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Abstract

We characterize the complexity of interbeat intervals
(IBIs) and field potential durations (FPDs) of human-
induced plurioptent stem cell-derived cardiomyocytes
(hiPSC-CMs). The complexity is assessed using the mul-
tiscale entropy (MSE) method up to the scale of ten beats.
The MSE profiles of healthy and diseased (long-QT syn-
drome) hiPSC-CMs show important differences, which
demonstrate the usefulness of the method in the character-
ization of the cells and in the analysis of hereditary cardiac
diseases. We show that the intrinsic complexity is possibly
altered by the differentiation methods, as well as the age
and mutations of the cells.

1. Introduction

The complexity of heart rate variability (HRV) has been
well established as an important measure in cardiac health,
as it reflects the heart’s ability to adapt to sudden perturba-
tions. Multiscale entropy (MSE) [1] is one of the measures
assessing the complexity of long-range correlated signals.
In HRV studies, MSE curves often have distinguishable
profiles under different conditions, such as age and car-
diac diseases [2]. QT intervals also exhibit spontaneous
beat-to-beat variability, which is useful in monitoring in-
creased risks of fatal ventricular arrhythmias. Only few
studies have quantified QT variability (QTV) using MSE
[3] and related measures, such as sample entropy [4] and
revised MSE [5]. In essence, QT intervals have a MSE
profile distinctly different from those of RR intervals [3].

To the best of our knowledge, entropy-based measures
have not yet been reported for beat rate dynamics at the
cellular level. In this study, we apply the MSE method to
quantify the complexity of field potential signals, gener-
ated by clusters of human-induced pluripotent stem-cell-
derived cardiomyocytes (hiPSC-CMs). For this purpose,
we extract the interbeat intervals (IBIs) and field potential
durations (FPDs) from the field potential. These quanti-
ties correspond to the RR and QT intervals of the electro-
cardiogram (ECG), respectively. The observed effects of

age and differentiation methods of hiPSC-CMs on the IBI
entropies contribute important information for the charac-
terization of the cell aggregates as an in vitro model of a
heart. We demonstrate the ability of the MSE method to
distinguish the diseased state of the cell aggregates, which
is useful in the study of hereditary cardiac diseases mod-
eled by hiPSC-CMs.

2. Data and Methods

2.1. Electrocardiogram data

Raw ECG recordings were obtained from the MIT-BIH
Normal Sinus Rhythm database of PhysioNet [6]. RR and
QT intervals were extracted using the PhysioNet algorithm
[6] and other software [7, 8]. Low quality signals and ec-
topic beats were discarded. The final set of the ECG data
contains 15 RR and QT interval time series of 24 hours
from healthy individuals of 11 women (age from 20 to 45
years) and 4 men (age from 26 to 45 years).

2.2. Cellular data

Healthy control hiPSCs were derived from skin fibrob-
lasts of a 55-year-old female and a 44-year-old male. The
LQT1-specific hiPSCs were derived from a symptomatic
41-year-old female long QT syndrome (LQTS) patient and
an asymptomatic 28-year-old LQT-mutation carrier, both
carrying G589D missense mutation in KCNQ1 [9,10]. The
study was performed under the volunteers’ informed con-
sent and approved by the Ethical Committee of Pirkanmaa
Hospital District (R08070). The hiPSCs were generated
as described in Ref. [11], and cultured and differentiated
with the small molecule (SM) [12] and the mouse visceral
endoderm-like (END2) cell co-culture method, as previ-
ously described in Ref. [10]. The field potential signals
of hiPSC-CMs were measured with a six-well multielec-
trode array. The signals displaying the highest amplitudes,
low signal-to-noise ratios, and clear repolarization phases
were chosen for the analysis. Two parameters that were ex-
tracted were IBIs and FPDs; an IBI is defined as the time
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period between two consecutive depolarization peaks. A
FPD is defined as the time period between the depolar-
ization peak and the end of the repolarization peak. The
extracted IBI and FPD time series have a length of 1000-
3000 beats.

2.3. Multiscale entropy analysis

Entropy-based algorithms measure the degree of reg-
ularity to quantify complexity. The multiscale entropy
(MSE) method overcomes the limitations of traditional
entropy-based algorithms by considering nature of com-
plexity at various scales [2]. The complexity at each scale
is quantified by the sample entropy (SampEn) [13], which
is obtained from a set of time series that are coarse-grained
by scale factors τ . The SampEn values are then plotted
over the scale factors to produce a MSE curve. Due to the
finite length of real-world data, it is not feasible to assign
a single complexity value from the MSE curves, but the
curve profiles can be compared between normalized time
series.

In this study, we use the same MSE parameters as in the
previous studies [2, 3], i.e., the epoch length m = 2 and
tolerance level r = 0.15. For hiPSC-CM aggregates we
apply scale factors 1 ≤ τ ≤ 10.

3. Results and Discussion

3.1. ECG vs. cellular level

For healthy adults, our MSE analysis of RR intervals
(from ECG) in Fig. 1(a) is in line with the previous studies.
In particular, the result resembles the MSE profile (both
the shape and magnitude) of healthy young subjects during
sleep [2]. The MSE of the corresponding QT intervals in
Fig. 1(a) is significantly smaller than that of RR for scales
greater than five (p<0.05 by independent t-test). This re-
flects the deterministic components of the QT variability
(QTV), possibly driven by HRV as a major physiological
source of the QTV in the resting condition. A compara-
ble result has been reported in Ref. [3]. The MSE curve
of the QT intervals consists of two different regimes. At
small scales (<5 in particular), the curve resembles that of
the shuffled QT, indicating highly irregular QTV. At larger
scales (>10), on the other hand, the profile of the curve
is very similar to that of RR. The observation suggests
that similar control mechanisms regulating HRV may be
assumed for QTV at large scales.

The MSE analysis of IBIs and FPDs for healthy hiPSC-
CM aggregates is shown in Fig. 1(b). At small scales (<5),
the entropy values of IBI and FPD decrease monotonically,
forming similar profiles as those of the shuffled series. The
white noise-like irregularity may be due to hiPSC-CMs’
immaturity and divergent expression levels of atrial, nodal,

and ventricular cardiomyocytes [14]. Other factors such as
differentiation techniques, age of the cells, and environ-
mental variations may also introduce erratic variability in
their beat rates. For scales larger than five beats, the IBI has
a constant entropy over the scale, which is a characteristic
for the “fractal” 1/f noise. Even though the entropy values
are lower than those of the shuffled IBI, we expect an over-
turn at a larger scale, as long-range correlated IBIs would
retain a constant entropy value, while uncorrelated shuf-
fled series would have monotonically decreasing entropy
over the scale. On the other hand, the MSE curve of FPDs
closely follows that of the shuffled series over the scales
up to ten beats. The result agrees well with our previous
report [15], in which FPDs of hiPSC-CM aggregates were
observed to have scaling exponents comparable to that of
white noise at relatively small scales (<20 beats).

3.2. hiPSC-CMs by age and differentiation
methods

The age and differentiation methods of hiPSC-CMs are
factors that may affect the cell aggregates’ beat rate dy-
namics. Figure 2 shows the MSE curves for IBI and FPD
data, classified by those factors. The difference between
the MSE curves is pronounced for IBIs. In particular,
the IBI entropies of 26-day-old hiPSC-CM aggregates are
significantly larger than the others (p<0.05 for scales >3
beats). The observation suggests that the complexity of the
IBIs is higher for younger hiPSC-CMs, though no statisti-
cally significant difference is found in the entropy values
between 47- and 70-day-old hiPSC-CMs.

Two older hiPSC-CM groups are differentiated with the
END2 method. Both exhibit monotonically decreasing
MSE profiles at short scales, contrary to that of 26-day-old
hiPSC-CMs, which are differentiated with the SM method.
Therefore, the significant difference in the entropy val-
ues may be due to different differentiation methods of the
hiPSC-CMs. More systematic investigation is required to
determine which factor is more responsible in determining
the MSE profile and entropy values.

On the other hand, FPDs show no significant differences
between different groups. The MSE profile follows that of
the shuffled FPD, as already seen in Fig. 1(b). Therefore,
neither age nor differentiation method affects the dynamics
of FPDs in the defined scale.

3.3. Healthy vs. diseased hiPSC-CMs

The MSE is also evaluated for hiPSC-CMs derived from
type-1 long-QT syndrome patients (LQT1-CMs) carrying
the KCNQ1 (G589D) mutation. Figure 3 shows three cell
groups of (i) healthy wild type (WT) and (ii) symptomatic
and (iii) asymptomatic LQT1 cells. Here we use only
the IBIs as they contain more interesting information than
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Figure 1. MSE analysis of (a) RR and QT intervals of ECGs and (b) IBIs and FPDs of hiPSC-CM aggregates. MSE
analysis of shuffled, i.e., uncorrelated, times series (dashed lines) are included as references.
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Figure 2. MSE curves of (a) IBI and (b) FPD, classified by their cell lines, differentiation methods, and age of the cells.
The MSE curve of shuffled data is added in each plot as a reference. The averages of the curves are shown in Fig. 1 (b).

FPDs in the defined scale regime of fewer than ten beats.
The hiPSC-CMs of all three groups are differentiated with
the END2 method and have comparable ages ranging 30-
45 days. Similar to the MSE profiles of 47- and 70-day-old
hiPSC-CMs in Fig. 2 (a), all three curves in Fig. 3 share a
common feature of monotonically decreasing entropy val-
ues over small scales (<5).

For scales larger than five beats, the entropy of symp-
tomatic LQT1-CMs continues to decrease, while those of
healthy and asymptomatic LQT1-CMs reach constant val-
ues. Thus, the beat rate dynamics of symptomatic LQT1-
CMs seems to be less complex than that of healthy or
asymptomatic LQT1-CMs at scales 5 . . . 10 beats. How-
ever, the MSE of symptomatic LQT1-CMs still contains
a structure that persists over the scale, as it is clearly dif-
ferent from that of uncorrelated noise, represented by the

shuffled series (dashed line in Fig. 3). The result indi-
cates that the intrinsic complexity of the hiPSC-CMs can
be altered by a diseased state of hiPSC-CMs. It is also
in line with our previous study [16], which showed that
symptomatic LQT1-CMs exhibit reduced short-term scal-
ing exponents, while healthy and asymptomatic LQT1-
CMs have scaling exponents close to 1/f noise throughout
the scale.

4. Conclusion

We have characterized the complexity of beat rates and
beat durations of hiPSC-CM aggregates using the MSE
method. While RR-equivalent IBIs exhibit scale-invariant
entropy values, especially for large scales greater than
five consecutive beats, the MSE profiles of QT-equivalent
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Figure 3. MSE analysis of IBIs of healthy, symptomatic
and asymptomatic LQT1-CMs. All hiPSC-CMs are differ-
entiated with the END2 method and aged 30-45 days. The
reference MSE of shuffled data (dashed line) is offset to
the overlap with other curves for easier comparison.

FPDs follow those of uncorrelated noise. This reflects the
irregular nature of FPDs at small scales (<10 beats). We
suggest that the age and differentiation method of hiPSC-
CMs possibly affect the entropy values and profile of IBIs
at short scales, though these factors do not affect the FPD
results. The MSE analysis of healthy and LQT1 cells also
shows that the diseased state of hiPSC-CMs leads to re-
duced complexity at short scales. The result suggests that
the usefulness of the MSE method in studying other hered-
itary cardiac diseases that can be modeled by hiPSC-CMs.
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