the capacity model with
i-th nearest AP, and (iii) extending the said models with the
multi-connectivity operation and deriving the ergodic capacity.

First, the following subsection specifies the dynamics of the
LoS blockage process between the mmWave APs and the UE.
We determine the ergodic probabilities, pi, i = 1,2, . . . , when
the LoS path to the i-th nearest mmWave AP in the spatial
process of APs is blocked. These probabilities are further used
to characterize the best available AP at a random instant of
time. We also show that for the realistic densities of APs, the
LoS paths to the first several APs can be considered indepen-
dent. Further, we characterize the dynamics of the mmWave
AP associations and arrive at the process that captures the
time intervals of having the LoS path blocked or unblocked
with i-th nearest mmWave AP. These results are employed to
determine the UE throughput received from the mmWave APs.

The use of larger numbers of antenna elements at both
the mmWave AP and the UE increases the beamsearching
time, thus decreasing the available association time with the
mmWave AP when the multi-connectivity operation is en-
abled. On the other hand, this induces better antenna directivity
and hence may improve the received signal strength – by
increasing capacity during the association time. To charac-
terize the channel capacity when associated with i-th AP, at
the second step, we develop interference, SINR, and capacity
models that describe these metrics.

At the last step, we combine our blockage and capacity
models as well as supplement them with the multi-connectivity
strategies to obtain the ergodic capacity made available to
the UE. The said capacity is expressed as a function of the
densities of spatial blockers and mmWave APs, the mobility
parameters of blockers, the number of antenna elements used
for beamsearching, and the type of connectivity strategy in
use, thus facilitating further numerical assessment.

B. Blockage Process Dynamics
Consider the process of LoS blockage by moving hu-

man bodies around the stationary UE located at the two-
dimensional distance x from the mmWave AP, see Fig. 3.
There always is some area, where the presence of at least
a single blocker causes the blockage of the LoS path between
the AP and the user. We refer to this area as to LoS blockage
zone. For the realistic distances between the UE and the AP,
the area of the LoS blockage zone can be approximated by a
rectangle. The sides of this zone are 2rB and

d(x) = x
hB−hU

hA−hU
+ rB. (11)

The area of the LoS blockage zone is thus

SB(x) = 2rBd(x) = 2rB

(
x

hB−hU

hA−hU
+ rB

)
. (12)
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Fig. 3. Configuration of the LoS blockage zone.

The limiting pdf of blocker locations as they move within
a certain bounded area in ℜ2 according to the RDM is uni-
form [35]. Hence, at any given instant of time t the positions
of blockers form a PPP with the spatial intensity of λB. The
probability that the LoS path is not blocked corresponds to the
void probability of the Poison process of blockers, that is

pL(x) = exp
(
−2λBrB

[
x

hB−hU

hA−hU
+ rB

])
. (13)

The pdf of distance to i-th neighbor in the Poisson field of
mmWave APs is available from [41]

fi(x) =
2(πλ)i

(i−1)!
x2i−1e−πλx2

, x > 0, i = 1,2, . . . . (14)

Recall that we consider the UE that is located farther away
than RB from its nearest AP. The conditional pdf of distance
to i-th AP, given that it is greater than y, is produced by

fi(x;y) =
2(πλA)

i

Γ(i,πy2λA)
x2i−1e−πλAx2

, x > y, i = 1,2, . . . , (15)

where Γ(a,x) is incomplete Gamma function,

Γ(a,x) =−
∫

∞

x
ta−1e−tdt. (16)

Hence, the non-blockage probability to i-th mmWave AP is

pL,i =
∫

∞

RB

2(πλA)
i

Γ(i,πR2
BλA)

x2i−1e−πλAx2
e−2xrBλB

hB−hU
hA−hU dx, (17)

thus leading to (10) where Γ(x) is the Gamma function,

Γ(x) =
∫

∞

0
tx−1e−tdt, (18)

and 1F1(a,b,x) is Kummer hypergeometric function,

1F1(a,b,x) =
∞

∑
k=0

a(k)

b(k)
xk

k!
, (19)

where a(0) = 1 and a(k) = a(a+1)(a+2) . . .(a+n−1).
The probability pL,i can be interpreted as a fraction of time

that i-th mmWave AP resides in the non-blocked state. In
addition to these probabilities, we also require the knowledge
of the time interval for i-th mmWave AP to remain in
blocked/non-blocked state. As opposed to the time-averaged

analysis, we now need to explicitly track blocker dynamics as
they cross the LoS blockage zone.

To capture blockage dynamics, one has to determine the
temporal intensity of blockers, µB(x), which enter the LoS
blockage zone associated with the UE located at the dis-
tance of x. It has been shown in [42] that the inter-meeting
time between two users with circular coverage areas of their
transceivers having the radii of r and moving according to the
RDM within the area of W ⊂ ℜ2 with random speeds of V1
and V2 follows an exponential distribution with the parameter

ζ = 2rE[V ]
∫

W
f 2(x,y)dxdy, (20)

where E[V ] is the mean relative speed of users and f (x,y) is
the stationary distribution of the RDM in W .

In our case, the speed of a user is constant, v, while the
speed of the LoS blockage zone is zero, thus implying that
E[V ] = vB. Further, the density of blockers, λB, is constant in
ℜ2, which yields that one can choose W to be, e.g., a square
with the side of R, fully containing the LoS blockage zone.
Therefore, the intensity of meetings of a single blocker with
the LoS blockage zone associated with the UE located at the
distance of x is

ζ(x) = 2rBvB

(
x

hB−hU

hA−hU
+ rB

)∫ R

0

∫ R

0
f 2(x,y)dxdy =

=
2rBvB(x[hB−hU ]+ rB[hA−hU ])

R2(hA−hU )
, (21)

where f (x,y) = 1/R2 is the stationary pdf of the RDM [35].
The number of blockers falling into the square with the side

of R follows a Poisson distribution with the mean of λBR2.
Applying the superposition property of the Poisson process,
the spatial intensity of blockers is related to the temporal
intensity of blockers as

µB(x) =
2rBλBvB(x[hB−hU ]+ rB[hA−hU ])

(hA−hU )
. (22)

Since the time between when the blockers enter the LoS
blockage zone is distributed exponentially, the process of how
the blockers enter this zone is homogeneous Poisson with the
intensity of µB(x). Note that due to the properties of the RDM
model the entry point of an arbitrary blocker is distributed
uniformly over the perimeter of the LoS blockage zone.

Observe that the blockage process forms an alternating
renewal process [6]. Let B and L be the random variables (RVs)
that denote the blocked and non-blocked periods, respectively.
Since blockers enter the zone according to a Poisson process,
the time spent in the non-blocked period, L, follows an
exponential distribution with µB(x), FL(t;x) = 1− e−µB(x)t ,
where x is the parameter. Indeed, since the inter-entry times
are exponential, the distance from the end of the blocked part
– considered as an arbitrary point – to the starting point of the
next blocked interval is distributed exponentially [43].
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E[Ri]≈
µP

N0 +µI
+

cBµPσ2
I

(N0 +µI)3
(

1+ µP
N0+µI

) − cBµ2
Pσ2

I

2(N0 +µI)4
(

1+ µP
N0+µI

)
2
− cBσ2

P

(N0 +µI)2
(

1+ µP
N0+µI

)
2
. (23)

Further, consider the blocked interval. Let T be the RV that
denotes the residence time in the LoS blockage zone for a
single blocker and let fT (t;x) be its pdf. We determine the pdf
of the distance traveled by a blocker within the LoS blockage
zone, fD(l;x), and then scale it with the constant velocity of
vB. Using the notion of geometric probability arguments, the
pdf fD(l;x) is delivered by

fD(l;x) =
fL1(l;x)

w−1
1

+
fL2(l;x)

w−1
2

, 0 < t ≤
√

d2(x)+4r2
B, (24)

where the pdfs fL1(t;x) and fL2(t;x) are produced by

fD1(l;x) =



0, l ≤ 0,

πl/4d(x)rB, 0 < l ≤ l1,

l sin−1 (m1
l

)
/2d(x)rB, l1 < l ≤ l2,

l sin−1
(

2rB
l

)
−l cos−1

(
d(x)

l

)
2d(x)rB

, l2 < l ≤ l3,

fD2(l;x) =


0, l ≤ 2rB,

2l
d2(x)

(
d(x)√
l2−4r2

B
−1
)
, 2rB < l ≤ l3,

(25)

with the limits of 
l1 = min[2rB,d(x)],

l2 = max[2rB,d(x)],

l3 =
√

d2(x)+4r2
B,

(26)

while the weights w1 and w2 denote (i) the probability for a
blocker to start from the side of length d(x) and end at the
side of length 2rB (or vice versa), and (ii) the probability for
a blocker to start from the side of length d(x) and end on the
other side of length d(x). These probabilities are calculated as

w1 =
d2(x)+6d(x)rB

d2(x)+2d(x)rB +8r2
B
,

w2 =
8r2

B

d2(x)+6d(x)rB +8r2
B
. (27)

The pdf of the residence time in the LoS blockage zone
can now be obtained by the linear transformation L/vB, where
vB is the speed of blockers. Recall that the density of linear
transformation Y = a+bX is given by [44]

fY (y) = fX [g−1(y)]
∣∣∣∣dx
dy

∣∣∣∣= fX

(
y−a

b

)
1
|b|

, (28)

thus implying that the pdf of T = L/vB is

fT (t;x) = fD(vt;x)v. (29)

Let FB(t;x) be the cumulative distribution function (CDF)
of the blocked interval. The distribution of the blocked interval

is the same as that of the busy period in M/GI/∞ system [6],

FB(t;x) = 1−
(∫ t

0
(1−FB(t− z;x))|de−ζ(x)FT (z;x)|−

− [1−FT (t;x)]
∫ t

0
[1−FB(t− z;x)]e−ζ(x)FT (z;x)

ζdz+

+[1−FT (t;x)]
)
. (30)

Observe that the LoS blockage processes at various APs
are approximately independent of each other, as dependence
appears only due to an overlap of the LoS blockage zones
across different APs. For the realistic mmWave deployments,
these areas are relatively small as compared to the LoS
blockage zones themselves.

The pdfs of blocked and non-blocked intervals, fL(t;x) and
fB(t;x), are conditioned on the distance between the UE and
the AP. Deconditioning with the help of (14), we establish the
pdfs of blocked and non-blocked intervals when associated
with the i-th nearest mmWave AP in the form

fL,i(t) =
∞∫

0

fA(t;x) fi(x)dx, fB,i(t) =
∞∫

0

fB(t;x) fi(x)dx, (31)

which can be calculated numerically.

C. Capacity Received from a Single AP
The UE capacity when associated with i-th AP is

E[Ri] = cB log(1+PR,i/[N0 + I]) , (32)

where PR,i is the received signal power from the i-th nearest
AP, N0 is the Johnson-Nyquist noise at the receiver, I is
the aggregate interference, and c is the constant coefficient
that accounts for any MCS imperfections. Due to the random
distances involved, PR,i and I are also RVs.

The received power and the power of interference are thus

PR,i = PT GT GRAX−γ

i , I = PT GT GRA
∞

∑
j=0

X−γ

j , (33)

where γ is the path loss exponent, Xi is the distance to the
currently serving AP, and X j are the distances to the interfering
APs. It is important to note that in our considered scenario I is
independent of the actual connectivity scheme. Hence, in this
section, we characterize the interference part of the capacity
function.

Observe that the capacity can be represented as a function
of two RVs: the received signal power, P, and the aggregate in-
terference, I. To produce the mean capacity, we employ Taylor
expansion of the capacity function. The second-order Taylor
expansion of bivariate function f (x,y) around ~θ = (θx,θ0) is

f (x,y) = f (~θ)+ f ′x(~θ)(x−θx)+ f ′y(~θ)(x−θy)+

+
1
2

f ′′xx(~θ)(x−θx)
2 + f ′′xy(~θ)(x−θx)(y−θy)+

+
1
2

f ′′yy(~θ)(y−θy)
2 +O(n2). (34)
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Considering the expansion around ~µ = (µP,µI), we have

E[ f (~µ)]≈ f (~µ)+
f ′′xx(~µ)σ

2
P +2 f ′′xyKP,I + f ′′yy(~µ)σ

2
I

2
, (35)

where KP,I is the covariance between P and I, while σ2
P and

σ2
I are the variances of P and I, respectively.
Writing down the capacity function as

R = f (x,y) = cB log(1+ x/[N0(B)+ y]) , (36)

we calculate the required derivatives in the form
f ′′xx(x,y) =− Bc

ln2(N0+x+y)2 ,

f ′′xy(x,y) =− Bc
ln2(N0+x+y)2 ,

f ′′yy(x,y) =
Bcx(2N0+x+2y)

ln2(N0+y)2(N0+x+y)2 .

(37)

Analyzing (35), we establish that in order to compute the
mean capacity one requires (i) the first two moments of
interference, (ii) the first moment of received signal energy,
and (iii) the covariance between them. As one may observe,
there is no dependence between the interference energy and
the received energy, which implies that KP,I = 0 and leads to
an approximation for R as in (23).

To determine the moments of I, we identify a circular zone
around the UE of interest with the radius of RI , such that
the mmWave APs located outside of it do not significantly
contribute to the aggregate interference at the UE, i.e., their
contribution remains under the noise floor of N0(B). The
number of interferers located within the circle of radius RI
follows a Poisson distribution with the mean of λBπR2

I . Hence,
the raw moments of interference can be obtained by using the
Campbell theorem for isotropic point processes as follows

E[In] =
∫ RI

RB

(PT GT GRAx−γ)n pL(x)pC(x)2λAπxdx, (38)

where pL(x) is the non-blockage probability, pC(x) is the
probability that the transmit and receive antennas are directed
such that the interferer contributes to the aggregate interference
at the UE, and Ax−γ is its contribution.

The probability pL(x) is provided in (13). Consider now
pC(x). Due to the properties of the Poisson process and
noticing that RB << RI , the interfering APs are distributed
near-uniformly within the circle of radius RI . Therefore, the
distances to them follow the same distribution. Taking this fact
into account and recalling that the length of an arc with the
angle of α for the circle of radius x is given by xα, as well
as assuming the independence of antenna orientations at the
APs and the UE, we arrive at

pC(x) = (αT x/2πx)(αRx/2πx) = (αT αR/4π
2), (39)

which implies that pC(x) is independent of x.
Substituting pC(x) and pB(x) into (38), we express

E[In] =
∫ RI

RB

(PT GT GRAx−γ)ne−2xλBrB
hB−hU
hA−hU

αT αR

4π2 2λAπxdx =

=
(PT GT GRA)nαT αRλA

2π

[
R2−nγ

B Γ

(
nγ−1,

2(hB−hU )R2
BλB

hA−hU

)
−

−R2−nγ

I Γ

(
nγ−1,

2(hB−hU )RBRIλB

hA−hU

)]
, (40)

where Γ(a,x) is incomplete Gamma function.

D. Ergodic Capacity for Connectivity Schemes

Dynamics of the mean received power captures the type
of connectivity scheme and thus helps characterize its perfor-
mance. Below, we calculate the mean received energy and
estimate the ergodic capacity for the considered mmWave
connectivity strategies. Time diagrams of the introduced con-
nectivity strategies are detailed in Fig. 4.

1) Static, nearest AP: In this scheme, the UE is associated
with its nearest AP and does not change the association point
in case of outage. Using (14) with i = 1, the mean energy of
the received signal can be written as

E[PR,1] = PT GT GRA
∫

∞

RB

2πλAxe−πλAx2
x−γdx =

=
(

πR−γ

B π
γ

2−1
Γ

(
1− γ

2

)[
λ

γ

2
A Rγ

B−
(
λAR2

B
) γ

2

]
+

+πλAR−γ

B R2
BE γ

2

(
πλAr2

B
))

PT GT GRA, (41)

where Ey(x) is an exponential integral function.
Let A1 be the RV that denotes active session time when

the UE does not experience outage conditions. Observe that
the UE has no service not only during its blockage time but
also during the time TS when it performs beamsearching as
the link changes its state from blocked to non-blocked. The
beamsearching time may or may not be longer than the time in
non-blocked state, which implies that the active session time
A1 does not coincide with the non-blocked time L1. Denoting
by w1 the probability that L1 is greater than TS, we have

w1 = Pr{L1 > TS}=
∫

∞

0
fL1−TS(x)dx, (42)

where fL1−TS(x) is the distribution of the difference L1−TS.
Note that the linear transformation L1− TS results in a dis-
placement of the density fL1(x) over the OX axis. As one
may notice, with the complementary probability of 1−w1, the
UE receives no service during a non-blocked period. With the
probability of w1, the conditional distribution for the duration
of an active period when the UE receives service is

fA1(x) =
fL−TS(x)

1−
∫

∞

0 fL−TS(x)dx
=

1
1−w1

fL−TS(x), x > 0. (43)

The capacity during active time is found by substituting (41)
and (40) into (23). Applying the mean conditional active time
E[A1], the conditional fraction of time that the mmWave link
remains active is

pA,1 =
E[A1]

E[L1]+E[B1]
, (44)

which leads to ergodic capacity in the form of

C = w1 pA,1E[R1] = w1
E[R1]E[A1]

E[L1]+E[B1]
. (45)

2) Static, LoS AP: Consider now the case where the UE
chooses its nearest AP such that it is currently in non-outage
conditions. The probability that the AP i is thus selected is

qi = pL,i

i−1

∏
j=1

(1− pL, j), (46)

where pL,i is non-blockage probability for AP i in (10).



9

t, s

(a) Static nearest AP strategy

(b) Static LoS AP strategy

(c) Dynamic, N = ∞ strategy

(d) Dynamic, finite N strategy

Fig. 4. Time diagrams of considered connectivity strategies.

The received signal strength from AP i is

E[PR,i] = PT GT GRA
∫

∞

RB

2(πλ)i

(i−1)!
x2i−1e−πλx2

x−γdx =

= PT GT GRA
2(πλA)

iR2i−γ

B
(2i− γ)Γ(i)

, (47)

which can be used to calculate the mean capacity E[Ri] during
active time when AP i is chosen by using (23).

Then, let Ai be the RVs denoting active session time when
associated with AP i. Similarly, we define wi as the probability
that Li (non-blockage time with AP i) is greater than TS
(beamsearching time). This probability is

wi = Pr{Li > TS}= Pr{Li−TS > 0}=
∫

∞

0
fLi−TS(x)dx, (48)

while the conditional pdf of link active time is

fA,i(x) =
fLi−TS(x)

1−
∫

∞

0 fLi−TS(x)dx
, x > 0. (49)

The fraction of time that a link remains active is

pA,i = E[Ai]/(E[Li]+E[Bi]), (50)

which implies that the mean capacity when connected to AP
i is a discrete RV with the probability mass function0, Pr{Li < TS}= 1−wi,

E[Ri]E[Ai]
E[Li]+E[Bi]

, Pr{Li > TS}= wi.
(51)

Weighting with the probabilities qi, the ergodic capacity is
finally produced as

C =
N

∑
j=0

q jw j
E[R j]E[A j]

E[Li]+E[B j]
. (52)

21 i...

..
.

..
.

u23u12

u1i

u2i

u32u21 uii-1

ui-1i

ui1 ui2

..
.

..
.

uii+1

ui+1i

...

..
.

..
.

uij

uji

Fig. 5. Markov chain model of AP switching process with N = ∞.

The terms qi, i = 1,2, . . . , in (46) approach 0 exponentially.
Hence, the series for E[C] in (52) converges as i → ∞. In
practical calculations, one should choose in (52) the number
of APs, i, large enough, such that the contribution of (i+1)-th
component is negligible.

3) Dynamic, N = ∞: In this case, whenever the UE that
is currently associated with a certain mmWave AP is about
to be blocked, it re-associates with its closest non-blocked
AP. Observe that theoretically there always is an AP that
resides in non-blocked state. Furthermore, the choice of a new
AP to associate with depends on the current AP that enters
the blocked state. Hence, the process of switching between
the APs constitutes an irreducible aperiodic Markov chain as
shown in Fig. 5, where state number i represents i-th nearest
AP. The transition probabilities are thus

ui j = pL, j

i−1

∏
k=1

(1− pL,k), ∀i, j = 1,2, . . . , i 6= j. (53)

Let~π be the steady-state probability vector of our introduced
Markov chain. Observe that there is no closed-form solution
for π. However, noticing that for all i ui j in (53) decreases
exponentially with j, in order to determine ~π we limit the
state space of the chain to a sufficiently large value of N,
such that ∑

N
j=1 ui j→ 1, i = 1,2, . . . . Introducing the transition

probability matrix U , the steady-state vector is then obtained
as a solution to ~πU = 1, ~π~eT = 1, where ~e is the vector of
ones with the size of N.

The pdf of the received signal power when associated with
AP i is provided in (47). The RV determining the mean
capacity when associated with AP i is calculated as0, Pr{Li < TS}= 1−wi,

E[Ri]E[Ai]
E[Li]

, Pr{Li > TS}= wi,
(54)

where E[Ai] is available in (49).
Ultimately, the ergodic capacity is delivered by

C =
N

∑
j=0

π jw j
E[R j]E[A j]

E[L j]
. (55)

4) Dynamic, finite N: When the UE may only associate
with its nearest N APs, the connectivity pattern comprises
two periods, T1 and T2. T1 starts when the UE associates
with its closest non-blocked AP for the first time after T1
and ends when there are APs in non-blocked state. T2 is the
time duration when there are no APs in non-blocked state.
Assuming independence of blockage processes at the APs, the
CDF of the latter – conditioned on the event that the last AP
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that the UE was associated with is the AP i – becomes

FT2(x; i) = 1− [1−FBi(x)]
N−1

∏
j=1,i 6=i

[1−FB?
j
(x)], (56)

where Bi and B?
i are the RVs denoting blockage and residual

blockage periods, respectively, while FBi(x) and FB?
j
(x) are the

corresponding CDFs. These are computed as in [44]

FB?
j
(t) =

∫
∞

0

FBi(x+ t)−FB,i(t)
t[1−FB,i(t)]

dt. (57)

The probability that AP i is the last one that the UE was
associated with before T2 started, ai, i = 1,2, . . . ,N, is

ai =
N

∏
j=1, j 6=i

(1− pL, j), i = 1,2, . . . ,N, (58)

which leads to the CDF of T2, FT2(x) = aiFT2(x; i).
Consider the period of time when the AP in non-blocked

conditions is always available, T1. Similarly to the dynamic
connectivity case with N = ∞, the choice of AP to switch to
depends on the current AP that changes its state from non-
blocked to blocked. We model the switching process during
T1 by utilizing an absorbing Markov chain demonstrated in
Fig. 6, where the state number i represents i-th nearest AP.

In contrast to the dynamic case with N = ∞, upon leaving
each state the chain may absorb by indicating the start of
T2. To complete parametrization of the absorbing chain, one
requires (i) matrix U that contains transition probabilities
between the transient states {1,2, . . . ,N}, (ii) vector ~u that
defines absorbing probabilities from each state, and (iii) vector
~b that specifies the initial state after the end of T2. The elements
of U are delivered by

ui j = pL, j

i−1

∏
k=1

(1− pL,k), ∀i, j = 1,2, . . . ,N, i 6= j, (59)

which implies that the elements of ~u are

ui = 1−
N

∑
j=1, j 6=i

ui j, i = 1,2, . . . ,N. (60)

Producing an exact expression for the elements of ~b is
cumbersome, since the AP that initiates the following T1
depends on the last AP of the previous T1. Disregarding this
dependency, we establish that bi has to be proportional to the
mean duration of the blockage period, i.e.,

bi =
E[Bi]

∑
N
j=1 E[B j]

, i = 1,2, . . . ,N. (61)

21 N...

A

... 1-uN1-u21-u1

..
.

..
.

u23u12

u1N
u2N

u32u21 uNN-1

uN-1N

uN1 uN2

..
.

..
.

Fig. 6. Markov chain model of AP switching process with finite N.

TABLE IV
DEFAULT PARAMETERS FOR NUMERICAL ASSESSMENT.

Parameter Value
Operating frequency 73 GHz
Height of AP, hA 4 m
Height of blockers, hB 1.7 m
Height of UE, hU 1.5 m
Blocker radius, rB 0.4 m
SNR blockage threshold, SB 3 dB
Outage radius, RB 97 m
Interference threshold, SI -174 dBm
Transmit power, PT 0.2 W
Path loss exponent, γ 2.1
AP array, HA,H ×HA,V 64×4
UE array, HU,H ×HU,V 4×4
Bandwidth, B 0.59 GHz
AP/UE attenuation coefficients, AA,AU 1
Intensity of APs, λA 0.0001 units/m2

Intensity of blockers, λB 0.5 units/m2

Speed of blockers, vB 1 m/s
Array switching time, δ 2 µs

Recall that the mean number of times that the chain visits
a transient state is determined by the elements of fundamental
matrix D = (I−U)−1, while the mean number of steps before
absorption is D~e [45]. Hence, the mean capacity during T1 is

E[CT1 ] =
N

∑
j=1

1
D~e

bidi jw j
E[R j]E[A j]

E[L j]
. (62)

Accounting for T2, the ergodic capacity constitutes

C =
E[T1]

E[T1]+E[T2]

N

∑
j=1

1
D~e

bidi jw j
E[R j]E[A j]

E[L j]
. (63)

V. NUMERICAL ANALYSIS

In this section, we first conduct the accuracy assessment of
the basic metrics within the developed model, which includes
interference, SINR, and received power. Then, we proceed
with a numerical analysis of introduced connectivity schemes
and discuss the effects of system parameters in more detail.
As there is a wide range of system parameters that affect
the ergodic capacity, we primarily report on the behavior of
aggregate interference, then analyze the connectivity schemes
for the exhaustive search mechanism, characterize the impact
of beamsearching mechanisms, and finally assess performance
with different degrees of multi-connectivity. The default sys-
tem parameters are summarized in Table V.

Fig. 7. Mean SINR, SIR, received power, and interference.
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(a) Varying λA (b) Varying λB (c) Varying NA

Fig. 8. Mean interference as function of blocker and AP intensities, λA, λB, and number of AP array elements, NA.

Before using the developed analytical framework to illus-
trate the key numerical results, we first verify its accuracy
by comparing the basic metrics against those obtained with
computer simulations. To this aim, Fig. 7 illustrates the mean
values of SINR, SIR, receiver signal power, and interference
represented as functions of the mmWave AP intensity for
the proposed mathematical model (lines) and system-level
simulations (symbols). As one may observe, the developed
interference modeling slightly overestimates the actual values
of the mean interference, while the received signal power is
approximated very tightly. As a result, both the mean SIR and
SINR values are slightly overestimated as well. However, we
notice that the actual difference is insignificant, thus implying
that the basic metrics of interest are captured by the proposed
modeling well enough. These observations allow us to reliably
utilize the developed analytical framework in what follows.

A. Aggregate Interference

In our considered system, the aggregate interference is
independent of the connectivity scheme and the beamsearching
mechanism. However, since it directly affects the ergodic
capacity, it is crucial to understand its behavior.

First, Fig. 8 illustrates the mean interference as a function
of the blocker density, λB, AP density, λA, and the number
of array elements at the AP, NA, which are responsible for
the horizontal directivity. Analyzing the results presented in
Fig. 8(a), we observe that the mean interference increases as
the density of APs becomes higher. Note that λA = 10−5 corre-
sponds to the mean inter-AP distance of approximately 150 m,
while λA = 10−3 relates to the distance of only 15 m. However,
even for the latter, the mean interference remains low and
reaches −75 dBm for the worst case of λB = 0.0,λA = 0.001.
The effect of blockage is further illustrated in Fig. 8(b). As
one may notice, the mean interference is a linearly decreasing
function of λB for any λA. The reason is that higher values of
λB decrease the probability for an interferer to contribute to
the harmful energy at the UE.

The dependence of the mean interference on the number
of antenna elements at the AP, NA, is further demonstrated in
Fig. 8(c). Importantly, the mean interference remains approx-
imately constant for any value of NA. This is because higher
gains at the AP are compensated by smaller probabilities
that the AP contributes to interference at the UE. Recall

that the former increase proportionally to NA, see Table III,
while the latter decrease inversely proportional to NA, and are
approximated by 102/NA. These two terms in the expression
for the mean interference in (40) compensate each other, thus
leading to constant interference for any value of NA.

B. Mean Conditional Capacity

The mean capacity with i-th nearest AP – conditioned on
the event that these APs remain in non-blocked conditions –
is shown in Fig. 9 for various values of the AP antenna arrays.
Studying Fig. 9(a), one may notice that the effect of λA is not
straightforward. Increasing the AP density from 10−6 to 10−5

and then to 10−4 naturally improves the mean capacity with
i-th nearest AP. However, the highest capacity is provided in
case of λA = 10−4, which corresponds to the mean inter-AP
distance of approximately 50 m. Increasing the density of APs
further to 10−3 leads to a reduced capacity that is provided by
i-th nearest AP. The explanation is that higher values of λA not
only yield shorter distances to the APs but also mean closer
interfering APs. Note that for a sufficiently high AP density
of 0.001, which corresponds to the mean inter-AP distance of
just 15 m, there is only a slight difference between the capacity
levels offered by the first several APs. This is because the mean
distances to these APs vary insignificantly due to conditioning
on the fact that the UE is located outside of RB.

It can also be noted that higher values of blocker intensity
lead to more capacity as illustrated in Fig. 9(b) (assuming
that active AP i is not blocked). This is a direct implication of
the blockage phenomenon, where smaller values of blocker
density lead to higher interference, see Fig. 8(b). Further,
Fig. 9(c) suggests that a higher number of antenna elements at
the AP increases the available capacity. Recall that the effect of
NA on the mean interference is negligible. Hence, the growth
is mainly due to increasing gains at the APs.

Analyzing the data presented in Fig. 8(c), one can notice that
increasing the number of antenna elements from 8 to 64 (thus,
improving AP antenna gain from 8.57 to 17.59 dB) results
in capacity growth of around 3 bit/s/Hz for all i-th nearest
APs. Hence, on the one hand we may expect an increase in
ergodic capacity as illustrated in Fig. 9(c). For small values of
the number of antenna elements (up to approximately 30), we
indeed observe this; however, enabling more antennas results
in a gradual decrease of ergodic capacity. This is explained



12

(a) Varying λA (b) Varying λB (c) Varying NA

Fig. 9. Mean capacity when associated with AP i as function of blocker and AP densities, λA, λB, and number of AP array elements, NA.

(a) Varying λA (b) Varying λB (c) Varying NA

Fig. 10. Ergodic capacity for various connectivity schemes as function of blocker and AP intensities, λA, λB, and number of AP array elements, NA.

by the fact that by increasing the number of antenna elements
we also grow the beamsearching space. Having the array
switching time fixed at δ = 2ms in Fig. 9(c), the UE and
APs have to spend more time for the above, and improved
capacity no longer compensates for this. The effect is further
exemplified in the next subsection, where we compare the
operation of the two considered beamsearching schemes.

C. Exhaustive Beamsearching

After revealing the fundamental trade-offs that involve the
intermediate metrics related to our parameter of interest,
we now proceed with assessing the response of the ergodic
capacity w.r.t. the system settings. We begin by considering
the exhaustive search solution and compare the performance
of two static schemes with that of a dynamic solution having
an unlimited number of APs.

To this aim, Fig. 10 demonstrates the ergodic capacity for
two static schemes and the dynamic alternative with N = ∞ as
a function of blocker and AP densities, λA and λB, as well as
the number of AP array elements, NA. As expected, dynamic
approach significantly outperforms its static counterparts for
all values of system parameters. Further, the performance of
two considered static schemes is similar. This is explained
by the following two facts: (i) for any value of blocker
density, non-blockage probability decreases exponentially with
the AP index, which implies that the probability of choosing
the nearest AP is high for static LoS strategy; and (ii) the
mean conditional capacity provided by the APs does not vary
considerably for several nearest APs, see Fig. 9.

Analyzing the dependence on λA further, we see that for a
given set of system parameters there is an optimal inter-site
distance (ISD) between the APs that maximizes the ergodic
capacity for both static and dynamic connectivity strategies.
The reason is that an increase in λA yields smaller distances
to i-th AP and thus improves capacity that it delivers to the UE.
However, at the same time, interference grows. An inflection
point for the considered system parameters (see Table V) is
≈ 8 · 104, which corresponds to approximately 130 m. Note
that the AP density maximizing the capacity coincides for both
static and dynamic connectivity strategies.

It is curious to observe that the effect of blocker intensity
on the ergodic capacity is complex as well, see Fig. 10(b).
Recall that an increase in the density of blockers, λB, affects
interference positively, see Fig. 8(b). However, at the same
time, we observe an increased time spent in blocked state
for the static schemes and growing frequency of transitions
between the APs for the dynamic schemes. These latter
effects negatively impact the ergodic capacity. As we notice in
Fig. 10(b), the capacity first improves for all the connectivity
strategies and then begins to degrade. In the first regime, the
positive effect of decreased interference dominates the negative
factors of increased blockage times and AP switching.

Finally, the response of the considered parameter to the
number of antenna elements that determine directivity at the
APs only marginally affects the ergodic capacity across the
entire practical range of NA, 10− 64. Nevertheless, for any
set of input values, there is an optimal antenna directivity
angle at the AP that maximizes the ergodic capacity. For the
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(a) Varying λA (b) Varying λB (c) Varying NA

Fig. 11. Ergodic capacity for various beamsearching schemes as function of blocker and AP intensities, λA, λB, and number of AP array elements, NA.

default parameters in Table V, the optimal number of antenna
elements for a dynamic connectivity scheme is 32, which
corresponds to the AP antenna directivity of αT = 3.18◦.

D. Beamsearching Mechanisms

We now proceed with quantifying the effects of beamsearch-
ing mechanisms. To this end, Fig. 11 demonstrates the ergodic
capacity for the dynamic connectivity scheme with N = ∞ and
different beamsearching algorithms as a function of blocker
and AP densities, λA and λB, as well as the number of AP
array elements, NA. As expected, enabling a more sophisticated
beamsearching scheme leads to an increase in ergodic capacity.
However, the quantitative effect depends on the environmental
characteristics. Particularly, the difference is not drastic for
very dense deployments, i.e., λA > 10−4, which corresponds
to approximately 50 m ISD.

For sparse deployments, the gain of applying advanced
beamsearching is dramatic and reaches 4.5bits/s/Hz. Further-
more, the gap between algorithms becomes larger as the
density of blockers, λB, increases – as follows from Fig. 11(b).
This is because the probability that non-blocked period is
longer than beamsearching period grows slower than linear
with λB for iterative beamsearching. Hence, as one may con-
clude, the ergodic capacity for the exhaustive search algorithm
decreases much sooner as compared to its iterative alternative.

Analyzing data in Fig. 11(c), we finally note that the
use of iterative beamsearching improves performance over
the entire range of realistic antenna directivity values (up
to approximately 1.59 beamwidth degree that corresponds to
NA = 64). This is in contrast to the exhaustive search scheme,
which is characterized by slower growing ergodic capacity.
Therefore, as expected, a larger number of antenna elements
leads to an increase in ergodic capacity for both algorithms.

E. Degree of Dynamic Connectivity

In practice, maintaining associations with infinitely many
APs is not feasible. Following the 3GPP considerations, multi-
connectivity operation in mmWave systems is likely to be
limited to several APs. In this subsection, we assess the
performance of our dynamic scheme with the limited number
of APs and compare it to the case of infinitely many APs.

First, Fig. 12 reports on the ergodic capacity for a dynamic
scheme with different numbers of allowed AP associations, N,

as a function of AP density, λA. A static scheme is also illus-
trated here for the sake of comparison. As one may observe, all
dynamic profiles demonstrate a similar performance for lower
values of λA (up to approximately λA = 8 · 10−4). Then, not
only ergodic capacity starts to decrease for all the schemes, but
also dual-connectivity mode begins to outperform the dynamic
connectivity case with N = 3. The dynamic scheme with N =∞

indicates the worst behavior out of all the considered dynamic
schemes.

The discussed results may appear counter-intuitive, since
maintaining more backup links should theoretically result
in increased performance under dynamic blockage. This is
indeed the case if beamsearching delays for backup links
are disregarded (see e.g., [46]). However, as today’s array
switching time remains on the order of several microseconds,
it is not negligible. During this time, the UE receives no
service, which lowers the mean ergodic capacity. Comparing
the capacity achieved with ideal switching time [46] against
the results of our study, we observe that for all N > 1 the UE
fails to achieve the theoretical upper bound on capacity.

A further growth of N yields a degradation in the achievable
mean ergodic capacity. The reason is that for the considered
system parameters the case of N = 2 suggests that the fraction
of time when no non-blocked link is available remains very
small. Hence, although an increase in N keeps reducing
this value, the fraction of time that the UE dedicates for
beamsearching with N > 2 becomes larger than the fraction
of time when a non-blocked link is available for N = 2.

Fig. 12. Capacity for dynamic connectivity with finite N as function of λA.
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Fig. 13. Capacity for dynamic connectivity with finite N as function of λB.

The effect of λB on ergodic capacity with a finite degree
of multi-connectivity, N, is displayed in Fig. 13. Similarly to
the dependence on λA, dual-connectivity mode corresponds to
the best performance out of all the considered connectivity
strategies, while the dynamic scheme with N = ∞ becomes
the worst out of all the dynamic cases. However, for extremely
large values of λB, all of the dynamic schemes converge.

VI. CONCLUSIONS

In this work, we developed an analytical framework for
the performance evaluation of connectivity strategies and
beamsearching mechanisms in dense mmWave deployments.
Our proposed methodology relates the UE ergodic capacity
to important system parameters and environmental character-
istics, which include AP density and height, blocker density
and speed, number of antenna array elements, array switching
time, degree of multi-connectivity, and connectivity strategies.

We further conducted a rigorous analysis of the system at
hand by revealing a number of crucial qualitative and quan-
titative trade-offs. Particularly, we demonstrated that despite
rather limited interference in the presence of highly directional
antennas, its effect remains non-negligible and may impact the
capacity actually delivered to users. Analyzing various types
of connectivity mechanisms, we also confirmed that enabling
multi-connectivity operation in mmWave systems dramatically
improves the achievable capacity. However, an increase in the
number of APs that the UE is associated with actually leads
to worse performance, therefore making the dual-connectivity
mode a preferred choice for mmWave system design.

This result allows to decrease the complexity of multi-
connectivity systems and may further enable proactive beam-
searching mechanisms, where the UE continuously tracks
beams of the two nearest APs. For static approaches, we
showed that the average and instantaneous SNR associations
lead to approximately similar performance. Furthermore, for
a given set of input parameters, there is an optimal density
of APs that maximizes the ergodic capacity. Assessing perfor-
mance of beamsearching mechanisms, we also revealed that
an iterative beamsearching scheme improves UE capacity.
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