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Abstract
The proliferation of processing hardware alternatives allows developers to use various customized computing platforms
to run their applications in an optimal way. However, porting application code on custom hardware requires a lot of
development and porting effort. This paper describes a heterogeneous computational platform (the ALMARVI execution
platform) comprising of multiple communicating processors that allow easy programmability through an interface to
OpenCL. The ALMARVI platform uses processing elements based on both VLIW and Transport Triggered Architectures
(ρ-VEX and TCE cores, respectively). It can be implemented on Zynq devices such as the ZedBoard, and supports OpenCL
by means of the pocl (Portable OpenCL) project and our ALMAIF interface specification. This allows developers to execute
kernels transparently on either processing elements, thereby allowing to optimize execution time with minimal design and
development effort.

Keywords ALMARVI · OpenCL · pocl · TTA · TCE · rVEX · ZYNQ

1 Introduction

Image and video processing is an important enabler for a
large number of application domains ranging from medical
imaging to entertainment. These applications continue
to push the requirements imposed on our computational
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platforms to their technological limits, both by increasing
the demand for higher resolution images to be processed
on the one hand, and by increasing the computational
complexity of newly proposed processing algorithms
on the other. As a result, applications constantly push
beyond the computational capacity that general purpose
computational systems can provide, and demand the design
of high performance processing hardware that is customized
towards the targeted video application.

Various different types of image and video processing
platforms are introduced regularly to match the ever
increasing requirements of the application domain. Each
platform is optimized to specific types of applications,
and focuses on a given set of optimization criteria.
However, creating a customized processing platform is
a long and costly process, both in terms of hardware
design time as well as application porting time to
these platforms. Some platforms provide custom made
accelerators to ensure high performance, but suffer from
long and expensive hardware design time [1]. Other
platforms provide optimized processing cores for easy
programmability, but only ensure performance for the
specific targeted application [2].

In this paper, we present the ALMARVI execution plat-
form which enables both hardware design flexibility as well
as portable software deployment. The hardware architecture
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allows for integrating heterogeneous processing cores each
optimized for their own application, thereby ensuring opti-
mized performance. At the same time, the software stack
allows for portable deployment of applications on each core
based on an OpenCL programming layer [3] that has broad
support in the industry for a whole range of computing
platforms: multicore CPUs and GPUs, in addition to the
upcoming standard of automatic hardware synthesis right
from OpenCL code.

In order to facilitate integration of components (such
as newly developed hardware and licensed processors and
IP blocks) and to connect to cross-compatible OpenCL
compilers, a new common hardware integration interface
(called AlmaIF) was developed. Additionally, we present
details of the implementation and integration of two
heterogeneous acceleration fabrics and show how the same
program implemented and compiled using a single code
base can be executed on a variety of execution platforms.
Software compatibility is provided by adding support for the
AlmaIF interface to the Portable OpenCL environment.

This paper is organized as follows. Section 2 discusses
the background and related work. Section 3 shows how
the AlmaIF abstraction layer is able to virtualize away
the details of the custom processing cores used in this
paper. The design flows of both processors used in the
prototype are discussed in Section 4, along with a detailed
example on how to implement the AlmaIF interface on
a processor. The hardware implementation and software
support for running OpenCL programs on the platform are
discussed in Section 5. We report preliminary numbers of a
case study application running on the ALMARVI execution
platform (an OpenCL implementation of the Sobel filter) in
Section 6. Finally, Section 7 ends with the conclusions.

2 Background & RelatedWork

2.1 Background

Two types of processing units are used in this paper
to showcase heterogeneous integration capabilities of
the ALMARVI execution platform. The first supported
custom processing units that supported by the platform
are based on the Transport Triggered Architectures (TTA)
paradigm [4]. They are generated by the TTA-based
Co-design Environment (TCE), an open-source project
maintained by Tampere University of Technology (TUT)
[5]. These represent cores that are not just customizable
regarding certain design parameters; the entire architecture
of the datapath can be designed from the ground up to
target an application or application domain. This includes
application-specific functional units but also involves
generic units such as register files, Arithmetic Logic Units

(ALU), etc. These units can be configured individually (for
example, register files can have different numbers of access
ports - a highly influential design parameter in processor
design [6]). The connectivity between each of the functional
units is also a design decision. TCE generates a compiler
and simulator for the processor and all of these design-
time configurations can be performed using a graphical user
interface.

The second processor type is the ρ-VEX reconfigurable
VLIW processor, maintained by Delft University of Tech-
nology [7, 8]. The core has a range of design parameters that
can be changed at design-time to target certain application
domains. In addition, it can be reconfigured during run-time
to adapt itself to the workload, making it a highly adaptive
general purpose core [9]. This is realized by 1) design-
ing a flexible connection between the processor’s datapaths
and its program state storage, and subsequently 2) multiply-
ing the state storage so that multiple programs can execute
simultaneously (similar to Simultaneous Multithreading -
SMT [10]). Datapaths can be assigned to program states,
effectively splitting and merging the processor into one or
multiple cores. They can execute a single program at high
performance or multiple programs at high total throughput.
The decision to split can be based on whether an application
has large amounts of Instruction-Level Parallelism (ILP) or
Thread-Level Parallelism (TLP).

In order to integrate these two processing units together
in the same platfrom, we provide the ALMARVI Common
Hardware IP Interface (AlmaIF) to enable plug’n play
style of customization of the hardware platform at the
system level, by allowing adding accelerators to a new
hardware platform design with an easy integration to
the OpenCL-based system software layer. The AlmaIF
interface abstracts away implementation details so that
application development only needs to focus on the OpenCL
implementation. This article gives an overview of the
ALMARVI execution platform used to demonstrate the
capabilities of AlmaIF, which can be used for easily
integrating any hardware component that supports the
interface.

2.2 RelatedWork

A large body of work exists that target FPGA not for
prototyping purposes, but for acceleration. Prior efforts
that implemented FPGA acceleration fabrics include [11],
a project by Microsoft that added FPGAs to a datacenter
running the Bing service. These FPGAs were equipped
with programmable accelerators (softcore processors) that
are highly optimized for the specific application domain.
Other projects using programmable accelerators include
[12] for a FFT workload and [13, 14] in the image
processing application domain. These related efforts do not
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Figure 1 Architecture of the
SoC platform.

use OpenCL and/or heterogeneous accelerators. In [15], an
exploration is performed regarding how much acceleration
can be achieved using accelerators while still retaining
programmability. A Heterogeneous accelerator fabric for
accelerating OpenCV is presented in [16].

Within the area of FPGA accelerators, a current topic
is to support high-level languages such as the one we
are also using in this work, OpenCL. For example, in
[17], Xilinx presents an OpenCL library of streaming
acceleration units, allowing designers to quickly generate
an FPGA acceleration fabric with OpenCL support.
Additionally, Xilinx has introduced SdAccel, a toolset
to generate hardware from OpenCL kernels [18]. An
Altera equivalent is presented in [19]. In [20], a rapid
prototyping framework for video processing using High-
Level Synthesis is presented. RIFFA [21] is an opensource
integration framework that provides an interface to connect
to FPGA accelerators via PCIe. A related industry-effort
aimed towards improving integration of various execution

platforms is the Heterogeneous System Architecture (HSA)
[22].

3 AlmaIF Interface

The targeted system architecture is shown in Fig. 1.
The system has a single AXI interconnect, where each
accelerator is connected as a slave device. A closer view of
one accelerator is shown in Fig. 2a. Accelerators may also
be multi-core as shown in Fig. 2b. Each core has a separate
debug and control interface.

The master can access four memory sections in each
accelerator:

– Control interface (CTRL). Registers used to query basic
information about the accelerator and its status, and to
start and stop execution. Each core in an accelerator has
a separate control interface.

Figure 2 Accelerator architecture for a single core and a multicore system.
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Table 1 Memory address regions.

00 CTRL

01 IMEM

10 DMEM

11 PMEM

– Instruction memory (IMEM). Memory used to store
program code for the accelerator.

– Data memory (DMEM) Memory used to store program
inputs/outputs: in an OpenCL program, this would
correspond to global, local and private memories.

– Parameter memory (PMEM). An additional memory
used to store, e.g., OpenCL command queues.

These are mapped to the accelerator slave’s address space
such that a memory address has a field long enough to store
a byte address into the largest section; followed by two high
bits to select between sections as shown in Table 1. The size
of the AXI IP memory address can be computed as:

addrwidthIP = 2 + max

⎧
⎪⎪⎨

⎪⎪⎩

addrwidthimem

addrwidthdmem

addrwidthpmem

Ncores × addrwidthdebug

The sizes can be queried through the control interface.
For example, the reference TTA design has the following
memory resources:

– 32KB instruction memory (4096 instructions × 8 bytes
per instruction) = 15-bit address

– 32KB data memory = 15-bit address
– 2KB parameter memory = 11-bit address
– Single core with a minimum-size

Resulting in a total address size: 2 + max(8,15,15,11) =
17, and the memory map shown in Table 2. Accesses to
memory locations between sections (e.g. 0x00400) have
undefined behavior. The design rationale here is that given
the base address of the AXI slave, a driver program can
probe memory section sizes from CTRL (which is the first
memory section), and use accelerators with differently sized
memories in a plug-and-play manner.

The device identification part of the CTRL region allows
the software layer to identify what kind of accelerator it
is accessing. This is needed to determine which compiler
backend is needed to compile kernels for the accelerator,
or, in the case of offline compilation, which binary to use.
Accelerators are identified by a device class and a device
ID. The device class specifies the kind of accelerator (for

Table 2 Example memory address regions for a single-core TTA
platform.

0x00000 .. 0x003ff CTRL

0x08000 .. 0x0ffff IMEM

0x10000 .. 0x17fff DMEM

0x18000 .. 0x187ff PMEM

instance, a TTA, a ρ-VEX, etc.), while the device ID should
uniquely identify its configuration (for instance, in the case
of a ρ-VEX, the issue width).

The capability registers contain information about the
size of the memories, the number of cores within the
accelerator (each core has its own copy of the CTRL
region), the supported debug features (single-stepping
and/or hardware breakpoints), and an AlmaIF version
number. The latter allows AlmaIF to be extended later, with
a backwards-compatible software layer.

The status registers supply the software layers with
runtime information, such as whether the accelerator
is running or not, the current program counter, and
performance information. The command registers allow the
software layers to reset the accelerator, to start or stop
execution, to set the start address, and to set breakpoints for
debugging purposes.

The instruction memory holds the kernel binary that the
accelerator should execute. The data memory is intended to
be used for variables local to the accelerator, which may be
initialized by the host, and/or exchange of data between the
accelerator and the host. The parameter memory is intended
to be used as a command queue for the kernel running on
the accelerator.

The CTRL memory region provides an interface accord-
ing to the AlmaIF specification. Support for this interface
has been implemented in the pocl runtime system, so that
any accelerator that conforms to the interface can be used
to run OpenCL kernels via pocl, as will be discussed in
following sections.

One of the key points for the AlmaIF is to provide a
hardware layer that is generic enough for sharing driver
code in the OpenCL implementation layer. A hardware
abstraction such as AlmaIF makes it easier to plug in
different AlmaIF-compliant devices in a compute platform
with only minimal changes to the driver code. This helps
in making the ALMARVI execution platform composable:
as devices share a common control interface, it reduces the
integration effort at multiple levels due to not requiring
device-specific knowledge at the simplest control functions
for verification and execution purposes, for instance. The
pocl runtime that utilizes AlmaIF as a hardware abstraction
layer to control the execution is described in more detail
in [23].
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Figure 3 Example of a TTA datapath organization. The designer can choose the functional units, the number of transport buses (this determines
the number of operations the processor can perform in one clock cycle), and whether or not the output ports of the functional units are connected
to these buses.

4 Components

4.1 Fully Customizable Cores: TCE

Processor customization in TCE is usually conducted
as a hardware-software co-design process. The processor
design is iterated by varying the processor template
parameters defined using the TCE files while adapting the
software to better exploit the features, such as by calling
custom operation intrinsics or enhancing parallelization
opportunities. An example processor design is depicted
in Fig. 3. The co-design process is supported by a set
of tools, as illustrated in Fig. 4. Initially, the designer
has a set of requirements and goals placed to the end
result. It is usual to have a real time requirement as the

primary requirement, given as a maximum run time for the
programs of interest and the secondary goal is to optimize
the processor for low power consumption or minimal chip
area. In some cases, there can be a strict area and/or power
budget which cannot be exceeded, and the goal is to design
as fast processor as possible that still fits below the limit.
The iterative customization process starts with an initial
predesigned architecture. Using a graphical user interface
tool called Processor Designer (ProDe), the designer can
add, modify, and remove processor components. The
connectivity between the components can be customized
manually using the GUI or with an automated optimizer.
Each iteration of the processor is evaluated by compiling
the software of interest to the architecture using TCE’s
re-targetable high-level language compiler and simulating
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Figure 4 TTA accelerator design flow in TCE.
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the resulting parallel assembly code using an architecture
simulator. The simulator statistics give the runtime of
the program and the utilization of the different data-
path components, indicating bottlenecks in the design. The
architecture exploration cycle enables low effort evaluation
of different custom operations. For a completely new
processor operation, the designer describes the operation
simulation behavior in C/C++, estimates its latency in
instruction cycles when implemented in hardware, and adds
the operation to one of the function units in the architecture.
This way it is possible to see the effects of the custom
hardware to the cycle count, before deciding whether to
include it in the design or not. When a design point
fulfilling the requirements has been found, or more accurate
statistics of a design point is needed, the designer uses a
tool called Processor Generator (ProGe), which produces an
RTL implementation of the processor.

4.1.1 Automatic Generation of TTA Accelerators

The main components of TCE that provide substantial
automation to the design flow are:

– Processor Generator (ProGe), which produces an RTL
implementation of the designed processor, and

– Design Space Explorer (explore), which can be used to
perform automated transformations on TTAs.

RTLGeneration— Thanks to the modular TTA template, the
RTL generation is straightforward and reliable; the genera-
tor utility ProGe collects component implementations from
a set of hardware databases (HDBs) and generates the inter-
connection network which connects the units. Instruction
fetch and decoding logic is generated based on the given
processor architecture description file. The designer has to
implement any new function units in VHDL or Verilog and
add them to an HDB. A tool is available to automatically
validate the function unit implementation against its archi-
tecture simulation model. The generated RTL is fed to a
standard third party synthesis and simulation flow. This step
generates more detailed statistics of the processor at hand,
which can again drive the architectural exploration process.
The detailed implementation level statistics map trivially
back to the design actions at the architecture level. For
example, required chip area can be reduced by removing
architecture components. Similarly, adding more pipeline
stages to complex function units, or reducing the connec-
tivity of the interconnection network helps increasing the
maximum clock frequency.

Design Space Exploration— TCE includes a plugin-based
framework for automatic design space exploration. The
framework is built around a design space database (DSDB)
which stores processor configurations: plugins can then be

invoked on a configuration to generate one or more modified
configurations. Plugins are guided by the simulated
performance of the design in benchmark programs, and by
an area and power model characterized on a 130 nm ASIC
technology. Two examples of plugins are GrowMachine
which adds computational resources to the TTA until no
more parallelism can be extracted from the benchmark
programs, and ShrinkMachine which removes as many
resources as possible while honouring a real-time constraint.
The framework includes sufficient functionality to generate
processors from scratch, but in practice a better quality
is currently obtained by hand-crafting the design, while
using the explorer to automate repetitive tasks. Explore has
plugins designed to produce efficient TTA interconnection
networks (ICs) [24]. The IC is particularly tedious to design
by hand, and has a very large design space which poses
difficulties for automated search. The main idea is to start
from an IC topology identical to a conventional VLIW,
and then shrink it through repeated bus merge and register
file port merge operations. The resources to be merged are
chosen by profiling the benchmark workload and generating
a resource utilization covariance matrix: resources with low
covariance are seldom used simultaneously and, therefore,
can be merged without impacting the performance much.
The resulting automated process is shown in Fig. 5.

Figure 5 TTA resource merge flow in TCE.
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Figure 6 Pipeline organization of a default ρ-VEX datapath.

4.1.2 Configuration of TTA Accelerators

A library of components has been built for integrating
TTAs with AXI interfaces, including caches and Load/Store
Units which communicate over AXI. Tasks such as starting
and stopping execution are done through a debug and
control interface, usually accessed through an AXI slave
peripheral. The interface can currently be used to clock
gate an unused accelerator by placing it in a break state;
it would also be straightforward to add further low-power
modes. The interface also supports debug features such as
multiple breakpoints, stepped execution, and examination of
various performance counters and internal state data of the
processor. In order to facilitate testing of ASIC prototypes
with a limited number of IO pins, a JTAG interface wrapper
gives access to memories and control interfaces over a four-
wire interface. See Fig. 6 for the default organization of a
rvex pipeline.

4.2 Adaptable cores: ρ-VEX

The ρ-VEX is a dynamically reconfigurable VLIW pro-
cessor. It is implemented in VHDL and can be synthe-
sized to FPGA targets for prototyping. The reconfigurable
concepts used in the core can also be used in ASIC tech-
nology as they do not require the reconfigurable proper-
ties of the FPGA. The VEX instruction set used in the
processor is created by HP. Its target application domain
is media applications (image/video). The core is design-
time reconfigurable through VHDL generics in a number
of properties: Issue width, functional unit layout, cache
sizes, etc. Run-time reconfigurability can also be disabled
to save chip area. The run-time reconfigurable core can
change its issue width dynamically by splitting the core
into smaller subcores that have their own execution con-
text. This way, the processor aims to run a wide range of

workload types in the most efficient way possible. Single
threaded applications with a high level of parallelism in
the code can run on a large high-performance core, and
multi-threaded applications can run in parallel on smaller
cores.

The core supports a number of execution contexts
that can be assigned to pipeline pairs (lanepairs). Both
properties are design-time reconfigurable. When a single
context is assigned to all lanes, the core runs in the
widest configuration. By assigning different contexts to
the lanepairs, they will each run a separate program (see
Fig. 7). The ρ-VEX uses memory-mapped registers to
control its configuration. Supervisor software can load a
set of programs into the execution contexts, and use the
configuration control registers to select which programs are
being executed and in which configuration. The contexts
contain all information needed to resume execution when
being suspended (for example, when all the lanes are
assigned to another context). This includes all registers,
program counter, trap/interrupt state etc.

The ρ-VEX platform consists of the synthesizable
VHDL designs of the core, cache and a number of
peripherals. On the software side, there is an interface tool
that can connect to the core and provides the user with
extensive debugging capabilities and full control of the
processor. The implementation of support for AlmaIF is
discussed in Section 4.2.2. There are a number of different
compilers that can target the ρ-VEX, there is a port of
binutils and GDB, there is basic Linux support (uCLinux
with a NOMMU kernel), runtime libraries (the uCLibc C
standard library and newlib) and an architectural simulator.

4.2.1 Design-Time Customization

The ρ-VEX processor is both run-time and design-time
configurable. When creating a general-purpose platform
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Figure 7 ρ-VEX datapaths and
program state storage areas
(contexts). In the depicted
configuration, two pairs of
datapaths are assigned to context
2, consequently it is running in
4-issue VLIW mode. The other
two pairs are assigned to task 1
and 4, who are both running in
2-issue mode. Context 3 is
currently disabled. Switching
between configurations can be
done at the cost of a pipeline
flush.

that must be able to provide high performance for single
threads and high throughput for multiple threads, the full
dynamic 8-issue core can be used. However, the area
utilization of this configuration is high. If the workload is
highly parallelizable, a static 2 or 4-issue core configuration
can be used. The area utilization is considerably lower,
and single-thread performance can be sacrificed because
the workload will rely on multithreading to achieve high
performance. The reduction in area allows more core to
be placed on the chip, resulting in higher total throughput.
In addition to design-time configuration of the processors,
multiple ρ-VEX cores can be connected to each other using
local scratchpad memories, preventing the need to access
global memory.

4.2.2 AlmaIF Integration with pocl on ρ-VEX

As an example of how the AlmaIF interface may be
implemented in hardware for an existing accelerator, we
report the implementation for the ρ-VEX processor in more
detail.

The ρ-VEX processor is a VLIW processor, with config-
urable amount of virtual processors, known as contexts. A
control unit known as the reconfiguration controller man-
ages the division of the available computational resources
amongst these contexts. All contexts share a common
instruction memory, and a common data memory. To allow
the processor to be controlled externally, for debugging
or otherwise, a number of control registers are available
through a debug port.

This was mapped to AlmaIF as follows. First, an
additional access port to the instruction and data memories

was added to allow the host processor to access these
through the respective AlmaIF memory regions. As the ρ-
VEX has only one data address space, the AlmaIF parameter
memory region was simply mapped to the ρ-VEX data
memory as well, making the size of the ρ-VEX data
memory the sum of the AlmaIF data and parameter memory
sizes.

The ρ-VEX debug port serves a similar purpose as the
AlmaIF control region. However, the ρ-VEX and AlmaIF
registers do not map one-to-one. Therefore, a translation
unit was constructed that emulates the AlmaIF registers.
In order to still allow the ρ-VEX debug port to be used
natively, it was also mapped to AlmaIF directly, using a
memory region not specified by AlmaIF.

Each ρ-VEX context has its own set of debug registers.
Therefore, each ρ-VEX context is represented as an AlmaIF
core.

5 Implementation

5.1 Hardware

To generate a SoC platform, IPs need to be generated
from the accelerator’s sources that can be used by Vivado
to integrate into a AXI-based project. These steps can be
performed according to the accelerator’s documentation.
Note that for the accelerators that are available at the time
of writing, certain levels of configuration are available
when generating the IPs. The TTAs that are generated
from the TCE (TTA Co-Design Environment) are fully
customizable. A graphical user interface is available to
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accomplish this, see (http://tce.cs.tut.fi/user manual/TCE/)
for more information. The ρ-VEX has a number of design-
time options that are available before generating the IP (by
means of a configuration script), and additional options
that are implemented as VHDL generics that can be set
in Vivado after importing it. The options that are handled
by the configuration script are for example the pipeline
organization and control registers, and the VHDL generics
include issue width, memory/cache sizes and performance
counters.

After adding the desired IP blocks to a Vivado project,
the user needs to assign address spaces according to the
memory regions discussed in Section 3 and customize the
clocking. This should be done considering the configuration
of the accelerators, as this influences the achievable timing
considerably. For instance, a 2-issue ρ-VEX with 7-
stage pipeline and forwarding disabled can be expected
to operate on much higher frequencies compared to
an 8-issue configuration with forwarding and a shorter
pipeline.

5.2 Software

The AlmaIF interface was added as a target in the pocl
runtime system in order to support the execution of OpenCL
programs. This section discusses the way in which this
can be enabled during compilation of the pocl runtime
itself and how programmers can offload tasks to AlmaIF
accelerators.

5.2.1 Compile-Time

The target accelerators need a compiler capable of accepting
OpenCL input to generate a suitable binary. Furthermore,
an OpenCL command queue mechanism must be provided
to have the accelerators check for new work from the
OpenCL runtime. The binary contains a field to identify
the accelerator it was compiled for, so that the runtime can
verify it is loading a proper binary. This field can be used to
include the configuration of the accelerator (e.g., the VLIW
issue width or pipeline latencies) or a hash which is more
appropriate in case of the TTAs that have an enormous
configuration space.

The pocl OpenCL framework was extended with an
AlmaIF target that is able to drive accelerators. After
compiling pocl with the interface enabled, OpenCL
programs can be linked together with the pocl runtime
library.

5.2.2 Run-Time

At run-time, the user needs to pass the location of the
accelerators in the address space. A dedicated Linux

Figure 8 Evaluation setup consisting of a Trenz carrier board with
Xilinx Z0720 SoM and Python 1300 camera on a HDMI I/O board.

device driver that supports bus scanning or other means of
hardware detection is future work. The memory addresses
can be passed to pocl by means of environment variables.
When calling the program, the user needs to supply the
appropriate binaries for the accelerators to allow the runtime
environment to load them into the accelerator’s memories.

Figure 9 Architecture overview of the base platform with the camera
and I/O components and the added accelerators.

http://tce.cs.tut.fi/user_manual/TCE/
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Figure 10 Organization of the TTA processor as used in the prototype.

6 Experiments/Evaluation

We use a standardized FPGA-based platform for develop-
ment and demonstration purposes. This platform consists
of a Zynq ZC7020 based FPGA development board with
an high-quality camera connected, HDMI interfaces and an
FPGA configuration with everything necessary to prototype
real time video/image processing solutions at system level.

6.1 Target platform: Xilinx Zynq

The Xilinx Zynq series of system-on-chip FPGAs consist
of a hard Processing System (PS) with a dualcore Cortex
A9 ARM processor, and a varying amount of Programmable
Logic (PL). The main resources in the PS are:

– Dual-core ARM Cortex-A9
– L2 cache, 512KB
– On-chip memory, 256 KB
– DDR controller
– Miscellaneous peripherals (USB, Ethernet, etc.)

There are various data interfaces between the PS and the PL:

– Two 32-bit general-purpose AXI ports (GP) (PL
Master)

– Two 32-bit general-purpose AXI ports (GP) (PS
Master)

– Four 64-bit high-performance (HP) AXI ports (PL
Master)

– One 64-bit AXI Accelerator Coherency Port (ACP) (PL
Master), accesses the PS cache hierarchy.

The HP and ACP ports give better throughput than GP, so
they should be used for large data transfers. GP ports should
be used for programming accelerators and control traffic.

Using the ACP may simplify programming of the ARM,
but it can be inefficient for very large data transfers that
thrash the cache and this can significantly slow down the
performance of the ARM. The PS is typically clocked at ca.
667 MHz and the practical maximum of PL is in the range
of 100– 150 MHz. Any IO between the PS and PL has some
latency overhead due to the clockdomain crossing (CDC).

We have expanded the prototype FPGA target board, a
Trenz carrier board TE0701-5 with Zynq System onModule
(SoM) TE0720-2-2if, with a Python 1300 camera module
and Avnet FMC IMAGEON HDMI I/O extension board.
The complete hardware setup can be seen in Figs. 8 and 9.
The FPGA part of the platform contains a video chain
running from Python camera input with 1280x1024p60 in
16-bit YUV422 pixel format through a video DMA unit that
stores video frames to DDR memory and reads them back
independently for video output by a HDMI output interface.
The FPGA design of the platform is provided in the form
of a Xilinx Vivado project and supports custom hardware
accelerator extensions. Software support for the platform
is built on Petalinux. The platform contains drivers for its
hardware components located in FPGA fabric and a simple
sobel filter example (implemented as C code for ARM)
demonstrating how to initialize video stream using drivers
and how to use video DMA to process individual frames and
synchronize input and output video streams.

Detailed descriptions and an evaluation version of the
platform is provided by UTIA as a downloadable pack-
age (http://sp.utia.cz/index.php?ids=results&amp;id=apcp).

6.2 Multi-accelerator Prototype

For the integration prototype, an FPGA design is created
with two TCE cores and one 4-issue ρ-VEX core, and

Figure 11 Functional units in
the pipelines of the ρ-VEX as
used in the prototype.

Datapath 0 Datapath 1 Datapath 2 Datapath 3

ALU ALU ALU ALU

MUL MUL MUL MUL

MEM BR MEM BR

http://sp.utia.cz/index.php?ids=results&amp;id=apcp
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Table 3 Area utilization of the various components in the prototype
platform.

Name LUTs Registers BRAM DSP

ρ-VEX core 13052 6818 41 8

TCE core 0 2873 2246 17.5 3

TCE core 1 2898 2247 17.5 3

Python1300 6695 8332 18 12

VDMA 3760 6430 8.5 0

HDMI 993 2344 2.5 0

Others 2989 5341 0 0

Total 33260 33758 105 26

(62%) (32%) (75%) (12%)

another with two ρ-VEX cores. The TCE cores were
clocked at 200 MHz, while the ρ-VEX cores were clocked
at 66 MHz. Any combination of two cores can be chosen
from the application software by using the standard OpenCL
APIs. A Proof-of-concept multi-kernel application software
was written for this platform design instance, based largely
on the Sobel example. An example TCE processor design
was used with two 2-cycle ALUs and a single 3-cycle
32x32b multiplier unit. The configuration can be seen in
Fig. 10. The instruction, data and parameter memories have
64 kB, 32 kB and 2 kB of memory, respectively. In addition,
the core has 4 kB of scratchpad memory. The organization
of the processor is depicted in Fig. 10.

The default ρ-VEX configuration used in the ALMAIF
platform is a 4-issue reconfigurable core that can split
into a 2 core (2-issue). It has 2 hardware contexts (virtual
processors) that can hold a full program state. This way,
the 2 cores can each run a process independently. The core
supports variable-length instruction words to improve the
encoding efficiency of the binary code, which results in
smaller binaries. The data path consists of 4 ALUs, 4 16x32
multiplication units, 2 MEM (Load/Store) and 2 branch
units, depicted in Fig. 11. As discussed earlier, the default
size is 32 kB for instruction, data, and parameter memory.
The memories have 2 access ports. This is needed in order
to provide 1 port per context when running in split 2-issue
mode, but it also supports multiple Load/Store operations

Table 4 Performance of the two available AlmaIF accelerators on the
image processing filters.

Accelerator

Sobel Blur Read Write Sobel Blur

(ms) (ms) (ms) (ms)

TCE TCE 124 146 967 455

TCE ρ-VEX 261 300 967 2899

ρ-VEX TCE 262 301 757 457

ρ-VEX ρ-VEX 399 455 757 2898

when running in merged 4-issue mode. The core has full
debug functionality including 4 hardware breakpoints and a
set of 32-bit performance counters per context. When using
ρ-VEX as accelerator, as is the most common use case in
this platform, these options may be disabled after debugging
and optimizing the application as this will save considerable
resources and improve timing.

FPGA utilization for the 3-core design is shown in
Table 3. The last row shows the total utilization of the FPGA
chip’s resources.

The example application applies a Sobel filter and a
3x3 box blur filter, in that order, to the image acquired
from the camera, and pushes the result to the HDMI
output. The filtering is executed on two AlmaIF devices,
each handling one filter at the time. The host application
handles partitioning the work into smaller segments and
enqueuing kernel execution and the required data transfer
operations in each device’s command queue. The queues are
then executed by the pocl runtime, with data dependencies
between the two queues resolved by event waitlists. An
example of intermediate results and the final result can be
seen in Fig. 12.

Although the prototype was made only for proving
that the integrated hardware and software stack works,
evaluation numbers were produced as a base line for further
optimization. For a 1280-by-1024 image, the runtimes
for the AlmaIF-based ALMARVI platform instance with
different kernels assigned to different device types are
depicted in Table 4.

Figure 12 From left to right: a Original image, b Sobel filter applied c Blur filter applied, and d both filters applied.
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7 Conclusions

The increasing demand for higher performance at lower
energy budgets, combined with the decreasing improve-
ments from technology scaling, leads to increasingly het-
erogeneous systems where tasks are executed on custom-
designed accelerators.

In this context, we implemented an OpenCL platform
capable of utilizing multiple different accelerators together
in a single program. The pocl OpenCL framework is
extended with a target that can drive these accelerators.
Because of the generic accelerator interface, the same pocl
runtime can be used for any current and future accelerator
that adheres to the specification. At run-time, the user can
choose which accelerators to enable and the distribution of
the kernels to the different accelerators. In the future, this
distribution can also be performed by the system based on
various metrics such as task characteristics or the system’s
current power policy.

To the programmer, this fully heterogeneous platform
is fully transparent, by making use of the OpenCL
framework and compiling for the different accelerators
through different compiler back-ends.
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