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Abstract—Filter-bank based waveform processing has been
suggested as an alternative for the plain cyclic-prefix (CP) or-
thogonal frequency-division multiplexing (OFDM) based schemes
in fifth generation (5G) and future wireless communication
systems. This is because of the new requirements, such as
asynchronous and mixed numerology scenarios supporting multi-
service operation in a common framework, including enhanced
mobile broadband, low latency and high reliability commu-
nications, as well as low-rate machine type communications
(MTC). Nevertheless, advanced multicarrier waveforms impose
significantly increased computational complexity compared to the
CP-OFDM scheme. Multirate fast-convolution (FC) processing
has recently been proposed as an effective implementation for
advanced waveforms, such as filtered OFDM (F-OFDM) and
filter-bank multicarrier (FBMC) schemes, providing extreme
flexibility in the subband spectral control. In this paper, we
investigate the computational complexity of FC based waveform
processing and propose two computationally efficient schemes
using the idea of circular convolution decomposition. The first
scheme targets at narrow bandwidth scenarios, such as MTC. The
second scheme considers dense spectral use of non-overlapping
subbands. Both schemes achieve significant reduction in the
computational complexity compared to direct FC and polyphase
filter-bank based implementations. This reduction in the complex-
ity is achieved without performance loss with respect to direct FC
processing. Mathematical analyses are provided for both schemes,
along with evaluation and comparison of the computational
complexities considering F-OFDM and FBMC waveforms in long-
term evolution (LTE)-like scenarios.

Index Terms—Wireless communications, 5G mobile communi-
cation, multicarrier waveforms, OFDM modulation, fast Fourier
transforms, transform decomposition, fast-convolution.

I. INTRODUCTION

THE cyclic-prefix (CP) orthogonal frequency-division
multiplexing (OFDM) scheme is widely used in wireless

networks due to its high flexibility in bandwidth allocation
between users, simple channel equalization process using CP,
and very simple and straightforward implementation using
fast Fourier transform (FFT) or inverse fast Fourier transform
(IFFT) [2]. The main disadvantage of CP-OFDM is its poor
spectral localization. This limits the capabilities of the CP-
OFDM to operate in mixed numerology and asynchronous

A. Loulou, J. Yli-Kaakinen, and M. Renfors are with the Laboratory
of Electronics and Communications Engineering, Tampere University of
Technology, FI-33101 Tampere, Finland (e-mail: alaa.loulou@tut.fi; juha.yli-
kaakinen@tut.fi; markku.renfors@tut.fi).

This work was supported by the Finnish Funding Agency for Technology
and Innovation (Tekes) under the Wireless for Verticals (WiVe) project. Early
stage results of this paper have been published in Proc. ICC 2017, Paris,
France [1].

scenarios and results in insufficient spectrum utilization due to
the need of relatively wide guardbands [3]. While the spectrum
utilization of long-term evolution (LTE) is about 90 %, the fifth
generation new radio (5G-NR) targets at 99 %.

The next cellular mobile generation (5G) is expected to
bring many new challenges to the wireless network design
[4]. For instance, 5G promises gigabits per second user data
rates in the enhanced mobile broadband service, as well as
connecting massive number of low-rate devices through a
service commonly known as massive machine type commu-
nications (mMTC). However, the current waveforms, such as
CP-OFDM, are unable to cope with these new requirements.

Filter-bank multicarrier (FBMC) schemes have been widely
studied as an alternative to CP-OFDM with enhanced spec-
tral characteristics. Even though FBMC was not selected by
3rd generation partnership project (3GPP) for 5G-NR, these
schemes remain as an interesting choice for future system
development. FBMC schemes deliver subbands that are well
localized in frequency domain using high-order filters per sub-
carrier. FBMC waveforms can be implemented effectively us-
ing uniform polyphase filter-banks [5]–[7]. A scheme, known
as frequency spreading-FBMC (FS-FBMC) [8], is intended to
emulate the polyphase-FBMC implementation using overlap-
and-add (OA) processing at the transmitter and overlap-and-
save (OS) processing at the receiver. This scheme introduces
high flexibility in controlling the subband center frequencies
and it also simplifies the channel equalization process. How-
ever, FS-FBMC has higher computational complexity than the
corresponding polyphase implementations [9]. Recently, the
fast-convolution filter-bank (FC-FB) scheme (also known as
overlap FFT FB [10]) was proposed which can be considered
as a generalization of FS-FBMC [11]. This new scheme
includes an adjustable parameter for compromising between
implementation complexity and degradation in signal quality,
allowing significant reduction in the computational complexity
with tolerable effects in the system performance. FC-FB has
shown clearly reduced computational complexity per pro-
cessed symbol compared to polyphase filter-banks. It also en-
ables efficient frequency domain equalization processing [12],
high flexibility in supporting non-uniform bandwidths and
adjustable center frequencies, as well as mixed numerology
and mixed waveform-processing capability. The scheme has
proven its capability in heterogeneous wireless communication
scenarios [13].

Recently, it has become obvious that 5G-NR standard-
ization is progressing towards CP-OFDM based waveforms,
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but with novel elements enhancing their performance in the
considered scenarios. Filtered OFDM (F-OFDM) scheme is a
central ingredient in this development [14], [15]. Basically,
this scheme consists of conventional CP-OFDM modulator
and demodulator and multirate linear filtering on resource
block or subband level using time-domain filters [16], [17]
or polyphase filter-banks [18], [19]. F-OFDM delivers well-
localized subbands compared to conventional CP-OFDM,
while most of the transmission schemes and signal processing
algorithms developed for CP-OFDM are directly applicable. In
[20], computationally efficient technique has been proposed
to reduce the complexity of universal filtered-OFDM (UF-
OFDM) scheme by decomposing the time-domain processing
into polyphase processing. However, this scheme does not fit
into 3GPP LTE numerology, requiring some modifications to
the PRB size or the sampling rate. Besides, the solution in [20]
is limited to the transmitter side. Recently, the FC processing
has been proposed for the filtering process of F-OFDM [21].
The use of FC-FB for F-OFDM brings a new level of flexibility
in shaping the subbands in frequency domain with individually
tunable subband characteristics. This scheme is referred to
as FC-F-OFDM. Furthermore, it has been shown that FC-F-
OFDM is computationally more efficient than the time-domain
F-OFDM in most practical scenarios [22].

In this paper, we investigate the computational complexity
of FC based schemes focusing on FC-FB and FC-F-OFDM.
The FC processing is considered as low complexity solution
for filtering sequences with long impulse responses. Neverthe-
less, there is possibility to further reduce the computational
complexity in certain important scenarios. In [1], the authors
have proposed narrowband decomposed FC-FB (NB-D-FC-
FB) scheme targeting at reducing the computational complex-
ity of narrowband transmitters. In this paper, the NB-D-FC-
FB idea is extended to include the receiver side and F-OFDM
waveform. Moreover, a new scheme is proposed to reduce
the computational complexity in the case of uniform non-
overlapping subbands scenario. The new scheme is denoted
as constant-band decomposed FC-FB (CB-D-FC-FB).

Generally, in narrowband allocations it is expected that the
relative complexity of transforms/filter banks grows heavily, if
the transmitter or receiver processing is parametrized accord-
ing to the full-band allocation. An alternative solution would
be to perform the waveform processing with reduced band-
width, corresponding to reduced transform/filter-bank size, and
modify the digital and analog front-end processing structures
accordingly. However, there are several reasons for considering
the full-band model also when the device is operating with low
data rate: (i) Fast frequency hopping and dynamic resource
allocation are central elements in systems like LTE and 5G-NR
and they are difficult to implement in analog way. (ii) Moving
towards software-defined radio (SDR) implementations with
simplified analog RF section. In this context, frequency se-
lective waveform processing implements effectively also the
needed digital channelization filtering. (iii) In any case, the
devices usually need the capability to operate with full-band
allocations to comply with the standards.

The main contributions of this paper can be listed as follows:
• The idea of the decomposed FC is proposed using meth-

ods similar to the transform decomposition [23], [24],
also known as multi-dimensional circular convolution
(CC) [25]. While the developments could be based on the
Cooley-Tukey algorithm for FFT implementation [26],
we use the transform decomposition approach as a more
generic tool.

• The decomposition of FC is applied both on the trans-
mitter and receiver sides.

• NB decomposition is developed for FC processing in
narrowband transmitter and receiver scenarios.

• A novel and effective FC decomposition scheme is
developed for scenarios with uniformly distributed non-
overlapping subbands.

• Generic formulas for the complexity of the new schemes
are provided and compared with direct FC-FB designs
and basic reference schemes.

• The decomposed FC schemes are applied for both FBMC
and F-OFDM waveforms.

Following this section, the FC based schemes are reviewed
considering both FBMC and F-OFDM waveforms. Then in
Section III the idea of CC decomposition is discussed and
analyzed mathematically. Section IV develops the decomposi-
tion of the FC based schemes. First, the generic decomposed
FC scheme is developed, followed by two efficient variants:
NB-D-FC and CB-D-FC. Consequently, Section V provides
the complexity analysis based on analytical expressions for
the multiplication and addition rates. Section VI presents
numerical results for the decomposed schemes in comparison
with traditional implementations for both FBMC and F-OFDM
waveforms. Finally, Section VII provides the conclusions and
ideas for future work.

II. OVERVIEW OF FAST-CONVOLUTION FILTER-BANK

FC processing can be used for effectively implementing
convolution through block-wise frequency-domain multiplica-
tions of the input data blocks with fixed filter coefficients.
The multiplication in frequency-domain is equivalent to CC in
time-domain, whereas the common acyclic convolution (also
called linear convolution) can be obtained using either overlap-
and-add (OA) or overlap-and-save (OS) type FC process.
The OA process does zero padding for non-overlapping input
blocks and adds up the overlapping parts of CC output blocks.
The OS scheme uses partially overlapping input blocks and
constructs the output from the non-overlapping parts of the CC
output blocks. With sufficient overlap, both of these processes
calculate the acyclic convolution precisely (limited only by
the numerical precision). However, significant savings in the
computational complexity can be achieved by using reduced
overlap while introducing a tolerable amount of circular inter-
ference.

In this paper, we focus on the CC part of the FC processing.
Therefore, the overlapping nature of the overall scheme is rel-
evant only for the computational complexity and performance
evaluation. The same FFT-domain filter coefficients are used
in the direct FC-FB and proposed implementations, and the
FC overlap factor λ affects in the same way in alternative
realizations. Further discussions on the implementation of FC-
FB and circular interference effects can be found in [11].
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Fig. 1. The generic implementation of FC-FB based SFB using overlap-and-
save processing. The dashed part of the scheme represents the multirate CC
comprised in the multirate FC process.

FC based synthesis filter-bank (SFB) is shown in Fig. 1. The
B low-rate incoming signals are first buffered into overlapping
blocks as part of the OS block-wise process. Then, the
overlapped blocks of the bth subband are fed to the input
of the short (forward) transform of size Lb for b = 1, 2, . . . , B.
The input of the short transform is denoted as x(l)

b
[s], where

s = 0, 1, . . . , Lb−1 is the low-rate time index and l is the block
index. The low-rate input x(l)

b
[s] is the input of the multirate

CC that is comprised in the multirate FC process. Here, the
FC process implements multirate time-domain filtering that
interpolates the input by the factor Rb with

Rb =
N
Lb
, (1)

where N is the length of the long (inverse) transform [27].
The discrete Fourier transform (DFT)-domain representation
of the incoming signals is obtained by the short DFT of length
Lb (Lb-DFT). Each incoming signal is first modulated to the
center frequency kb by circularly shifting the DFT-domain bin
values by kb bins and then multiplying by the DFT response of
the corresponding subband filter Hb[k]. Then, inverse discrete
Fourier transforms of size N (N-IDFT) is taken from the result
of the multiplication followed by discarding the overlapping
samples according to OS processing. The output of N-IDFT
is the output of the multirate CC with respect to x(l)

b
[s], that

is expressed as

y(l)[n] = 1
N

N−1∑
k=0

B∑
b=1

Hb[k]X (l)b [〈k − kb〉N ]W−nkN , (2)

where n = 0, 1, . . . , N − 1 is the high-rate time index, k is
the frequency index, 〈·〉N denotes the modulo N operation,
WN = exp

[
− 2π j/N

]
, and X (l)

b
[k] is the Lb-DFT of x(l)

b
[s].

Fig. 2 shows the structure of FC based analysis filter-
bank (AFB). The incoming high-rate signal is first partitioned
into overlapping blocks and then it is fed to the N-DFT.
The input of the CC multirate process is denoted as ŷ(l)[n].
Then it is multiplied by the corresponding subband filter
H∗
b
[k]. Subsequently Lb-IDFT is applied resulting in the low-

rate signal x̂(l)
b
[s], which is the output of the multirate CC
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Fig. 2. The generic implementation of FC-FB based AFB using overlap-and-
save processing. The dashed part of the scheme represents the multirate CC
comprised in the multirate FC process.

corresponding to the input ŷ(l)[n]. Finally, the overlapping
samples are discarded to obtain the FC process output. In this
process, the sampling rate is reduced by the factor Rb and the
output can be expressed as

x̂(l)
b
[s] = 1

Lb

Lb/2−1∑
k=−Lb/2

H∗b[〈k + kb〉N ]Ŷ (l)[〈k + kb〉N ]W−skLb
, (3)

where Ŷ (l)[k] is the N-DFT of ŷ(l)[n]. Both (2) and (3)
represent the CC multirate operation that is inherent in the
FC multirate process.

A. Fast-convolution based filter-bank multicarrier waveforms

Generally, the FC-FB scheme is capable of emulating
various modulation schemes, such as FBMC with offset
quadrature amplitude modulation (FBMC/OQAM), filtered
multitone (FMT) [28], or even single-carrier transmission with
QAM/PSK modulation. The FBMC/OQAM scheme staggers
(i.e., time-shifts by half symbol interval) the in-phase (I) and
quadrature (Q) parts of the modulated QAM signal. This is
needed to make the adjacent subcarriers orthogonal while the
subcarrier spacing remains equal to that of OFDM [6]. On
the other hand, the FMT scheme uses the normal (rectilin-
ear) QAM modulation with Nyquist pulse shaping and non-
overlapping subcarriers. FMT has lower spectrum efficiency
than FBMC/OQAM, but it avoids certain inconvenient aspects
of OQAM modulation, regarding, e.g., pilot structures for
channel estimation, and it allows to utilize all multi-antenna
techniques that are commonly used in OFDM systems.

In this article, the target is to simplify the evaluation of
the multirate CC in FC processing. The underlying waveform
processing, e.g., FBMC/OQAM or FMT, has no effect on
the complexity of the proposed CC decomposition. However,
different waveform schemes, in general, have different com-
plexities which has to be taken into account when evaluating
the overall complexity of the transmitter or the receiver
processing. On the other hand, the proposed decomposition
does not affect the performance of the waveform since the
decomposed processing gives essentially the same output as
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the non-decomposed one. The differences are only due to
limited numerical precision.

B. Fast-convolution filtered OFDM

Basically the F-OFDM schemes apply filtering on the
subband level, corresponding to single or multiple physical
resource blocks (PRBs). Therefore, smaller transforms are suf-
ficient for generating the OFDM signals for different subbands.
This is followed by an upsampling and interpolating filter.
The described process addresses the transmitter side. The dual
operation is performed on the receiver side. The multirate
filtering involved in the implementation of F-OFDM can be
realized by using the polyphase-FFT structures [18], [19].
However, the configurability, that is, the possibility to adjust
the channel bandwidths and center frequencies independently
is very limited for these structures. Alternatively, the multirate
nature of F-OFDM allows the exploitation of the FC multirate
processing as proposed in [21].

In this article, our low-complexity solution tackles the CC
part of the FC-F-OFDM. However, the effect of interpo-
lation/decimation factor, bandwidth utilization, and number
of subbands of this scheme affects the total computational
complexity. Thus, they are considered in the complexity cal-
culations.

III. THE DECOMPOSITION OF CIRCULAR CONVOLUTION

The CC process is mathematically expressed as

y(l)[n] = 1
N

N−1∑
k=0

X (l)[k]H[k]W−nkN , (4)

where N is the length of DFTs and IDFT, X (l)[k] is the DFT
of the lth input block x(l)[n] and H[k] is the DFT of the
filter impulse response h[n]. The process of the decomposed
CC, or what is called “multi-dimensional cyclic convolution”
in [25], remaps the time indexes of the input and the filter,
resulting in smaller sequences. Then the CC output can be
constructed from those new small sequences. Here, polyphase
decomposition is applied to divide the input block and the filter
impulse response in time-domain into D = 2m delay branches,
where m is positive integer. Therefore, the DFTs for the
decimated inputs of the delay branches and the corresponding
filter responses are obtained as

X (l)[k ′, dx] =
N
D −1∑
r=0

x(l)[rD + dx]Wrk′
N
D

(5a)

H[k ′, dh] =
N
D −1∑
r=0

h[rD + dh]Wrk′
N
D

, (5b)

where dx = 0, 1, . . . ,D − 1 is the delay index of the input,
dh = 0, 1, . . . ,D − 1 is the delay index of the filter, r is
the decimated time index, and k ′ = 0, 1, . . . , N/D − 1 is
used as the frequency index for reduced-size DFTs. Then the
output transform is decomposed by D using the decimation-
in-frequency approach. In this approach, the input is split to
D parts and the output is polyphase decomposed into D delay
branches. As a result, the output transform is replaced by D

transforms of length N/D. The input to the decomposed output
transform is expressed as

Y (l)[k ′, dy] =
D−1∑
dh=0

X (l)
[
k ′, 〈dy − dh〉D

]
H [k ′, dh]WaDk′

N , (6)

where dy = 0, 1, . . . ,D − 1 is the delay index of the output,
and a is either 0 or 1. The integer a solves the sum of
complex exponentials that results from the combination of the
twiddle factors of the decomposed input, filter, and output.
Consequently, a is defined as follows:

a ≡
⌊

dx + dh
D

⌋
=

⌈
dh − dy

D

⌉
. (7)

Accordingly, the resulting CC can be expressed as:

y(l)[n] = D
N

N
D −1∑
k′=0

Y (l)[k ′, 〈n〉D]W
−k′b n

D c
N
D

. (8)

The proof is given in Appendix A.
Fig. 3(a) depicts an example of the decomposed CC when

D = 2. The input signal is multiplexed to two sequences
corresponding to the even and odd samples. Then the DFT
of the delayed branches X (l)[k ′, dx] is multiplied by the
stored DFTs of the polyphase decomposed filter branches
H[k ′, dh]. The result of multiplication may be multiplied by
set of twiddle factors depending on (7). Finally, the CC is
obtained by upsampling and combining the delay branches
of the output. Fig. 3(b) shows the CC decomposition in the
case of interpolated input. In such a case, at least half of
the input samples are zeros allowing to remove the second
(lower) polyphase branch of the input with its corresponding
operations. The CC decomposition in the case of decimated
output is illustrated in Fig. 3(c), where at least half of
the output samples are not needed. Therefore, the second
polyphase branch of the output is not needed, allowing to
discard the related operations. Figs. 3(b) and 3(c) are basic
examples of employing the decomposition in multirate CC
processing, which show the possibility of discarding redundant
operations. This can be exploited for multirate FC in which
multirate CC is the essential part of the process.

IV. DECOMPOSITION OF THE MULTIRATE CC

The exploitation of the CC decomposition in the FC-FB
context leads to different variants of FC-FB. Some of those
variants are not efficient computationally and/or degrade the
flexibility in controlling the subbands bandwidths and center
frequencies. First, the generic structure of the decomposed
FC (D-FC) is developed and, then, its effective variants are
considered in the following subsections.

A. Generic decomposition scheme

Here, the chosen decomposition factor should follow

D ≤ Rmin, (9)

where Rmin is the smallest upsampling/downsampling factor
among the subbands. This condition is needed to have only a
single polyphase branch per subband as shown in Figs. 3(b)
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Fig. 3. The CC decomposition implementation in three cases. (a) Without
multirate processing. (b) Interpolated input. (c) Decimated output.

and 3(c). This allows to discard redundant operations such as
decimated transforms and filter coefficients.

Starting from the SFB side, the low-rate signal x(l)
b
[s] is

upsampled by Rb (cf. (1)). The decomposition of x(l)
b
[s] by D

results in x(l)
b
[r, dx] = 0 for all values of dx except when dx =

0. Accordingly, the N/D-DFTs of the polyphase branches of
the inputs are expressed as follows:

X (l)
b
[k ′, dx] =

{
X (l)
b
[k ′], for dx = 0

0, for dx = 1, 2, . . . ,D − 1.
(10)

Then, the N-DFT response of the filter is generally defined as

Hb[k] = Fb [〈k − kb〉N ]W
−τbk
N , (11)

where τb is the delay term and Fb[k] is the filter zero-
phase DFT response. The zero-phase N-DFT response is
defined to contain non-zero real coefficient values in the period
[〈−Lb/2, Lb/2− 1〉N ] and zeros elsewhere. For simplicity, the
subbands are reindexed using their center frequencies kb in the
following analyses instead of subband indices b. Therefore, the
center frequencies are mapped to

kb = ∆
N
D
+ k ′b, (12)

where ∆ and k ′
b

are defined as

∆ =

⌊
kb − Lb/2

N/D

⌋
(13a)

k ′b =
〈
kb −

Lb

2

〉
N
D

, (13b)

respectively. Thus, the DFT response of the decomposed filter
can be expressed as

Hk′
b
,∆[k ′, dh] =

1
D

W−dhk
′

N W
−dh (∆+Ak′

b
[k′])

D Gk′
b
,∆[k ′], (14)

where Ak′
b
[k ′] is a conditional function that is defined as

Ak′
b
[k ′] =

{0, for k ′ ≥ k ′
b

1, for k ′ < k ′
b
,

(15)

and Gk′
b
,∆[k ′] is the DFT response of the decomposed filter

without considering the twiddle factors that result from the
decomposition and it is defined as

Gk′
b
,∆[k ′] = W

−τk′
b
,∆(k′+Ck′

b
,∆[k′])

N Fk′
b
,∆

[〈
k ′ + Sk′

b
,∆[k ′]

〉
N

]
, (16)

where Ck′
b
,∆[k ′] = (∆ + Ak′

b
[k ′])N/D and Sk′

b
,∆[k ′] = −k ′

b
−

Lk′
b
,∆/2+Ak′

b
,∆[k ′]N/D. In the case when the non-zero compo-

nents of Hb[k] are not overlapping with two sections of N/D
bins, Gk′

b
,∆[k ′] is equivalent to Hb[k] because Gk′

b
,∆[k ′] = 0

for k ′ < k ′
b
. However, if there is overlapping, Gk′

b
,∆[k ′] , 0

for k ′ < k ′
b

due to it is circularity. Then Ak′
b
[k ′] adds phase

shift to (14) and (16). These shifts make the components of
Gk′

b
,∆[k ′] equivalent to the corresponding non-zero compo-

nents of Hb[k] but circularly shifted modulo N/D.
Consequently, the decimated output is acquired by substi-

tuting (10) and (14) into (6). Then, the delay indexes are
expressed as follows (cf. (61)):

d ≡ dy = 〈dh〉D . (17)

Accordingly, the decimated output is expressed as

y(l)[r, d] = D
N

N
D −1∑
k′=0

Y (l)[k ′, d]W−rk′N
D

, (18)

where Y (l)[k ′, d] is the sum of all filtered input signals and it
is defined as follows:

Y (l)[k ′, d] = 1
D

W−k
′d

N

D−1∑
∆=0
k′
b
∈K

Y (l)
k′
b
,∆
[k ′]W

−(∆+Ak′
b
[k′])d

D . (19)

Here K ∈ {0, 1, . . . , N/D − 1} and Y (l)
k′
b
,∆
[k ′] is the product of

the rotated filter Gk′
b
,∆[k ′] and the shifted DFT response of

the decimated subband X (l)
k′
b
,∆

, i.e.,

Y (l)
k′
b
,∆
[k ′] = Gk′

b
,∆[k ′]X (l)k′

b
,∆

[〈
k ′ − k ′b

〉
N
D

]
. (20)

By analyzing (19), it can be concluded that the sum over ∆ and
then the multiplication by W−∆dD is a D-IDFT process. Because
(19) is defined with respect to k ′, then N/D blocks of D-
IDFTs are required. Furthermore, D blocks of N/D-IDFTs are
required as shown in (18). The inputs of the k ′th D-IDFT are
originated from the frequency bins

[
k ′, k ′+N/D, . . . , k ′+(D−

1)N/D
]
. The twiddle factor W

−dAk′
b
[k′]

D is zero for k ′ ≥ k ′
b
,

meaning that the subband does not overlap with next N/D
bin-section, i.e., Ak′

b
[k ′] = 0 for non-zero components of the

masked subband. If the subband overlaps with the following
N/D section, then Ak′

b
[k ′] = 1 for some values of k ′, i.e., for
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Fig. 4. The generic D-FC-SFB scheme for non-overlapping subbands of equal
bandwidths L = N/D.

k ′ < k ′
b
. Accordingly, ∆ is shifted by one resulting in shifting

the ∆th input of the k ′th D-IFFT to the (∆ + 1)th input of
the k ′th D-IFFT for all overlapping frequency bins. In other
words, the first stage of the D-FC-FB could be arranged in
identical way as in the FC-FB. Finally, the dth output of the
k ′th D-IDFT is fed to the k ′th input of the dth N/D-IDFT.
Fig. 4 shows the implementation of the D-FC-FB based SFB.
To simplify the figure, the subbands are not overlapping and
they have equal bandwidths of L FFT bins.1 However, the
implementation of FC-FB using the proposed decomposition
is also possible for overlapping subbands and with different
bandwidths.

The analyses of the AFB are similar to the SFB case.
Basically, the condition in (9) is used for restricting the choice
of D. The filter on the AFB side is the complex conjugation
of the filter on the SFB side, i.e., the complex conjugation of
(11). Therefore, the filter is also analyzed in the same way as
in (14) and (16).

In this case, the output of the AFB is decimated by Rb .
Therefore, all the delay branches of the output for all values of
dx̂ are zero except for dx̂ = 0. As a result, it can be concluded
that the delay indexes are related as follows (cf. (61)):

〈−d〉D ≡ dŷ = 〈−dh〉D . (21)

Consequently, the decimated output of the CC is updated as

x̂(l)
k′
b
,∆
[s] = D

N

N
D −1∑
k′=0

X̂ (l)
k′
b
,∆

[〈
k ′ + k ′b

〉
N
D

]
W−k

′s
N
D

, (22)

where X̂ (l)
k′
b
,∆
[k ′] is the input to the short transform and it is

computed as

X̂ (l)
k′
b
,∆
[k ′] = 1

D
G∗k′

b
,∆[k

′]Ŷ (l)
k′
b
,∆
[k ′], (23)

where Ŷ (l)
k′
b
,∆
[k ′] is defined by the following D-DFT process:

Ŷ (l)
k′
b
,∆
[k ′] =

D−1∑
d=0
k′
b
∈K

Ŷ (l)[k ′, d]Wdk′
N W

d(∆+Ak′
b
[k′])

D . (24)

Accordingly, the implementation of the D-FC-AFB leads to
a dual case of the D-FC-SFB as shown in Fig. 5. Therefore,
the required computational complexities are expected to be

1The same is assumed for the AFB structure of Fig. 5.
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Fig. 5. The generic D-FC-AFB scheme for non-overlapping subbands of
equal bandwidths L = N/D.

the same for both SFB and AFB (while not considering
the channel equalization on the receiver side). However, the
number of real additions in SFB may be higher than on the
AFB side if the subbands overlap in the DFT domain.

The output of the resulting scheme of D-FC-FB is identical
to the corresponding FC-FB scheme (apart from effects due to
finite wordlength implementation). Moreover, the long trans-
form length is the only affected part by the decomposition.
Therefore, D-FC-FB scheme does not lose any flexibility in
controlling the subband center frequencies and bandwidths.

Identical result can be reached by decomposing the long
transform using Cooley-Tukey algorithm for FFT implemen-
tation [26]. Similar to the idea in [23], [24], the transform
should be decomposed once. Then all resulting DFTs can be
implemented using split-radix FFT. Hence, the decomposition
of the long transform for SFB is performed by remapping the
frequency bins similar to (12) as

k = ∆
N
D
+ k ′, (25)

where ∆ = bDk/Nc and k ′ = 〈k〉 N
D

. Consequently, the time
index n is remapped as

n = rD + d, (26)

where r = bn/Dc and d = 〈n〉D . The output of the decomposed
FC-FB is then obtained by the substitution of remapped
indexes in (2). As a result, the output is expressed as

y(l)[rD + d] = 1
N

N
D −1∑
k′=0

Y (l) [k ′, d]W−rk′N
D

, (27)

where Y (l) [k ′, d] is defined as

Y (l) [k ′, d] = W−dk
′

N

D−1∑
∆=0

Y (l)
[
k ′ +

N
D
∆

]
W−d∆D , (28)

where Y (l)[k] is also defined as follows:

Y (l)[k] =
B∑

b=1
Hb[k]X (l)b [〈k − kb〉N ]. (29)

Accordingly, the equality between the two approaches can
be tracked by comparing (27) with (18) and (28) with (19).
Similarly, the Cooley-Tukey algorithm can be applied on the
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Fig. 6. NB-D-FC-FB based SFB implementation for two subbands of width
L = N/2+1. Both subbands are contained in the δth section of the spectrum,
where ka = k′ + N

D δ.

AFB side. The resulting structure is also identical to the D-
FC-FB based AFB. The equality between the two approaches
holds as long as the condition (9) is valid and the DFT-domain
response of the filters is zero in the period of [Lb/2, N −
Lb/2 − 1]. Generally, the decomposition using Cooley-Tukey
algorithm targets at decomposing the long transform of the
FC-FB. Therefore, this approach can be used regardless of
the interpolation/decimation factor Rb . On the other hand, the
CC decomposition approach is more generic, meaning that it
targets the whole CC part of the process. Therefore, the CC
decomposition can be generalized to decompose any multirate
filtering operations.

B. D-FC in narrowband scenarios

The narrowband scenario is the case when the number of
active DFT bins is relatively small compared to the available
ones. In such a scenario, the number of active DFT bins
is small enough to prune the transforms of length D in
such way that all D-IFFTs/D-FFTs have a single non-zero
input/output bin at the SFB/AFB sides, respectively. Therefore,
those transforms are replaced by series of twiddle factors
W−dδD and Wdδ

D for SFB and AFB sides, respectively, where
constant δ ∈ {0, 1, . . . ,D − 1} refers to the subband index
with respect to the N/D sections. This leads to two stages
of complex multiplications which can be replaced by single
stage of multiplications by W

−d(k′+ N
D δ)

N and W
d(k′+ N

D δ)
N for SFB

and AFB sides, respectively. The implementations of SFB
and AFB type NB-D-FC-FBs are shown in Figs. 6 and 7,
respectively.

The narrowband solution can be achieved if the DFT in the
set [k ′, k ′+N/D, . . . , k ′+ (D− 1)N/D] contains a single non-
zero bin. Moreover, the following condition must be satisfied

D ≤ N
Nk
, (30)

where Nk is the number of active DFT bins. Any contiguous
set of no more than N/D active frequency bins is applicable.
Moreover, certain non-contiguous sets, following the men-
tioned rules, are possible. Figs. 6 and 7 show one possible
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Fig. 7. NB-D-FC-FB based AFB implementation for two subbands of width
L = N/2+1. Both subbands are contained in the δth section of the spectrum,
where ka = k′ + N

D δ.

contiguous set of the NB-D-FC where the used frequency bins
are located in spectral section δ.

C. D-FC in constant-band scenario

Three conditions must be maintained in the subbands to be
considered as constant band scenario. Firstly, the zero-phase
responses of the subbands have to be equivalent. Secondly,
the subbands cannot overlap in the DFT domain. Thirdly,
the subbands have to be uniformly distributed, i.e., k ′

b
is

constant for all subbands. These conditions imply that the
interpolation/decimation factor Rb should be identical for all
subbands. Accordingly, the short transforms have constant
length of L. The constant value of k ′

b
implies that D must

be equal to the maximum possible value Rmin. Accordingly,
N/D equals:

N
D
= L. (31)

Hence, the total number of available subbands is as follows:

Btot = D. (32)

The subbands have constant value of k ′
b

as they are remapped
according to ∆ only. As a result, the DFT response of the
decimated and delayed filter in (14) is updated as

H∆[k ′, dh] =
1
D

W−(k
′+L(∆+A[k′]))(dh+τ)

N H[k ′], (33)

for SFB and it is expressed as

H∆[k ′, dh] =
1
D

W−(k
′+L(∆+A[k′]))(dh−τ)

N H[k ′], (34)

for AFB, where H[k ′] is expressed as follows:

H[k ′] = F [〈k ′ + S[k ′]〉N ] . (35)

Here, the filter’s frequency-domain weights are independent
of k ′

b
and ∆. Therefore, the filter’s weight coefficients can

be combined with twiddle factors between the transforms of
length N/D and the transforms of length D. Hence, the input
of the N/D-IDFTs is expressed as

Y (l)[k ′, d] = 1
D

W−(k
′+LA[k′])(d+τ)

N H[k ′]X (l) [k ′, d] , (36)
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d
= (k′ + LA[k′])(d + τ).
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Fig. 9. CB-D-FC based AFB, where k′
d
= (k′ + LA[k′])(d + τ).

where X (l)[k ′, d] is expressed in the following way:

X (l)[k ′, d] =
D−1∑
∆=0

X (l)
∆

[〈
k ′ − k ′b

〉
N
D

]
W−∆(d+τ)D . (37)

Here, if τ is an integer, then the output of the D-IDFT can
be circularly shifted by τ, i.e., X (l)[k ′, d + τ]. Fig. 8 shows
the implementation of SFB based CB-D-FC. Similarly, on the
AFB side, the input of the short transforms is expressed as

X̂ (l)
∆
[k ′] = 1

D

D−1∑
d=0

X̂ (l)[k ′, d]W (k
′+LA[k′])(d+τ)

N W∆(d+τ)D , (38)

where X̂ (l)[k ′, d] is defined as follows:

X̂ (l)[k ′] = Ŷ (l)
[〈

k ′ + k ′b
〉

N
D
, d

]
H

[〈
k ′ + k ′b

〉
N
D

]
. (39)

In (38), the phase rotation by τ can be replaced by the circular
shift at the inputs of the D-DFT if τ takes an integer value.
Fig. 9 shows the implementation of the AFB based CB-D-FC.

Accordingly, the resulted CB-D-FC is similar to the generic
D-FC-FB except for the combination of the filter coefficients
with twiddle factors in between the transforms. Nevertheless,
CB-D-FC introduces some limitations to the FC-FB structure.
Firstly, the subbands cannot be overlapped limiting the appli-
cability of this scheme. For example, CB-D-FC-FB is not ap-
plicable for FBMC/OQAM. Secondly, non-uniform subbands
are not possible with this decomposed variant. Therefore, the
frequency-domain equalizer weights cannot be embedded with
filter weights. However, CB-D-FC-FB can be quite useful for

specific scenarios, such as FMT transmitter or channelization
filtering for multichannel transmitters and receivers. More
specifically, the CB-D-FC can show significant reduction in
the computational complexity in oversampled FMT scenarios,
but not in critically sampled cases. The oversampling produces
frequency replicas of the low-rate input signal. Accordingly,
the number of needed D-IFFTs can be reduced by a factor
equal to oversampling factor.

V. ANALYSIS OF THE COMPUTATIONAL COMPLEXITY

In this document, all transform lengths are assumed to be
powers-of-two and the DFT and IDFT blocks are implemented
using FFT and IFFT, respectively. The FFT and IFFT blocks
use the split-radix algorithm which is one of the most effective
algorithms for transform implementation with power-of-two
lengths. The computational complexity of split-radix based
transform of length N is expressed in terms of number of
real multiplications and additions as

µT [N] = N log2 N − 3N + 4 (40a)
αT [N] = 3N log2 N − 3N + 4, (40b)

respectively [29].
In the following discussions, the FC schemes are divided

into four parts and the total normalized computational com-
plexity for the FC schemes is calculated as

µ =
µ(N ) + µ(L) + µph

η
+ µOFDM (41a)

α =
α(N ) + α(L) + αph

η
+ αOFDM, (41b)

for real multiplications and real additions, respectively. Here,
µ(N ) and µ(L) are the number of real multiplications used to
implement the long transform part and short transforms parts,
respectively, and α(N ) and α(L) are the corresponding numbers
of real additions. µph and αph are the number of real multipli-
cations and real additions used to perform the phase rotations,
when needed. In the FC-F-OFDM case, µOFDM and αOFDM are
the number of real multiplications and real additions needed
to implemented the OFDM modulation, expressed as

µOFDM =


B∑

b=1

µT [Lt,b]
Lu,b

, for FC-F-OFDM

0, otherwise

(42a)

αOFDM =


B∑

b=1

αT [Lt,b]
Lu,b

, for FC-F-OFDM

0, otherwise,

(42b)

where Lt,b is the length of the OFDM modulat-
ing/demodulating transform and Lu,b is the number of
active subcarriers.

The normalization factor, η, is the number of the processed
QAM symbols per FC block. The input of the FC processing
block can be either QAM symbols, OQAM symbols or CP-
OFDM symbol multiplexes on the low-rate side. In case of
FMT and FBMC/OQAM, the subchannels are two-times over-
sampled in the FFT-domain for Nyquist-type pulse shaping.
The bandwidth is Lb FFT bins and it corresponds to two
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times the symbol rate of subchannel b. With overlapping input
blocks, each FC block contains Ls,b/2 QAM symbols, where
Ls,b is the non-overlapping period at the low-rate side. In
FMT cases, we assume the short transform length of Lb/2,
and oversampling is implemented in FFT-domain by copying
the short transform outputs. In the FBMC/OQAM cases, the
OQAM signal generation can also be done in FFT-domain,
however, in a more complicated manner [30]. For simplicity,
we assume Lb-length transforms in this case, since the effect in
overall complexity in narrowband cases would be very small.

For FC-F-OFDM, Lu,b QAM symbols are first modulated
by Lt,b-IFFT. Then, the CP is included and the low-rate
CP-OFDM symbols are processed by FC. Let Lcp,b and
Lo,b = Lt,b + Lcp,b denote the CP-length and the total CP-
OFDM symbol length, respectively, at low rate. Then the CP-
OFDM symbol requires Lo,b/Ls,b FC processing blocks, i.e.,
the number of processed QAM symbols per FC block is Lu,b

divided by the ratio Lo,b/Ls,b . Accordingly, the normalization
factor can be calculated as

η =


0.5

B∑
b=1

Ls,b, for FMT and FBMC/OQAM

B∑
b=1

Lu,bLs,b

Lo,b
, for CP-OFDM.

(43)

Some additional computations are due to the FC-block-wise
phase rotations that are required to maintain phase continuity
of consecutive FC blocks [11]. This phase rotation depends on
the subband center frequency and overlap factor. In specific
cases, it can take trivial values, e.g., when the center frequency
bin of subband b is an integer multiple of Rb or the overlapping
factor is 0.5 or 0.25. Except for such special cases, the related
complexities can be expressed as

µph =


2

B∑
b=1

Ls,b, for FBMC/OQAM

3
B∑

b=1
Ls,b, for FMT and CP-OFDM

(44a)

αph =


0, for FBMC/OQAM

3
B∑

b=1
Ls,b, for FMT and CP-OFDM, (44b)

for real multiplications and for real additions, respectively.

A. The complexity of the FC schemes

The short transforms part contains B blocks of Lb trans-
forms and DFT-domain filtering weights. The complexity of
the short transforms part is expressed as [31]

µ
(L)
s =

B∑
b=1

[
µT

[
Lb

σ

]
+ µh,b(Lb − nz,b)

]
(45a)

α
(L)
s = 2θ +

B∑
b=1

[
αT

[
Lb

σ

]
+ αh,b(Lb − nz,b)

]
, (45b)

where σ = 2 for the FMT cases (assuming non-oversampled
low-rate signals) and σ = 1 for FBMC/OQAM and CP-OFDM

cases, nz,b is the number of trivial weights of the filter, θ is
the total number of overlapping DFT bins of two subbands
with non-zero weights, and µh,b and αh,b are coefficients that
depend on filters weights as follows2:

µh =

{3, for complex filter weights
2, for real filter weights

(46a)

αh =

{3, for complex filter weights
0, for real filter weights.

(46b)

These expressions are valid for both SFB and AFB sides, while
not considering the equalization process on AFB side.

The other part of the FC schemes is the long transform
of length N , which is considered the dominant factor in the
complexity of the FC based schemes. The complexity of this
part is equivalent for both the SFB and the AFB and it is
computed using (40).

B. The complexity of the generic D-FC schemes

The complexity of the short transforms part in the generic
D-FC scheme is equivalent to the complexity of the short
transforms part in the FC schemes. Hence, the complexity ex-
pressions in (45) are applicable. Regarding the long transform
part, the complexity is equivalent for SFB and AFB sides and
it is calculated as

µ
(N )
D =

D−1∑
d=0

µGT[N,D, d] +
N
D
µT [D] (47a)

α
(N )
D =

D−1∑
d=0

αGT[N,D, d] +
N
D
αT [D], (47b)

where µGT[N,D, d] and αGT[N,D, d] give the required real
multiplications and real additions to implement transform of
length N/D with inputs (or outputs) multiplied by W−dk

′
N (or

Wdk′
N ) as defined as

µGT[N,D, d] =



µT

[
N
D

]
, for C ∈

{
N, N2 ,

N
4

}
N
D

log2
N
D
− N

D
, for C = D

2

µT

[
N
D

]
+ β

[
N,

N
D
, d

]
,otherwise

(48a)

αGT[N,D, d] =



αT

[
N
D

]
, for C ∈

{
N, N2 ,

N
4

}
3

N
D

log2
N
D
− N

D
, for C = D

2

αT

[
N
D

]
+ β

[
N,

N
D
, d

]
,otherwise,

(48b)

respectively, where C = gcd[N, d] and gcd is the greatest com-
mon divisor. The C = D/2 case results into what is called odd-
DFT [32]. The function β [N, N/D, d] is generic complexity
formula that returns the number of real multiplications and

2The complex multiplication requires three real multiplications and three
real additions if one of the complex numbers is fixed, otherwise it costs three
real multiplications and five real additions. In our case, the filter components
are real numbers multiplied by twiddle factor, while the channel equalization
process is not considered.
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additions that are required to multiply a complex sequence by
a sequence of Wk′d

N where k ′ = 0, 1, . . . , N/D − 1 and it is
defined as follows:

β

[
N,

N
D
, d

]
=

3
N
D
−

⌈
8

C
D

⌉
− 2

⌈
4

C
D

⌉
,for N

C < {1, 2, 4}

0, otherwise.
(49)

The generic D-FC schemes require 〈D − 4〉4 additional real
multiplications with respect to FC schemes. Moreover, generic
D-FC increases the number of real additions with same amount
compared to FC schemes. These increases in complexity are
needed on SFB and AFB sides.

C. The complexity of the NB-D-FC schemes
The complexity of short transforms part for the NB-D-FC

schemes follows the formulation in (45). The number of real
multiplications required to implement the long transform part
is the same on the SFB and AFB sides. However, the number
of additions differs because input pruning is applied on the
SFB side whereas output pruning is used on the AFB side.
Therefore, the number of real additions is expected to be
higher on the AFB side. The complexity of the long transform
part for NB-D-FC schemes is expressed as

µ
(N )
NB = DµT

[
N
D

]
+

∑
k∈K

βP [N,D, k] (50a)

α
(N )
NB-s = DαT

[
N
D

]
+

∑
k∈K

βP [N,D, k] (50b)

α
(N )
NB-a = DαT

[
N
D

]
+

∑
k∈K

αP [N,D, k] , (50c)

for real multiplications on SFB and AFB sides, real additions
on SFB side, and real additions on AFB side, respectively.
Here K ∈ {0, 1, . . . , N − 1} is the set of active DFT bins and
βP[N,D, k] returns the number of real multiplications and real
additions required to implement N-DFT with a single input
located at index k for output in the period [0,D − 1] and it is
expressed as

βP[N,D, k] =



N
2C
− 2, for N

C < Nc,
N
4C ≤ D

D +
N
4C
− 2,for N

C < Nc,
N
8C < D < N

4C

3D − 3, for N
C < Nc,D ≤ N

8C
0, otherwise,

(51)

where C = gcd[N, k]. This function is also valid for computing
the required number of real multiplications to implement N-
DFT with a single output located at index k for input in the
period [0,D− 1]. For the similar case, αP[N,D, k] returns the
number of real additions and it is expressed as follows:

αP[N,D, k] =



2
N
C
+ 2D − 16, for N

C < Nc,
N
C ≤ D

4D − 2
⌈
8
CD
N

⌉
,for N

C < Nc,
N
4C ≤ D < N

C

3D +
N
4C
− 4, for N

C < Nc,
N
8C < D < N

4C

5D − 5, for N
C < Nc,D ≤ N

8C
2D − 2, otherwise.

(52)

In (51) and (52), the complexity evaluations for D ≥ N/(4C)
are based on removing the redundant multiplications by
trigonometric components [33]. In such case, the complex
multiplication is implemented using four real multiplications
and two real addition. This is more efficient than the three real
multiplications and three real additions implementation of the
complex multiplication in the case of redundancy.

The complexity of NB-D-FC scheme is dominated by three
factors, N , D, and Nk . Mainly, Nk and N determine the number
of the required twiddle factors and length of the transforms,
respectively. Therefore, the complexity of NB-D-FC is directly
proportional to both Nk and N . However, the configuration of
N and Nk is not typically determined according to complexity
minimization. This leaves D as the complexity design factor
that can be found as

Dlst =
N

(3Nk + 4) ln 2
, (53)

for fixed values of N and Nk to minimize (50a). Here, we
consider the common case of non-redundancy in (51) when
D ≤ N/(8C). In this contribution, the value of D must be
power of two, whereas (53) usually results in non-power-of-
two value. Therefore, the actual value of D is found by direct
substitution in (50a) with the next smaller and larger power-
of-two value and comparing the results. Regarding allocations
with very low number of active subcarriers, Nk ≤ 7, the
optimal value can be obtained directly by the maximum of
(30).

Generally, the NB-D-FC scheme reduces the computational
complexity by performing the FC operation by D transforms
of size N/D with multiplications by twiddle factors, as shown
in (50), rather than single transform of size N as in original
FC based schemes. Moreover, this scheme surpasses the use of
N/D transforms of size D as in generic D-FC by performing
multiplication by twiddle factor. Therefore, the small number
of active frequency bins implies low number of multiplications
with the twiddle factors, leading to the significant reduction
in the computational complexity. Nevertheless, the increase in
the number of active bins may lead to insignificant complexity
reduction of NB-D-FC compared to the FC based schemes or
the generic D-FC.

D. The complexity of the CB-D-FC schemes

The implementation of the CB-D-FC schemes contains a
small variation in its structure compared to the other FC
schemes. The change is in the combination of the twiddle
factors with filter coefficients. Therefore, the short transforms
part of the CB-D-FC schemes contains only the short trans-
forms and the complexity is expressed as follows:

µ
(L)
c = BµT

[
L
σ

]
(54a)

α
(L)
c = BαT

[
L
σ

]
. (54b)

The long transform part of the CB-D-FC schemes contains L
transforms of length D, D transforms of length L, and the
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combination of the twiddle factors with filter’s weights. The
complexity of the long transform part is computed as follows:

µ
(N )
c = DµT [L] +

L
σ
µT [D] + 3D(L − 1) (55a)

α
(N )
c = DαT [L] +

L
σ
αT [D] + 3D(L − 1). (55b)

Given the short transforms length L and long transform length
N , the CB-D-FC requires fewer real multiplications than FC
scheme if B satisfies:

B >
DL

(
1
σ − 1

) (
log2 D − 3

)
+ 4 L

σ + D − 4

µh(L − nz)
. (56)

Here, nz plays a key role in defining the CB-D-FC efficiency.
In other words, the number of non-trivial filter weights spec-
ifies the effectiveness of CB-D-DC compared to the corre-
sponding direct FC scheme.

VI. NUMERICAL RESULTS

In this section, the computational complexity of the different
decomposed schemes is evaluated and compared to the con-
ventional FC implementation. Besides, LTE-like scenarios are
considered for testing the effectiveness of the decomposed FC
variants in comparison with other multicarrier schemes without
considering the complexity required for the channel equal-
ization. Therefore, the number of real multiplications needed
to implement the transmitter and the receiver corresponds
to equivalent functionality for all considered schemes. To
obtain consistent results, the correspondence of the compared
schemes is specified by the number of active subbands or
subcarriers.

A. Comparisons of the decomposed schemes with conventional
FC schemes

Firstly, the complexity of NB-D-FC scheme is compared
with the direct FC scheme. The main factors of NB-D-
FC complexity is the choice of the decomposition factor
D considering the number of active frequency bins Nk and
long transform length N . Here, the assumption is that Nk is
fixed. This number is chosen to be three overlapping active
FBMC/OQAM subcarriers of L = 16 FFT bins. Therefore, the
subbands overlap in 8 frequency bins with adjacent subbands
resulting in Nk = 32 active frequency bins. The long transform
lengths are chosen to be 512, 1024, 2048, and 4096. Different
configurations of D are shown in Table I where Dmax is the
maximum value of D according to (30), Dlst is the optimal
value according to (53), and Dopt is the most efficient power-
of-two value of D near to Dlst. Fig. 10 shows the reduction
in the number of real multiplications given in percentages
for NB-D-FC scheme with respect to the corresponding FC
scheme. These results confirm the formulation in (53). More-
over, the reduction ratio is proportional to the ratio N/Nk .
Hence, this scheme becomes more efficient when the number
of active frequency bins is relatively reduced.

The second evaluation shows the significance of the CB-D-
FC scheme when compared with the direct FC scheme. The
main factors affecting the complexity are the decomposition

TABLE I
THE DECOMPOSITION FACTOR CONFIGURATION OF NB-D-FC SCHEME

FOR Nk = 32 ACTIVE FREQUENCY BINS.

N N/Nk Dmax Dlst Dopt

512 16 16 6.84 8
1024 32 32 13.68 16
2048 64 64 27.36 32
4096 128 128 54.72 64

2 4 8 16 32 64 128
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Fig. 10. The reduction in real multiplications given in percentages for NB-
D-FC with respect to direct FC with Nk = 32 active frequency bins.

factor D, the short transforms length L, the number of active
subbands B, and long transform length N . Assuming fixed
L = 16, nz = 2, and σ = 1, as well as varying B, then D
is configured by (31). Therefore, D equals 8, 16, 32, 64, and
128 for long transforms lengths of 128, 256, 512, 1024, and
2048, respectively. Fig. 11 shows the reduction in number of
real multiplications given in percentages for CB-D-FC scheme
with respect to FC scheme. These results show the increased
reduction in the real multiplications with the increased number
of active subbands. Moreover, it is shown that 15 % reduction
in the real multiplications is expected when 87.5 %, 81.25 %,
84.3 %, 90.6 %, and 100 % of total available subbands are
used for N = 128, 256, 512, 1024, and 2048, respectively.
Moreover, the results show that the CB-D-FC scheme actually
increases the computational complexity when the number of
active subbands B is smaller than the limit in (56). This is
indicated in Fig. 11 by the negative values for the complexity
reduction for B < 3, 3, 4, 5, and 7 for N = 128, 256, 512, 1024,
and 2048, respectively.

B. LTE-like scenarios

The comparison with NB-D-FC schemes is performed
in 20 MHz LTE-like scenario. Here the subcarriers spac-
ing is 15 kHz with 1200 active subcarriers out of 2048
available subcarriers. The NB-D-FC scheme is compared
with direct FC based FBMC/OQAM (FC-OQAM), polyphase
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Fig. 11. The reduction in real multiplications given in percentages for CB-
D-FC with respect to direct FC with L = 16.

FBMC/OQAM, FC-F-OFDM, and CP-OFDM as a reference
scheme.3 The standard CP length on the high-rate side is
144 samples, however, it is chosen to be 128 for FC-F-
OFDM scheme.4 This choice is made to avoid non-integer
values for the CP in the low-rate side for power-of-two short
transform lengths. Generally, the choice of the overlap factor
λ = 1 − Ls,b/Lb for FC based schemes is based on the
system requirements. Small λ achieves low computational
complexity with increase in the out-of-band emission and in-
band interference level [28]. Even with λ = 1/4, the in-band
signal-to-interference ratio is clearly above 30 dB, which is
sufficient for 256-QAM modulation. With λ = 1/2, the circular
distortion due to reduced overlap becomes insignificant [28].
Table II shows the parameterizations of the used schemes
assuming contiguous set of active subbands. All considered
schemes have 15 kHz subcarrier spacing, and have the total of
2048 available subbands.

The first test in the 20 MHz scenario compares NB-D-
FC-OQAM with FC-OQAM and polyphase FBMC/OQAM.
The decomposition configuration parameters of NB-D-FC-
OQAM are shown in Table III. Fig. 12 shows the superiority
of NB-D-FC-OQAM over FBMC/OQAM and FC-OQAM in
terms of complexity. The computational complexity of the
FBMC/OQAM has been found according to the complexity
formulas in [36]. The NB-D-FC-OQAM reduces the required
number of real multiplication by 43.5 % when compared with
the corresponding FC-OQAM for single active PRB of 12
subcarriers case with λ = 1/2. With λ = 1/4, NB-D-FC almost
reaches the complexity of basic CP-OFDM. In this case, NB-

3In narrowband scenarios, the CP-OFDM complexity could be reduced
through (I)FFT pruning. Since we focus on spectrally enhanced waveforms,
we do not consider reduced complexity CP-OFDM schemes here. CP-OFDM
is included as a general reference, widely considered to have acceptable
complexity for practical deployments.

4A way to reduce the short transform length of FC-F-OFDM while
maintaining the compatibility with LTE and 5G-NR numerologies is presented
in [34]. This approach is applicable also with the decomposed FC schemes.

TABLE II
PARAMETERIZATION OF DIFFERENT SCHEMES IN 20 MHZ LTE-LIKE

SCENARIO

The scheme Configuration

CP-OFDM Transform length: 2048
CP length: 144

Polyphase FBMC/OQAM
Transform length: 2048
Phydyas prototype filter [8], [35]
Overlapping factor: 3 and 4
No CP

FC-OQAM

Long transform length: 16384
Short transform length: 16
λ: 1/2 and 1/4
Non-trivial filter weights: 14
No CP

FC-F-OFDM

Long transform length: 2048
Short transform length: 16, 32, and 64
λ: L/2 and L/4
Non-trivial filter weights: 4
CP length: 128

TABLE III
THE DECOMPOSITION FACTOR CONFIGURATIONS FOR NB-D-FC-OQAM.

PRBs N/Nk Dmax Dlst Dopt

1 158 128 73 64
2 82 64 39 32
3 55 32 26 32
4 42 32 20 16
5 34 32 16 16

1 2 3 4 5
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Fig. 12. The normalized number of real multiplications per QAM symbol
as a function of the active bandwidth in 20 MHz scenario for FBMC/OQAM
schemes with basic CP-OFDM as reference.

D-FC-OQAM reduces the number of real multiplications by
43.5 % when compared with the corresponding FC-OQAM for
single active PRB.

In the second evaluation in the 20 MHz scenario, we com-
pare NB-D-FC-F-OFDM with FC-F-OFDM. Here the configu-
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TABLE IV
THE DECOMPOSITION FACTOR CONFIGURATION OF THE

NB-D-FC-OFDM.

PRBs N/Nk Dmax Dlst Dopt

1 128 128 49 64
2 73 64 31 32
3 51 32 22 32
4 39 32 18 16
5 32 32 14 16

1 2 3 4 5
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Fig. 13. The normalized number of real multiplications per QAM symbol as
a function of the active bandwidth in 20 MHz scenario for F-OFDM schemes
with basic CP-OFDM as reference.

ration considers the case of single subband that contains 1 to 5
PRBs, i.e., 12 to 60 subcarriers. Therefore, the short transforms
lengths of the FC-F-OFDM scheme are chosen to be 16 for
1 active PRB, 32 for 2 active PRBs and 64 for 3, 4, and 5
active PRBs. The configuration of the decomposition factor for
NB-D-FC-OFDM is shown in Table IV. Fig. 13 shows the
superiority of NB-D-FC-OFDM with respect to other schemes
in terms of complexity. For λ = 1/2, the reduction in number
of real multiplications per processed QAM symbol for NB-
D-FC-OFDM is 6.8 % with respect to CP-OFDM and 56.2 %
with respect to corresponding FC-F-OFDM when single PRB
is active. For λ = 1/4, NB-D-FC-OFDM is superior to CP-
OFDM in terms of complexity. Specifically, NB-D-FC-OFDM
reduces the number of real multiplications per QAM symbol
by 32.3 % with respect to CP-OFDM in the case of single
active PRB. Considering one alternative use case where 1-
5 PRBs are filtered as individual subbands, the complexity
evaluation indicates quite similar savings as above. In both
Figs. 12 and 13, the reduction in the multiplication rate
of the NB-D-FC schemes with respect to FC schemes is
reduced when the number of PRBs is increased. Moreover, the
computational complexity of the NB-D-FC becomes higher
than that of direct FC-F-OFDM when the number of active
PRBs exceeds 56 (out of 100) in the 20 MHz LTE scenario.

Next, CB-D-FC-FMT is compared with FC-FMT using the
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Fig. 14. The normalized number of real multiplications per QAM symbol
for CB-D-FC based FMT as a function of the active bandwidth in 480 kHz
bandwidth scenario.

short transform size of L/2 and expanding the input to double
bandwidth in the FFT domain by copying the transform output,
effectively realizing oversampling by two. Short transform of
size of Lb = 8 is chosen to construct subbands of 16 FFT-
bins. The results of Fig. 11 show that 15 % saving in real
multiplication rate is achieved in the case of N = 512 and
σ = 1 with more than 26 active subbands. The saving can
be improved when oversampling is employed, as in the FMT
scenario with σ = 2. In such cases, more than 25 % saving in
the real multiplication rate is achieved when there are more
than 15 active subbands. The decomposition factor in this case
has to be 32 which is also equivalent to the number of available
subbands. Therefore, the FMT schemes here are compared
with OFDM with 32 subcarriers as reference. This represents
a non-standard case of narrowband transmission with 480 kHz
bandwidth assuming 15 kHz subcarrier spacing. Fig. 14 shows
that CB-D-FC-FMT requires fewer real multiplications than
the corresponding FC-FMT scheme. The reduction in real
multiplications is from 25.1 to 32.9 % per QAM symbol.

C. Link performance aspects

As mentioned, the proposed decomposed structures for
FC-FB based waveform processing produce the same output
signals as the corresponding direct FC-FB implementations.
The differences are only due to different round-off error
accumulation models of different computational algorithms.
In Matlab simulations, the worst-case differences between
time-domain signals generated by direct and decomposed
FC structures were about 10−12 times the average sample
value. Analyzing the finite wordlength effects in different FC
schemes remains as a topic for future studies.

Regarding the spectrum localization of transmitted signals,
Fig. 15 shows an example of the FBMC/OQAM signal spectra
obtained by direct and decomposed FC-FBs and polyphase
FBs. We cannot see any differences between the direct and
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Fig. 15. PSDs for FBMC/OQAM realizations using a polyphase FB with
overlap factors of K ∈ {3, 4} and FC-FB with L = 16 and overlap factors
of λ ∈ {1/4, 1/2}. The PSDs are integrated over the subcarrier spacing of
15 kHz, while using 12 active subcarriers out of 2048 in total. In both direct
and decomposed FC-FB cases, the inband signal-to-interference ratio due to
circular distortion is 36 dB and 44 dB with λ = 1/4 and λ = 1/2, respectively.

decomposed FC cases. The polyphase designs apply the widely
used frequency sampling based prototype filters [8], [35] with
overlap factors of K = 3 and K = 4. Both polyphase
and FC approaches provide very sharp transition bands. At
−50 dB level, the differences in the power spectral densities
(PSDs) between corresponding polyphase and fast-convolution
FBs are marginal. The differences are mainly in the out-of-
band emission (OBE) floor levels. Increasing the FC overlap
reduces the OBE and in the extreme case with λ = 1 − 1/L,
which is equivalent to the FS-FBMC scheme, the direct and
decomposed FC spectra are equal to that of the corresponding
polyphase filter bank. However, the computational complexity
is greatly increased with increasing FC overlap. Depending
on the scenario, FC overlap factors between λ = 1/4 and λ =
1/2 give sufficiently low OBE due to FC-FB imperfections.
While polyphase FB with optimized prototype filters [37]
reach higher stobband attenuation, the OBE characteristics are
mainly determined by the spectral regrowth due to the non-
linearity of the transmitter power amplifiers [38].

Link level bit error-rate (BER) comparisons between FC-
FB and polyphase FB based FBMC/OQAM are shown in
Fig. 16. Again, the direct and decomposed FC approaches
provide identical performance. Here the tapped delay line
type C (TDL-C) channel model with root-mean-square (RMS)
delay spread of 1 µs and about 8.6 µs maximum delay spread
is used [39]. With such relatively high delay spread, FC-
FB with embedded channel equalizer provides clearly better
performance than polyphase filter-bank with the typical three-
tap subcarrier equalizers. The embedded equalizers can be
realized without increasing the multiplication rate by com-
bining the channel equalizer coefficients with the FFT-domain
filtering weights, while the three-tap subcarrier equalizer ap-
proach for polyphase filter-bank realization slightly (by 12 real
multiplications per QAM symbol) increases the multiplication
rate. With high mobility, the performance of the embedded
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Fig. 16. Bit error-rate (BER) performance of polyphase FB (K = 4) and
FC-FB (λ = 3/8) realizations of FBMC/OQAM in TDL-C channel with 1 µs
RMS delay spread. One active PRB of 12 subcarriers with 15 kHz or 60 kHz
subcarrier spacing (SCS).

equalizer slightly degrades in the high-SNR region due to
the increased processing block length [12]. As for the F-
OFDM waveforms, the superior flexibility and performance-
complexity tradeoff of FC-FB over alternative schemes was
demonstrated in [22]. In this case, the practical way for
channel equalization is to use the basic CP-OFDM equalizer
model for each subband independently.

VII. CONCLUSION

This paper proposed the use of circular convolution de-
composition for the implementation of fast-convolution based
communication waveform processing. It was also indicated
how equivalent decomposition can be achieved using the mul-
tidimensional convolution or Cooley-Tukey FFT algorithms.

The generic decomposed scheme has similar (slightly
higher) complexity as direct FC processing and it could be
useful for flexible hardware implementations supporting differ-
ent system parameterizations with configurable long transform
size, also with non-power-of-two values. More importantly,
in specific application scenarios, appropriate decomposition
schemes provide quite significant reduction in the complexity.

The NB-D-FC variant was developed for narrowband sce-
narios in which the number of active frequency bins is rela-
tively small. In such scenarios, up to 50 % savings in the real
multiplication rate could be achieved compared to the conven-
tional FC. NB-D-FC was exploited in the implementation of
both FBMC/OQAM and F-OFDM, with similar savings. In the
case of F-OFDM with up to five active PRBs, the NB-D-FC-
F-OFDM scheme was shown to require fewer multiplications
per QAM symbol than the basic CP-OFDM.

Another proposed decomposition variant, namely CB-D-FC,
targets at scenarios of non-overlapping identically filtered and
uniformly distributed subbands. This scheme has shown up to
32.9 % reduction in the real multiplication rate. However, this
scheme lacks the flexibility of the original FC-FB.

FC-FB and its decomposed variants can be used for imple-
menting efficiently any of the existing time-domain filtering
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[16], [17] or filter-bank [18], [19] based filtered OFDM
schemes, by emulating in FFT-domain processing the specific
time-domain filter(-bank) design. However, the FC approach
allows direct design of the FFT-domain filter weights with
optimized tradeoff between inband interference and OBE [22].

Our future work on decomposed FC processing is focused
on applications of NB-D-FC-F-OFDM in specific important
narrowband transmission scenarios, like spectrally enhanced
cellular narrowband Internet-of-things (NB-IoT) and massive
machine-type communications (mMTC) in the 5G new radio
context. Moreover, the implementation of the FC decom-
position can be extended to cover CP-OFDM scheme in
narrowband scenarios.

APPENDIX A
PROOF OF THE CIRCULAR CONVOLUTION DECOMPOSITION

In this section, it is given the proof of that y[n] in (4) and
(8) are equivalent. Given the DFT responses of both x(l)[n]
and h[n], X (l)[k] and H[k] are expressed with respect to (5a)
and (5b), respectively, as follows:

X (l)[k] =
D−1∑
dx=0

X (l)
[
〈k〉 N

D
, dx

]
Wdxk

N (57a)

H[k] =
D−1∑
dh=0

H
[
〈k〉 N

D
, dh

]
Wdhk

N . (57b)

Here the decimation in time is employed. Subsequently, we
define Y (l)[k, dx, dh] = X (l)

[
〈k〉N/D, dx

]
H

[
〈k〉N/D, dh

]
for

simplicity. As a result, the CC output can be expressed as

y(l)[n] = 1
N

N−1∑
k=0

D−1∑
dh=0

D−1∑
dx=0

Y (l)[k, dx, dh]W (dx+dh−n)k
N , (58)

by substituting (57) in (4). Then, the decimation in frequency
processing (it is here decimation in time because of the use of
inverse transform) polyphase decomposes the output according
to n = Dr + dy and divides the Y (l)[k, dx, dh] into continuous
parts according to k = k ′ + dpN/D where dp is the part
index. Those parts are equivalent because of the periodicity
of Y (l)[k, dx, dh] over N/D, i.e., Y (l)[k ′ + dpN/D, dx, dh] =
Y (l)[k ′, dx, dh]. Thus the output can be rewritten as follows:

y(l)[Dr + dy] =
1
N

D−1∑
dh=0

D−1∑
dx=0


D−1∑
dp=0

W (dx+dh−dy )dp

D


×


N
D −1∑
k′=0

Y (l) [k ′, dx, dh]W
(dx+dh−dy )k′
N W−rk

′
N
D

 . (59)

The sum of complex exponential over dp is solved as

D−1∑
dp=0

W (dx+dh+dy )dp

D =

{
D for dx + dh − dy = aD

0, otherwise,
(60)

where a is integer. Here the equality can be solved in either
following ways:

dh + dx = aD + dy
〈dh + dx〉D = 〈aD + dy〉D
〈dh + dx〉D = dy (61a)

or
dy − dh = dx − aD

〈dy − dh〉D = 〈dx − aD〉D
〈dy − dh〉D = dx . (61b)

Accordingly, a is solved as follows:⌊
dh + dx

D

⌋
=

⌊
a +

dy
D

⌋
⌊

dh + dx

D

⌋
= a (62a)

or ⌈
dh − dy

D

⌉
=

⌈
a − dx

D

⌉
⌈

dh − dy
D

⌉
= a. (62b)

Consequently, we substitute (60) in (59) resulting in the
following

y(l)[Dr + dy] =
D
N

N
D −1∑
k′=0

D−1∑
dh=0

Y (l)
[
k ′, 〈dy − dh〉D, dh

]
×Wak′

N W−rk
′

N
D

, (63)

where y(l)[Dr + dy] is the IDFT of Y (l)[k ′, dy] in (6). The CC
output is then expressed as

y(l)[n] = y(l)
[ ⌊ n

D

⌋
D + 〈n〉D

]
, (64)

where r = bn/Dc and dy = 〈n〉D .
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