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Transient load simulation of forwarder rear frame 

Juho Sormunen 

Summary. One difficulty in the design of the load bearing components of mobile machines is 
the transient and non-linear nature of the loads acting on them. A common method for tracking 
these loads is to use strain gauges and force transducers on a physical test machine. An 
alternative method for determining the transient loads by means of a mathematical model that 
intends to describe the response of a John Deere 1010E forwarder as it crosses a test track is 
utilized in this study. The model is based on finite element method and it is solved using explicit 
time integration and LS-DYNA® software. As a result of this study a model capable of 
replicating the real world with a reasonable accuracy was obtained. The forces acting on tires, 
which can be considered the most important results of this work, can be used as boundary 
conditions in consequent analyses, such as fatigue simulation. 
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Introduction 

The purpose of this work is to build a simulation model that is capable of replicating the 
reaction forces measured from physical field test of a John Deere 1010E forwarder 
during June 2015. Simulation will reduce the need for physical testing which in turn 
will speed up the design process and possibly reduce the costs of machine development 
and the time spent on the design phase. 

As forestry machines are driven in rough, constantly altering forest terrains, the 
forces acting on them are difficult to predict without physical testing. These forces 
depend on the stiffness properties of both the machine and the terrain, velocity of the 
machine, total mass of the machine and the geometry of the terrain. Comprehensive 
physical tests are expensive and they are unsuitable for testing new models early in the 
design phase. By using a simulation model that is capable of determining the forces 
exerted from the terrain to the machine and computing the response to these forces in 
desired operation conditions, new designs and effects of geometry modifications in 
them can be easily studied. 

http://rakenteidenmekaniikka.journal.fi/index
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The frames of the forestry machines consist of welded sheet metal parts. Weld 
seams exposed to high stresses are prone to fatigue damage. By using the finite element 
method and the right loading conditions, the optimum design can be found. 

Computational method 

The Finite Element Method (FEM), in general, is a numerical method used for solving 
partial differential equations by discretizing the studied geometry using a finite amount 
of different types of elements [26 p. 2]. FEM is used for complex geometries in 
situations where analytical solutions cannot be found. The method used in this 
simulation uses explicit time integration. The equation of motion to be solved is 

  
[𝑀𝑀]�̈�𝒙 = 𝑭𝑭(𝑡𝑡), (1) 

  
where the load vector is denoted with 𝑭𝑭(𝑡𝑡), nodal acceleration vector (second time 
derivative of nodal displacement 𝒙𝒙) with �̈�𝒙 and mass matrix with [𝑀𝑀]. The load vector 
includes internal, external and damping forces, thus 𝑭𝑭 = 𝑭𝑭(𝒇𝒇, �̇�𝒙,𝒙𝒙, 𝑡𝑡). Equation (1) 
represents the equilibrium equation for d'Alembert’s principle, which states that external 
forces 𝒇𝒇(𝑡𝑡) acting on the domain must be equal to the sum of inertial ([𝑀𝑀]�̈�𝒙), damping 
([𝐶𝐶]�̇�𝒙), and internal forces due to stiffness of the structure. Hourglass forces included in 
the load vector are unphysical and therefore the accumulated energy generated by these 
forces should be as low as possible as the solution proceeds. Due to the displacement 
dependency of internal force vector, Equation (1) is a non-linear ordinary differential 
equation, for which analytical solutions cannot be found and numerical methods must 
be used instead [13 pp. 611-612]. Initial conditions �̈�𝒙0, �̇�𝒙0 and 𝒙𝒙0 are assumed to be 
known. Accelerations can be solved from Equation (1) as 

  
�̈�𝒙𝑡𝑡 = [𝑀𝑀]−1𝑭𝑭(𝑡𝑡). (2) 

  
Now that accelerations at time 𝑡𝑡 are known, the velocities at time 𝑡𝑡+ ∆𝑡𝑡 2⁄  can be 
calculated as 

  
�̇�𝒙𝑡𝑡+∆𝑡𝑡 2⁄ = �̇�𝒙𝑡𝑡−∆𝑡𝑡 2⁄ + �̈�𝒙𝑡𝑡Δ𝑡𝑡𝑡𝑡+∆𝑡𝑡 2⁄ . (3) 

  
And furthermore the nodal displacements 𝒙𝒙 at time 𝑡𝑡 + ∆𝑡𝑡 can be calculated using the 
central difference method employed in explicit time integration as 

  
𝒙𝒙𝑡𝑡+∆𝑡𝑡 = 𝒙𝒙𝑡𝑡 + �̇�𝒙𝑡𝑡+∆𝑡𝑡 2⁄ Δ𝑡𝑡𝑡𝑡+Δt 2⁄ . (4) 

  
This process is repeated until the desired time 𝑡𝑡 is reached. Equations (2)-(4) can be 
solved directly without iteration, hence the term explicit. 

If a lumped mass matrix is used the equation of motion is uncoupled as opposed to 
the equations of implicit dynamics, and therefore the solution time for a single time step 
is smaller in explicit dynamics than it is in implicit. The inversion of a lumped 
(diagonal) matrix reduces to a simple division by a scalar in Equation (2), which is 
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cheap to compute compared to the factorization of a consistent matrix [16 p. 24; 26 p. 
648]. However, due to the conditional stability of the explicit method (considered in the 
next section), the time step to be used is usually much smaller compared to the time step 
used in the implicit method. [2, 8, 9, 13, 16] 

As it was stated, the equations of the explicit time integration method are uncoupled, 
meaning that the results for each element are calculated separately. Therefore during 
one time step, the information from one side of the element can only travel to the other 
side of the element to keep the solution stable. The physical interpretation for this is the 
wave propagation in the structure (or highest natural frequency of the structure). The 
maximum time step ∆𝑡𝑡 that can be used in the analysis to ensure a stable solution is 
limited by Courant-Friedrichs-Lewy (CFL) condition as 
  

∆𝑡𝑡 ≤ 𝑓𝑓 �
ℎ
𝑐𝑐�𝑚𝑚𝑚𝑚𝑚𝑚

, (5) 

  
where 𝑐𝑐 is the speed of sound in the material, 𝑓𝑓 is the time step safety factor used in the 
analysis to increase stability (defaults to 0.9) and ℎ is the characteristic element 
dimension. The CFL condition restricts the wave from traveling more than the 
dimension ℎ in one time step. [2, 5, 8] The element that minimizes condition (5) dictates 
the time step to be used. Speed of sound also depends on stress state and damping 
properties of the material, but crude evaluation of the time step can be made even by 
neglecting their effect. Hexahedral/quad mesh is preferred over tetrahedral/triangular 
mesh to prevent the time step from getting too small while retaining solution accuracy. 
Smallest geometry details are de-featured and simplified to achieve reasonable 
computation times. 

If the mesh contains only few small elements, automatic mass scaling can be used to 
prevent the time step from becoming too small. The speed of sound (elastic speed wave) 
in material is calculated as (for beam element) [13 p. 600] 

  

𝑐𝑐 = �
𝐸𝐸
𝜌𝜌 = �

𝐸𝐸𝐸𝐸
𝑚𝑚 , (6) 

  
where 𝐸𝐸 is the elastic modulus and 𝜌𝜌 the density of the material, 𝐸𝐸 is the volume and 𝑚𝑚 
is the mass of the element.  By substituting (6) to (5), ∆𝑡𝑡 results as 

  

∆𝑡𝑡 ≤ 𝑓𝑓 ��
𝑚𝑚
𝐸𝐸𝐸𝐸ℎ�

𝑚𝑚𝑚𝑚𝑚𝑚
. (7) 

  
As can be seen, the minimum time step is directly proportional to the square root of the 
mass of the element. By scaling the mass of a single element the error in the total mass 
of the structure is small but the benefits from a greater time step might be significant. 
Mass scaling is used in this analysis. 
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Field test 

The test track is located at the John Deere Forestry Tampere facility. The simulated part 
of the test track consists of semicircular bumps that are arranged as shown in Figure 1. 
Bumps are constructed of steel plates with a thickness of 12 mm. 
 

 
 

Figure 1. Bump track general view. Driving direction shown by red arrow. Bumps are numbered 
to be referenced later in the results. 

The machine is fitted with customized wheel hubs that include force transducers. 
The radial force reactions measured in each rear frame tire during the drive around the 
test track with a 12 ton load are shown in Figure 2. The machine crosses the studied 
portion of the test during the first 35 seconds (Figure 3 shows the same results as Figure 
2, but with horizontal axis limited). Another bump track with a different bump 
arrangement is crossed at a time period ranging from approximately 45 to 75 seconds. 
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Figure 2. Rear frame wheel radial reaction forces measured at the test track with 12 ton load. 

The right front (RF, see Figure 4) tire of the rear frame is the first one to hit the 
bump (no. 1 in Figure 1). This is shown as a peak in the reaction force (approximately 
83 kN). The second high peak is the result of left front tire (LF) hitting bump no. 2 
(approximately 89 kN). It can be seen that the forces acting on the rear tires (RR and 
LR) are lower than those acting on the front tires. 

 

 
Figure 3. Results zoomed to crossing of the first bump track. 

RF to bump 1. 

LF to bump 2. 

LF to bump 4. 

RF to bump 3. 
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Figure 4. Notation of tires. 

Model 

The details of modeling for all components in the calculation model are presented in this 
chapter. The justifications for the chosen element types, simplifications compared to the 
physical real life machine and for the material models are also given. Since this is a 
dynamic analysis, it is important that the mass in each component is close to the mass of 
the real life component it represents in order to achieve correct inertial behavior. The 
densities of the simulation model components are modified to match weights to 
measured values shown in Table 1. Mesh and component positions at initial 
configuration are shown in Figure 5. 
 

Table 1. Measured weights of test machine components [23]. 

Part Bogie Boom Front frame Load space Rear frame Tire assembly 

Weight [kg] 1880 2573 8810 1224 1276 356 
 
The time step is set to 2 microseconds. The minimum allowed element dimension 

for each element type using this time step size is calculated based on the material 
properties using Equation (6). Some elements in the vicinity of complex geometry 
details are smaller than the allowed minimum sizes presented in Table 2. Mass scaling 
will be used in these elements. 
 

Table 2. Minimum allowed element dimensions to reach a time step of 2 µs, based on 
Equation (6).  

 E ν ρ  c  Hexahedral 
solid 

Tetrahedral 
solid 

Quad 
shell 

Tri 
shell 

 [GPa] - [kg/m3] [m/s] Minimum allowable element size [mm] 

Steel 200 0.3 7850 5856 13 16 13 15 

Rubber 0.03 0.49 1000 717 2 2 2 2 
Wood 1.08 0.4 596 1971 4 5 4 5 

RR 

RF 

LF 

LR 
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Figure 5. Mesh for the entire simulation model has approximately 151 thousand elements. 

The initial position of the machine is shown. 

Belytschko-Lin-Tsay shell elements are used for modeling the bump track and all 
other steel parts in the structure. The boundary conditions shown in Figure 6 are rigid 
which might lead to overly stiff ground response, but studying the stiffness of the 
ground was beyond the scope of this work. 

Mass damping (LS-DYNA® keyword *DAMPING_PART_MASS [12]) with a 
magnitude resulting as 3 % of the critical damping of the lowest natural frequency of 
the bump track is used in the analysis. 

 

Figure 6. All DOFs are fixed at the highlighted edges (blue) of bump track. The structure 
has RHS tubes as reinforcement at these edges even though they are not visible in Figure 1. 

As the rear frame consists of moderately thin sheet metal plates assembled by 
welding it is suitable to be modeled using shell elements. Some thick plates in the 
vicinity of the rear axle violate the applicability range of the Mindlin-Reissner plate 

L
 

Boom 

Front frame 

Bogie Test track Tires 

Load space 

Mid-joint 

Rear frame 
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theory, which might lead to errors in the results for these parts although no excessive 
deformation is expected in them (see [19]). By using shell elements in all parts they can 
be directly joined together in the nodal level. If solid and shell parts are joined in the 
nodal level, shell rotations are left undetermined since a node of solid element has only 
translational degrees of freedom. To “weld” (to constrain all necessary DOFs) shell and 
solid parts together requires the use of some other constraint method than nodal 
connections (e.g. contacts). Consequently, to keep the model as simple as possible while 
still retaining an acceptable level of accuracy, all parts of the rear frame are meshed 
using the Belytschko-Lin-Tsay shell elements. Since all connecting parts are joined via 
shared nodes, possible reduced stiffness caused by welds with cross-sectional area 
smaller than of the plate’s is ignored, i.e. the welds are assumed to have a stiffness equal 
to the base material. 

It is assumed that the heat from welding does not cause warpage to the plates or any 
residual stresses. No misalignment of the plates during assembly is considered. That is, 
the geometry is assumed to be ideal; as designed. This is expected to have a very small 
influence to the dynamic behavior of the structure. Residuals or imperfections are not 
usually accounted for in these types of analyses [11, 21]. Initial imperfections (wave-
like deformations in plate fields and plate misalignments) affect the buckling resistance 
of the structure, but the loads used in this simulation are assumed to be much lower than 
those resulting to buckling (global loss of load bearing capacity). 

The chosen density for the element grid is a compromise between accuracy, required 
CFL time step, and computation time. The results should approach the continuum 
solution, and therefore mesh independency, as the element size approaches zero. 
However by decreasing element size, the CFL time step also decreases and the total 
number of DOFs for the model increases, both of which increase the total computation 
time. Sufficient element size was studied using undamped modal analysis (using 
explicit analysis to study mesh dependency is evaluated to be computationally too 
expensive). 

Modal analysis solves eigenvalues for linearized form of Equation (1) when 
damping and external force terms equal to zero. These eigenvalues represent the modal 
frequencies (or eigenfrequencies, natural frequencies) of the structure. Modal shape 
vectors can be calculated based on modal frequencies [15]. Modal shape vectors 
describe the shape in which the structure sinusoidally oscillates around its equilibrium 
position. The solver used in calculating the modal solution is ANSYS® Mechanical 
PCG (Preconditioned Conjugate Gradient) Lanczos Eigensolver for which the 
Belytschko-Lin-Tsay shell element is not supported. The SHELL181 element with 
reduced integration is used instead since it is closest to Belytschko-Lin-Tsay within 
elements supported by PCG Lanczos Eigensolver [1]. Modal analysis is conducted with 
different element sizes to obtain eigenfrequencies as a function of element density. The 
results shown in Figure 8 are considered to be mesh independent if eigenfrequencies do 
not change (within a tolerance) with further mesh refinement. If this tolerance is chosen 
to be 3 %, sufficient global element size is 25 mm, resulting to 21 710 elements in the 
model of the rear frame when studying first three non-rigid eigenmodes shown in Figure 
7. The chosen element size is highlighted with red in Figure 8. 
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a) Torsion mode b) 1st bending mode c) 2nd bending mode 

Figure 7. First three non-rigid eigenmodes of rear frame. 

 
Figure 8. Converging behavior of natural modes shown in Figure 7. 

The correct modeling of tire stiffness behavior is critical in this analysis since the 
forwarder does not have a separate suspension system. Tires are therefore a major 
contributor in the total dynamic behavior of the machine. Tire models used in some 
heavy machine simulations [11, 21] have been coarse since the stiffness behavior of the 
machine has been dominated by the suspension system (springs and shock absorbers). 

The tire model used in the simulation of the entire machine is the one that is 
evaluated to have the best accuracy to computational efficiency ratio. This ratio is 
evaluated by simulating a single tire and varying critical parameters. 

The mesh dependency of the results was studied by compressing the tire against a 
rigid wall using different element densities in the model. The results in Table 3 show 
that the deflection is mesh dependent even when using the finest studied mesh (even 
though a converging trend can be observed). The computation time for the fine mesh 
model is more than ten times longer due to the higher number of elements and smaller 
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CFL time step compared to coarse mesh model. Therefore the use of high mesh density 
is not practical. Since the tire cross-section layup details are unknown, they have to be 
modified to iteratively find the correct stiffness for the tire compared to experimental 
results. This allows the use of relative coarse mesh since the artificial stiffness 
introduced by it can be compensated through altering cross-section properties. 
 

Table 3. Results of mesh convergence study. 

Elements in the tire Normalized deflection Change in deflection 

2150 1.00 - 
3780 1.26 26.4 % 
6210 1.42 12.3 % 

8910 1.54 8.5 % 
 
Rubber is used as a matrix material in the composite layup (Figure 10) and it is 

assumed to possess isotropic material properties. Since the material behaves in a non-
linear manner (in the elastic region), simple constitutive relations (e.g. Hooke’s Law) 
cannot represent the stress-strain relation correctly. In addition to this, Hooke’s law is 
numerically incapable of modeling incompressible (𝜈𝜈 = 0.5) materials like rubber. 
Rubber stiffness properties also exhibit strong relation to temperature and strain rate 
which further complicate the implementation of universally correctly behaving material 
model [3, 7]. Despite these non-linearities, studies by Li et al. [11] and Szurgott et al. 
[21] have used a linear material model for rubber due to the fact that hyperelasticity is 
not supported for shell elements with layered composite properties (material properties 
for linear rubber are shown in Table 2). In this study the tire cross sections are modeled 
using shell elements and therefore hyperelastic relations cannot be used. The stiffness 
behavior of the composite layup is dominated by the reinforcements and therefore the 
error caused by the use of a linear model for rubber should not be excessive. 

Because none of the material models discussed above are able to simulate hysteretic 
energy dissipation, some other form of damping must be included to prevent excessive 
non-physical vibrations. Relative damping (LS-DYNA® keyword 
*DAMPING_RELATIVE [12]) is used for this purpose due to its ability in only 
damping vibrations relative to rigid body motions. By using this method the rigid 
motions themselves are not damped which is a necessary property in simulating a 
rolling tire. This method for damping is used in recent analyses by Reid et al. [14] and 
Shiraishi et al. [17]. The rigid body for which the damping will be relative to in each 
tire is the rim. 

A correct damping magnitude for rubber is evaluated to be 5 % of critical damping. 
Relative damping requires two different inputs; the frequency to be damped (FREQ) 
and the fraction of critical damping (CDAMP). The selected frequency is recommended 
to be close to the lowest eigenfrequency [12 p. 1027]. 

Due to material symmetry, only two material constants are needed for isotropic 
materials. For orthotropic material, however, there exist three orthogonal symmetry 
planes, and a total of nine independent material constants need to be defined [10 p. 85]. 
The reinforcement layer in the tire is modeled using an orthotropic linear material 
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model. The stiffness of the reinforcement layer in fiber direction is assumed to be 
dominated by steel wires. In direction perpendicular to the fiber, the stiffness is 
dominated by rubber matrix (the stiffness is set two magnitudes larger in comparison to 
rubber properties in Table 2 to avoid tire stability issues encountered using lower 
stiffness). As this is a 3D analysis, stiffness in direction normal to the laminate surface 
must also be defined. In addition to the elastic moduli, shear moduli must also be 
defined for three main directions as there is no similar connection as for isotropic 
material. The shear moduli for both directions orthogonal to the fiber are assumed to be 
dominated by steel properties and therefore the values to be used are adopted from 
isotropic steel. The shear modulus in the fiber direction is estimated to be dominated by 
isotropic rubber properties. It was observed, however, that setting the modulus equal to 
the shear modulus calculated for linear rubber resulted as excessive shear deformations 
and tire instability. Therefore, instead of choosing the value for rubber, a value of steel 
was also set for the fiber direction. Six Poisson’s ratios for the orthotropic layer need to 
be defined. The major ratios in this case are 𝜈𝜈12, 𝜈𝜈13 and 𝜈𝜈32. The minor ratios 𝜈𝜈21, 𝜈𝜈31 
and 𝜈𝜈23 can be calculated based on major ratios as [10 p. 95]. The most dominant value 
of this layer is 𝐸𝐸1. Other values should not crucially influence the results (other than tire 
stability). The above material properties are summarized in Table 4. 

 
Table 4. Rubber orthotropic properties (𝑬𝑬 and 𝑮𝑮 in GPa). 

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3 𝐺𝐺12 𝐺𝐺23 𝐺𝐺31 𝜈𝜈12 𝜈𝜈13 𝜈𝜈32 
200 0.3 200 77 77 77 0.3 0.3 0.3 

 
To include the effect of pressure change during compression, LS-DYNA® 

*AIRBAG_SIMPLE_PRESSURE_VOLUME (this feature is called airbag for 
historical reasons; it was initially developed for automotive industry to model airbags) 
model is used. This model computes the volume change of the enclosed “airbag” (in this 
case the volume of the tire) which is inversely proportional to the applied pressure [12 
p. 142]. 

The layup of shell elements in the tire cross section consists of a layer of isotropic 
linear elastic and homogeneous rubber with reinforcement layers in different 
orientations as shown in Figure 10 and Table 5. The reinforcement layers are thought to 
be comprised of steel wires surrounded by rubber matrix. It must be emphasized that the 
displayed layup is not necessarily similar to the layup of the real tire; it is rather the 
result of iterative process. 
 

 
Figure 9. Default fiber orientation is tangential to the red line. 
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Figure 10. Layers of tire laminate (layer thicknesses are out of scale for better visualization). 

Table 5. Properties of tire layers. Fiber orientations shown with respect to default orientation 
(Figure 9). 

Layer Material Fiber orientation [˚] Layer thickness [mm] 

A Linear rubber (see page 86) - 15 
B Orthotropic reinforcement (see page 86) 90 0.22 
C Orthotropic reinforcement 0 1.1 

D Orthotropic reinforcement 0 0.22 
 
It was found through preliminary analyses that the under-integrated Belytschko-Lin-

Tsay shell was unstable in modeling the tire, and therefore it cannot be used. A more 
robust fully integrated shell element (LS-DYNA® type 16 [13 pp. 169-173]) is used 
instead. This element is also reported to be used in studies by Barsotti [4] and 
Shokouhfar et al. [18]. Due to full integration, hourglass modes will not be present in 
the tire with the exception of transverse shear modes that will be damped using 
hourglass control type 8 with a coefficient of 0.1 [6; 12 p. 1506]. This method of 
hourglass damping was also used by Barsotti [4]. To further improve stability of 
rotating components, second order objective stress update (based on Jaumann’s stress 
rate) is activated (*CONTROL_ACCURACY keyword flag OSU=1 (Objective Stress 
Updates)) as was also done by Barsotti [4] and Reid et al. [14]. 

A series of static radii results for different compressive forces and inflation pressures 
were obtained from Nokian Tyres [22]. The uncompressed static radius was however 
not provided; it was read from a CAD (Computer Aided Design)-model to be 615 mm. 
Vertical tire deflections shown in Figure 11 with polynomial trend lines are calculated 
based on these static radii. 

To obtain correct cross section properties, an iterative process of comparing the 
simulation results to the measurements [22] and then modifying the cross-section 
properties was conducted. The final results (with optimized layer thicknesses shown in 
Table 5) are shown in Figure 12. The cross section properties are adjusted to obtain 
good agreement with nominal pressure (500 kPa) and moderate loads. The results show 
overly soft behavior with underinflated tire (400 kPa) when compared to the measured 

Layer A 

Layer B 

Layer C 

Layer D 

Layer A 
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results. This might be caused by severe bending moments experienced by tire (support 
from internal pressure is lower) elements connected to the rim. 

 

 
Figure 11. Measured static radii and trend lines crossing at origin. 

 
Figure 12. Comparison of simulation results to measured data show satisfactory agreement. 

Although comparing simulation model results to a dynamic test results (such as the 
cleat test) would have also been important, no data were available for this. The damping 
properties of the tire would have been acquired from dynamic test results. 

The friction coefficients in the contact between tires and the test track (LS-DYNA® 
keyword *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE [12]) vary with 
respect to moisture level and other ambient conditions. Therefore the coefficients are 
only estimates. The friction is calculated for tire-track contact as 

  
𝜇𝜇 = 0.4 + (0.6− 0.4)𝑒𝑒−0 .5�𝒖𝒖𝑓𝑓�, (8) 

  
where 𝒖𝒖𝑓𝑓 is the relative velocity between contacting surfaces. 
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Results 

All results from the simulation are recorded at intervals matching to the sample rate of 
measured quantities. Therefore, the phenomena that have a timescale shorter than this 
are not captured. 

The computing time required to simulate the 12 ton load case (duration 5 seconds) 
was approximately 10 hours using MPP (Massively Parallel Processing) LS-DYNA 
with 20 processor cores at 2.8 GHz. Other load cases were cheaper to compute. 

The simulated and measured results are plotted to same graphs to be compared for 
validation. The radial forces of right hand side tires are also decomposed in vertical 
(normal to ground) and horizontal (parallel to driving direction) components to better 
understand the radial results. 

Immediately it can be seen that the simulated results are more “restless” on high 
frequencies (small short duration oscillations) compared to measured results. This 
suggests that the damping values used on high frequencies should be higher on the 
simulation model. 

As can be noted from Figure 14, the horizontal force peaks on right hand side tires 
(also holds true for left hand side tires) are opposite in sign, meaning that the resultant 
horizontal force of the tire pair, shown in Figure 15 (sum of RF and RR forces), does 
not have oscillations as high as individual tires do. The first horizontal peak at RF tire 
occurs at 𝑡𝑡 ≈ 0.7 𝑠𝑠 . This is, caused by the tire hitting bump no. 1. An opposite reaction 
for this peak with a smaller magnitude can be seen in RR tire. 

The second force peak occurs at 𝑡𝑡 ≈ 2.7 𝑠𝑠, when both right-hand-side tires are at 
bump no. 1 (see Figure 13). These peaks are larger in simulation model than they are in 
reality. It is estimated that this is caused by the constant rotational velocity applied on 
the rims. In the physical machine the tires are not forced to rotate at exactly same 
velocity at all times. The use of a differential and a torque limiter might improve results 
in this area. The friction between the test track and tires also plays an important role in 
the horizontal forces; differences can be explained to some level by a possibly different 
tire grip on field test and simulation. One more possible explanation for the second 
force peak is the stiffness of the fixed boundary condition used for the test track (see 
Figure 6); in reality the ground response might be softer, resulting as lower force peak. 

With the exception of difference between second force peak results, the simulated 
horizontal forces correlate well with the measured values. 

 

 
Figure 13. The right-hand-side tires of the rear frame crossing bump no. 1 at 𝒕𝒕 ≈ 𝟐𝟐. 𝟕𝟕 𝒔𝒔. 
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Figure 14. The horizontal forces of the right-hand-side tires of the rear-frame. 

 
Figure 15. Sum of horizontal forces of right hand side tires (RF and RR in Figure 4). 

Vertical forces shown in Figure 16 also experience a peak force when RF tire 
collides to bump no. 1. The machine rear frame tilts around its longitudal axis as right 
hand side tires cross the bump (1 𝑠𝑠 < 𝑡𝑡 < 2 𝑠𝑠). This tilting causes the rear frame CoG to 
shift towards the left hand side tires. This can be seen as reduced vertical reactions on 
the right hand side. Similarly the reactions increase on the left hand side. A high peak is 
observed at 𝑡𝑡 ≈ 2.7 𝑠𝑠 . It is estimated to be caused by same reasons as the horizontal 
peak (see page 90). 

 

 
Figure 16. The vertical forces of the right-hand-side tires of the rear-frame. 
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Figure 17. RF tire radial reactions. Simulated radial peak force of RF tire hitting bump no. 1 

is 5 % larger than the measured one. 

 
Figure 18. LF tire radial reactions. Simulated radial peak force of LF tire hitting bump no. 2 

is 27 % larger than the measured one. 

Figures 17-18 show the radial reaction forces acting on the tires (see [19] for results 
of all tires). Radial force is the resultant of horizontal and vertical force vectors. The 
correlation is reasonable with the exception of the force peaks discussed earlier. Some 
temporal deviation between simulated and measured force peaks are observed at 𝑡𝑡 >
3 𝑠𝑠. This can be interpreted as the physical machine slowing down since the measured 
peaks occur later than the simulated one. The simulated peak of LF tire hitting bump no. 
2 is higher than the measured value. 

Figure 19 shows the time history of maximum von Mises stresses for the rear frame. 
It can be seen that most of the highest stresses are caused by forces due to weight of the 
cargo. Stress peak is reached just before applying initial velocity (𝑡𝑡 ≈ −0.05 𝑠𝑠). The 
high damping at this phase however dissipates some of the energy and the maximum 
stress decreases to a “quasi-static” state (0.15 𝑠𝑠 < 𝑡𝑡 < 0.45 𝑠𝑠) as the machine rear 
frame is moving on a flat surface. Just before the first impact (rear frame RF tire to 
bump 1, see Figure 3 and Figure 1) the stress level plunges and rises again at impact 
(𝑡𝑡 ≈ 0.7 𝑠𝑠). The stress states of these two points (illustrated in Figure 19) are shown in 
Figure 20. The most critical areas are the load space mounting points and the vicinity of 
the rear axle. 
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Figure 19. Maximum von Mises stress time history of the rear frame. 

 
Figure 20. Von Mises stresses of the rear frame before first impact and at the impact (see 

Figure 19 for notation). 

Summary 

The goal of creating a simulation model capable of replicating the forces measured from 
the physical test was achieved with reasonable accuracy. The simulated tire forces 
correlated well with measured values with only one major deviance at ~2.7 seconds (see 
Figures 14 and 16 for explanation). The correct evaluation of the largest force peaks is 
important since they contribute most to the fatigue life of the machine components. The 
measured and simulated force peak results and their comparison is shown in Table 6. 
For example, the difference between simulated and measured values of RF tire (see 
Figure 4) hitting bump no. 1 (see Figure 1) is approximately 5 % (shown in Figure 17). 
The forces on LF tire, when hitting bump no. 2, are overestimated. 
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Table 6. Comparison of measured and simulated radial force peaks [kN]. 

Force peak Measured Simulated Difference 

RF to bump no. 1 83 87 +5 % 
LF to bump no. 2 89 113 +27 % 

 
The stiffness properties of the tires were found to be a dominant factor in the 

dynamic behavior of the entire machine. Test results for tire dynamic properties were 
unavailable and therefore the validity of the used tire model in terms of dynamic 
properties could not be evaluated. In addition to tire stiffness, the precision of modeling 
the torque transmitted to tires via the power train was found to be a major contributor in 
the resulting tire forces. Tire friction depends on ambient conditions, thus the values of 
friction coefficients have to be more or less “guessed”. A sensitivity analysis (see [19]) 
showed that the magnitudes of the force peaks are sensitive to the used values of friction 
coefficients. 

The stress levels of the rear frame and load space were observed to be governed by 
the forces exerted from the weight of the cargo. The rear frame stresses had larger 
oscillations due to the tire forces compared to the stresses on the load space. Since shell 
elements with coarse discretization were used, the results of local stress concentrations 
are not accurate. 
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