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Deep Learning in Image Cytometry: A Review

Anindya Gupta,1 Philip J. Harrison,2 Håkan Wieslander,1 Nicolas Pielawski,1

Kimmo Kartasalo,3,4 Gabriele Partel,1 Leslie Solorzano,1 Amit Suveer,1

Anna H. Klemm,1,5 Ola Spjuth,2 Ida-Maria Sintorn,1 Carolina Wählby1,5*

� Abstract
Artificial intelligence, deep convolutional neural networks, and deep learning are all
niche terms that are increasingly appearing in scientific presentations as well as in the
general media. In this review, we focus on deep learning and how it is applied to
microscopy image data of cells and tissue samples. Starting with an analogy to neuro-
science, we aim to give the reader an overview of the key concepts of neural networks,
and an understanding of how deep learning differs from more classical approaches for
extracting information from image data. We aim to increase the understanding of
these methods, while highlighting considerations regarding input data requirements,
computational resources, challenges, and limitations. We do not provide a full manual
for applying these methods to your own data, but rather review previously published
articles on deep learning in image cytometry, and guide the readers toward further
reading on specific networks and methods, including new methods not yet applied to
cytometry data. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf

of International Society for Advancement of Cytometry.

� Key terms
biomedical image analysis; cell analysis; convolutional neural networks; deep learning;
image cytometry; microscopy; machine learning

AUTOMATION of microscopy, including sample handling and microscope control,
enables rapid collection of digital image data from cell samples, tissue slides, and cell
cultures grown in multi-well plates, transforming imaging cytometry into one of the
most data-rich scientific disciplines. The first approaches to automated analysis of
microscopy data appeared already in the 1950s, and a wealth of methods for finding
cells and subcellular regions, and designing features that describe phenotypic varia-
tions in response to disease or potential drugs, have been developed over the years
(1,2). These approaches, often combined with conventional machine learning
methods, have been successfully used for many complex biological datasets (3,4).
However, task-specific algorithm optimization and feature engineering is a challeng-
ing and time-consuming task, and often insufficient for dealing with global and local
contextual variations.

Thanks to increased computing power and large amounts of annotated images
of natural scenes, methods based on the ideas about neural network and deep learn-
ing, that have been around for a long time, are finally working in practice and we
now see the fast emergence of approaches to image analysis where the computer
learns the task at hand from examples and automatically exploits the input images
for measurements or decisions. A comparison between conventional and deep learn-
ing workflows is illustrated in Figure 1.

Deep learning relates to fundamental concepts in neuroscience. A neuron is an
electrically excitable cell that receives signals from other neurons, processes the
received information, and transmits electrochemical signals to other neurons (5).
The input signal to a given neuron needs to exceed a certain threshold for the
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neuron to be activated and further transmit a signal. The neu-
rons are interconnected and form a network that collectively
steers brain mechanisms (6).

Inspired by our brain, an artificial neural network is an
abstracted interconnected network, consisting of neurons
(perceptrons) grouped into layers. It consists of an input layer
aggregating the input signals from other connected neurons,
one or many hidden layers of thresholds or weights, and an
output layer for predictions. Each neuron takes the input
from the neurons of the previous layer using various weights
(determined by training) and computes an activation function
(e.g., sigmoid function) to stimulate a non-linear behavior,
which is relayed onto the next layer of neurons. A deep neu-
ral network (DNN) is formed by cascading several such neu-
rons in multiple layers to form a richer hierarchical network
commonly known as a multilayer perceptron (MLP), where
all neurons in the previous layer are densely (or fully) con-
nected to the neurons of succeeding layers (7–10). The neu-
rons within the layers may also be connected to themselves to
enable the solving of more complex problems. However, they
are restricted to input data structured in vector form, which
limits their suitability to images. To overcome this, convolu-
tional neural networks (CNNs) were developed (11), wherein
2D filters (or convolutional kernels) are used to process local
image information in matrix form.

From a biological perspective, a CNN approximately
emulates the primate brain’s visual system (12–14), which
employs a combination of convolutional and pooling layers

(see section on “Overview of Key Concepts” below) before the
dense layers to progressively encode richer representations in
an image (15). Filter weights in “deep” CNNs are updated
iteratively using annotated image examples. Hereafter we
often refer to such methods as “deep learning” for brevity,
though deep learning as such is a broader concept than
CNNs. Deep learning has several advantages over conven-
tional methods. For instance, these techniques directly learn
discriminative representations (or features) from image exam-
ples, and effectively leverage the feature interaction and hier-
archy within the data, resulting in a simplified feature-
extraction and selection process. Additionally, the perfor-
mance of a system based on deep learning can be improved
systematically by training iteratively on a larger number and
variety of examples. Furthermore, a pre-trained model (i.e., a
trained network) from one domain can be adapted through
“fine-tuning” and applied to the same task in a new domain,
given that underlying data distributions of both tasks are sim-
ilar enough. This contrasts to most other learning approaches
where the model needs to be completely re-trained when new
observations are made available.

On the down-side, training a deep neural network from
scratch requires massive amounts of annotated data, or data that
in some way represent the desired output. Furthermore, the net-
work architecture is often complex, making it difficult to inter-
pret the link between the input data and the predictions.

Excellent previous reviews of the broader concepts of
deep learning have been presented for medical image analysis

Figure 1. Overview of conventional versus deep learning workflows. The human in the center provides input in the form of, for example,

parameter tuning and feature engineering in each step of the conventional workflow (black dashed arrows) using annotated data.

Conversely, the deep learning workflow requires only annotated data to optimize features automatically. Annotated data is a key

component of supervised deep learning as illustrated in the example classification workflow. Other example tasks, as discussed in the

text, follow a similar pattern. The example image was provided by the Broad bioimage benchmark collection.
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(16,17), health informatics (18), and microscopy (19). The
focus of this review is to highlight how deep learning is cur-
rently used for image cytometry, including cytology, histopa-
thology, and high-content image-based screening for drug
development and discovery. We aim to describe this very
quickly emerging branch of image cytometry and explain how
it differs from previous “classical” approaches to detect
objects, extract features, and/or classify morphological
changes, and treatment responses at the microscopic level.

We start by defining the key concepts, terms, and vocab-
ulary used in deep learning. We thereafter review the applica-
tion areas of deep learning in image cytometry, and highlight
a series of successful contributions to the field. Then, we dis-
cuss challenges and limitations that are often encountered
when applying deep learning in image cytometry. Finally, we
discuss some of the most recent method developments and
highlight novel techniques that have not yet been used for cell
analysis in microscopy data, but have the potential to advance
the field in the future. As a guide to further reading this
review includes a table with a short summary and links to
256 articles on deep learning in cytometry published prior to
August 31, 2018, categorized based on imaging modality, task,
and biological sample type.

OVERVIEW OF KEY CONCEPTS

Deep learning architectures come in many flavors, and
before going further into the descriptions of deep learning
methods, we explain some key concepts:

Convolution

A convolution can be equivalent to applying a filter ker-
nel to an image, such as a 3×3 mean filter with weight values
set to one. To determine the output pixel values, a mean filter
slides over the input image. For each pixel position, the kernel
weights are multiplied by the pixel values in the correspond-
ing region covered by the kernel, then summed together and
divided by the kernel size. In other words, a convolution is a
specialized type of linear operation that performs two func-
tions: multiplication and addition. To encode the representa-
tions (as illustrated in Fig. 2), an element-wise product
between the weights of the kernel and the receptive field of
the input image data is calculated at each location and
summed to determine the value in the corresponding position
of the feature map (or output image).

Receptive Field

The receptive field (RF) is the extent of the convolution
operation where local information (i.e., neighboring pixels) in
an image sub-region is taken into account. Locally it is simply
the filter size, but in a layered downsampling network it could
also mean the region in the input image from which informa-
tion is propagated.

Activation Function

An activation function is an operation to threshold the
calculated output of a convolution prior to submitting the

signal to the next layer of the network. The choice of activation
functions has a significant implication on the training process
and network performance. Their usage depends on the type of
network and also on the type of layer in which they operate.
Non-linear operations, such as sigmoid or hyperbolic tangent
(tanh) functions, were previously common, but the rectified
linear unit (ReLU, (20)) is currently the mainstream activation
function since it accelerates the convergence of gradient-based
learning and circumvents the problem of vanishing gradients
(discussed below). Softmax (21) activation is usually employed
in the final layer of a CNN-based classifier, where its output is
equivalent to a categorical probability distribution that deter-
mines the class of each input image (or pixel).

Feature Maps

The feature map is the resulting output of the convolu-
tion and activation function operations. The dimensions of
the resulting feature maps are controlled by three user-
defined parameters (often referred to as hyper-parameters):
depth, stride, and zero-padding. These hyper-parameters are
specified before performing any convolution operations. The
depth here corresponds to the number of convolution kernels
(depth is sometimes also used for the total number of layers
in the network). The stride is the number of pixels by which
the kernel shifts over the input image in each step and deter-
mines the overlap between individual output pixels. Zero pad-
ding is used to circumvent the reduction in output image size
produced by convolution operations (by padding the input
image with zeros at the borders).

Pooling

Pooling is an operation to down-sample the output of the
convolutions, similar to binning. The most common pooling
operation is max pooling, which outputs the maximum value in
a local neighborhood of each feature map (as illustrated in
Fig. 3), and discards all the other values. It progressively reduces
the spatial dimensions of the given feature maps, and thus
decreases the number of pixels to process in the next layers of
the network, while maintaining information important for the
task at hand (8). There are several other pooling operations
such as L2-norm pooling and global average pooling (22).

Figure 2. An example of an input image Ι7x7 convolved with a

filter k3x3 with weights of zeros and ones to encode a

representation (feature map). The receptive field is highlighted in

pink and the corresponding output value for the position is

marked in green. [Color figure can be viewed at

wileyonlinelibrary.com]
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Pooling reduces the complexity of the previously encoded rep-
resentations, and can thus be seen as a regularization technique
that combats the problem of overfitting (see below).

Densely (or Fully) Connected Layer

In a densely or fully connected layer each neuron of the
input layer is connected to every neuron in the succeeding layer,
as illustrated in Figure 4a. This combines all representations
encoded from the previous layers. For 2D feature maps this is
done by flattening the maps into a vector, followed by vector–
matrix multiplication. In contrast to the local connection style of
convolutional layers, a fully connected layer follows the same
connectivity as an MLP. Depending on the complexity of the
task, a single or a series of fully connected layers are often added
prior to the final classification output layer.

Learning and Optimization

A process to determine the set of optimal values of train-
able parameters (e.g., kernel weights in convolution layers
and weights in dense layers), as shown in Figure 4b. These
parameters are optimized by minimizing a loss function, such
as cross-entropy loss; thus diminishing the discrepancies
between the predicted outputs and the given annotations. On
a training dataset, the network performance under a particu-
lar set of parameters is computed iteratively by a loss function

through forward propagation, followed by backpropagation.
Backpropagation propagates the loss backward from the out-
put to input layers for computing the gradients of each
parameter with respect to the loss. The parameters are then
updated using gradient descent optimizers (22). The gradient
is a measure of how much the loss changes with respect to
changes in parameter values. This iterative process requires
many steps, and is the main reason why training a deep neu-
ral network requires substantial computational power and
time. Although neuroscientists have long rejected the idea
that learning through backpropagation is occurring in the
human cortex, intriguing possible mechanisms refuting this
rejection have been recently suggested (23,24).

Overfitting and Underfitting

Overfitting occurs when the parameters of a model fit too
closely to the input training data, without capturing the under-
lying distribution, and thus reducing the model’s ability to gen-
eralize to other datasets. Conversely, underfitting is the result
of an excessively simple model which is unable to capture the
underlying distributions of the input data. Both overfitting and
underfitting lead to poor predictions on unseen data. Regulari-
zation techniques, as described below, strive to balance over-
and underfitting, and enable the model to both adequately fit
the training data and generalize well to new data.

Dropout

A regularization technique that reduces the interdependent
learning among the neurons to prevent overfitting. Some neu-
rons are randomly “dropped,” or disconnected from other neu-
rons, at every training iteration, removing their influence on the
optimization of the other neurons. Dropout creates a sparse net-
work composed of several networks—each trained with a subset
of the neurons. This transformation into an ensemble of net-
works hugely decreases the possibility of overfitting, and can
lead to better generalization and increased accuracy (25).

Batch Normalization

A regularization technique that operates between the
layers by continuously taking the output of a particular layer

Figure 3. The sub-sampled output of a max-pooling operation

with a stride of 2 applied on an input image (I). [Color figure can

be viewed at wileyonlinelibrary.com]

Figure 4. Learning process of a DNN. (a) A dense layer with an input layer where all the encoded representations from the previous

layers are fully connected to the next layers. (b) Zoomed-in view of an example neuron showing the forward propagation to compute the

output ȳ, where the non-negative activations are defined using the ReLU. (c) Gradient-decent based optimization of the loss function in a

forward/backward propagation. [Color figure can be viewed at wileyonlinelibrary.com]
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and normalizing it before sending it across to the next layer.
Batch normalization (26) enables the network to learn faster
with better generalized performance. When training with
batch normalization, each feature map computed by a convo-
lution operation is normalized separately over each batch of
samples.

Skip (Residual) Connections

A skip, or residual connection (27), copies and combines
the input of one layer with the output of at least one skipped
convolution layer (or block), as illustrated in Figure 5. With
an increasing number of layers, the performance of a network
may rapidly degrade if the weights become very small during
training (referred to as vanishing gradients, (8)). Skip connec-
tions allow the gradients to flow freely through possibly hun-
dreds of layers, and thus enable the network to learn evenly
across all layers.

Data Augmentation

An approach to overcome the challenges posed by a lim-
ited amount of annotated training data. Augmentation is per-
formed by artificially generating more annotated training
data, typically by mirroring and rotating the original images
(see section on “Data Considerations in Deep Learning”
below).

Transfer Learning

This is the concept of employing a pre-trained network,
which was trained on a large number of samples for a similar
task, for a new task with little annotated image data. For
instance, one can employ transfer learning between imaging
modalities by training a network on phase contrast images
and using it on fluorescence images (28) for cell
segmentation.

DEEP LEARNING METHODS

Before delving into how deep learning is used in image
cytometry, we briefly describe four general types of deep
learning methods.

Convolutional neural networks (CNNs) for segmentation
and classification of images are often used in a supervised
learning setting, meaning that the networks have to be trained
using labeled training samples. The networks are built by
stacking many convolutional and pooling layers, as shown in

Figure 1. The convolution layers encode the discriminative
representations/features, and the pooling layers induce a
degree of scale- and translation- invariance. The earlier layers
typically describe local features that have a small receptive
field representing a small and local region of the input image,
while deeper layers have larger receptive fields, representing
information combined from a larger region in the input
image (29). All convolution kernels scan across the entire
image, meaning that objects need not be at a specific location
to be correctly detected (8,22). Following the final convolu-
tion and/or pooling layer the output is flattened and con-
nected to one or more fully connected layers. The neuron(s)
in the final output layer give the class probability (either of
each input pixel for segmentation or of each input image for
classification).

Recurrent neural networks (RNNs) build memory into
the network by feedback loops, that is, feeding back the out-
put from a neuron as input to itself. The basic RNN consists
of “hidden states” that evolve over time through non-linear
operations on the previous hidden states and the current
inputs. Deep RNNs, that attempt to retain information from
the distant past, can be difficult to train due to vanishing gra-
dients. Various solutions to this problem have been proposed,
such as skip connections across time. Although RNNs are pri-
marily used for one dimensional sequential data they can also
be applied to images, whereby they move across space rather
than across time, and can potentially capture more long dis-
tance interactions than those caught by CNNs (22).

Autoencoders can be used to create a low dimensional
representation or “code,” of high dimensional data, much like
principal components analysis (PCA), but in a nonlinear
manner. An inverse encoder, or “decoder function,” attempts
to reconstruct the input from the learned representation (30).
Multiple hidden layers can be stacked to the encoder and
decoder functions, creating a stacked autoencoder, for learn-
ing more complex nonlinear data compression. The learned
codes can be made more generalizable using sparsity con-
straints, which encourage the model to activate fewer neurons
(31), or by being trained to “denoise” a noise corrupted ver-
sion of the input data (32). For image data the fully connected
encoder layers are replaced by convolutional and pooling
layers, and equivalently the decoder layers by deconvolutional
and unpooling layers (33).

Generative adversarial networks (GANs), are networks
that can generate synthetic/simulated images that closely
mimic the original images (34). In its simplest form a GAN
can be thought of as instigating a zero-sum game between
two networks—a generator and a discriminator. The genera-
tor creates counterfeit data samples which it hopes to “fool”
the discriminator with, while the discriminator attempts to
correctly classify the real and fake samples. Convergence is
reached when the discriminator can no longer differentiate
between real and fake samples. However, convergence is not
always guaranteed and GANs currently require careful archi-
tectural and hyper-parameter choices to ensure stability. Gen-
erative models can be used to create synthetic datasets, for
example, if relatively little annotated data is available (22).

Figure 5. An example of a skip connection, connecting the input

with the output of one convolution block (consisting of a

convolutional layer, a batch normalization layer, and a ReLU

activation function).
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SURVEY OF PUBLISHED ARTICLES ON DEEP LEARNING
FOR IMAGE CYTOMETRY

This review is based on a large number of published arti-
cles selected based on automated searches in Scopus, Medline,
bioRxiv and arXiv, with the search terms “deep learning,”
“convolutional neural networks,” “biomedical images,”
“microscopy,” and “cells” (in several different combinations)
prior to August 31, 2018. We have also included articles from
other application areas in cases where we believe the method-
ological contributions are of significant interest for the field
of image cytometry. We excluded articles where hand-
engineered features were used as the network input, and focus
on end-to-end representation-based learning methods where
pixel data is the only input. The articles can be grouped into
general themes based on tasks (as discussed in the section on
“Deep Learning for Image Cytometry”) and based on applica-
tion areas (as discussed in the section on “Applications of
Deep Learning Methods”). Many of the articles are referred
to in the following text, but we also provide an overview of
the articles in Supporting Information Table S1, and as an
infographic in Figure 6. An interactive version including short
article summaries is accessible at https://anindgupta.github.io/
cyto_review_paper.github.io. The table contains links to each
original article, a brief description of key concepts, and a

categorization of each article based on tasks (P/S/C): image
processing (P), segmentation (S), and classification (C), sam-
ple type (T/CL/SB): tissue (T), cells (CL), and subcellular
structures (SB), and finally modality (FL/BF/EM): fluores-
cence (FL), bright field (BF), and electron microscopy (EM).
The infographic in Figure 6 serves as a guide to help the
reader find articles of interest in relation to a specific task,
sample type, or imaging modality, each number in the
graphic matching with the corresponding reference. The
number of articles in each section can be used to visually
assess the current status of the field in terms of popularity
and applicability. Given a field of interest, the articles in the
corresponding cell of the table become references on the use
of deep learning method for this specific task and some of the
articles present comparisons of different analysis approaches.
It also illustrates the areas of image cytometry where deep
learning has been most actively used so far. Note that refer-
ences to articles not concerned with deep learning for image
cytometry are only listed in the regular reference list.

DEEP LEARNING FOR IMAGE CYTOMETRY

Deep learning can be used for a number of different data
processing and analysis tasks, here grouped into image pro-
cessing, segmentation, classification, and detection.

Figure 6. An infographic as a guide to help the readers find articles of interest in relation to a specific task, sample type, or imaging

modality, each number in the graphic matching with the corresponding reference. An interactive version linking directly to the

source articles can be found at https://anindgupta.github.io/cyto_review_paper.github.io. (138–338) [Color figure can be viewed at

wileyonlinelibrary.com]
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Deep Learning for Image Processing

Pre-processing of microscopy image data is often neces-
sary to compensate for variability in data collection and to
improve downstream analysis. For all of these pre-processing
steps both the inputs and outputs are images.

Autoencoders can differentiate between true signal and
noise, and Su et al. (35) were among the first to exploit them
(using an adaptive dictionary and template) to reduce noise
and reconstruct cell nuclei in histopathological images. Later,
Rivenson et al., (36) presented an adapted U-Net architecture
(an autoencoder with skip connections, see section on “Deep
Learning for Segmentation”) to computationally improve the
resolution of bright field images of tissue samples acquired
with a 40×/0.95NA objective to be adjusted such as to achieve
a resolution that was equivalent to images acquired with a
100×/1.4NA oil immersion objective. Using a similar approach,
Rivenson et al. (37) improved the quality of mobile phone
microscopy data to match that of high quality bench-top
microscopy (with respect to signal-to-noise ratio, stain normal-
ization, aberrations and distortions). Weigert et al. (38) pre-
sented a customized U-Net-based content aware restoration
network, and successfully recovered 3D isotropic resolution in
fluorescence microscopy data. Such high-quality restoration
equates to faster imaging times with less phototoxicity; thus
enabling the imaging and analysis of more sensitive samples.

Recently, Wang et al. (39) employed GANs to improve the
resolution of wide-field fluorescence microscopy images acquired
with a 10×/0.4NA objective and achieved a resolution that is
equivalent to images acquired with a 20×/0.75NA objective. They
also applied their GANs to diffraction-limited confocal images
and achieved a 2.6× increase in resolution, corresponding to the
resolution of stimulated emission depletion microscopy images.
Ouyang et al. (40) combined CNNs and GANs to perform fast
super-resolution reconstruction for localization microscopy using
a limited number of frames and/or wide-field microscopy images.
Nehme et al. (41) employed a fully convolutional encoder-
decoder network to achieve fast super-resolution reconstruction
in single-molecule localization microscopy, without requiring any
prior knowledge of the structure of interest.

Color and intensity variations in hematoxylin and eosin
(H&E) stained tissue samples from different labs, instru-
ments, and imaging sites may influence CNN performance, as
reported by Ciompi et al. (42), and stain normalization prior
to training may be necessary. Janowczyk et al. (43) employed
autoencoders to achieve unsupervised stain normalization
using a novel tissue distribution matching technique for color
standardization. Another way to account for stain variability
is to include stain differences in the training stage—so called
stain or color augmentation. Tellez et al. (44) performed stain
augmentation directly on H&E channels for whole slide mito-
sis detection in Breast Histology, and Arvidsson et al. (45)
implemented color augmentation in the HSV space to gener-
alize CNNs for prostate cancer classification for multiple
imaging sites. Bentaieb et al. (46) performed stain normaliza-
tion by style transfer across datasets using a GAN coupled to
a CNN for end-to-end histopathology image classification
and tissue segmentation.

Deep Learning for Segmentation

Segmentation, meaning to divide an image to its mean-
ingful parts or objects, requires making accurate local predic-
tions while accounting for global context. One of the first
applications of deep learning for segmentation in biomedical
image analysis employed a sliding-window CNN as a pixel
classifier to segment neuronal membranes in patches of elec-
tron microscopy (EM) images (47). This approach involves a
trade-off, whereby smaller patches sacrifice contextual infor-
mation for location accuracy and vice versa. To resolve this,
Ronneberger et al. (48) presented a more elegant network
architecture, referred to as U-Net, which uses contracting
convolving encoder layers (learning global context) skip-
connected to expanding up-sampling decoder layers (learning
high-resolution location). They also performed random elastic
deformations on annotated training data to augment their
small training dataset (as described below in the section on
“Data Considerations in Deep Learning”). The U-Net archi-
tecture achieved excellent results for three different segmenta-
tion tasks: neuronal structures in EM images; Glioblastoma–
astrocytoma U373 cells in phase contrast microscopy images;
and HeLa cells in differential interference contrast (DIC)
microscopy images. Cicek et al. (49) extended U-Net to volu-
metric images with 3D U-Net, which incorporates 3D convo-
lution and pooling operations and is trained using only a
small number of annotated 2D slices.

Sadanandan et al. (28), showed that the dimensions of
U-Net could be reduced by combining raw images with
images pre-filtered with task specific hand engineered filters,
achieving robust segmentation of Escherichia coli and mouse
mammary cells in both phase contrast and fluorescence
images. In another article Sadanandan et al. (50) combined
CNNs and GANs for segmenting spheroid cell clusters in
bright field images. Rather than forcing the GAN to re-create
synthetic images, it was recursively used to improve a set of
manually drawn segmentation masks, achieving performance
gains over a baseline CNN segmentation architecture. Arbelle
et al. (51) presented a GAN-based architecture, named Rib
Cage, for segmenting H1299 cells in fluorescence microscopy
images. They employed a multistream discriminator network
taking three channels as inputs: gray level channel of fluores-
cent images; manually segmented channel of fluorescent
images using the Ilastik software (52); and a concatenation
channel of the former two channels. Training was performed
using a limited amount of annotated examples in a weakly
supervised manner. Their unique discriminator network leads
to improved performance over other tested architectures.

Su et al. (35) achieved improved segmentation perfor-
mance on both brain tumors and lung cancer cell images
using stacked autoencoders. They trained the network using
edge enhanced images, centered on cells detected during an
initial detection stage, and combined them together with
manually annotated cell boundaries. Duggal et al. (53) utilized
a form of generative model known as a deep belief network
(30) for separating touching or overlapping white blood cell
nuclei from leukemia in microscopy images. Recently, Haer-
ing et al. (54) presented a cycle-consistent GAN (Cycle-GAN)
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for segmenting epithelial cell tissue in drosophila embryos.
Their approach circumvents the need for annotated data by
employing two generators, where the second generator trans-
lates the output of the first generator back to the input space.
Despite the fact that the Cycle-GAN is trained without anno-
tated data, it still demonstrated comparable results to U-Net.

Deep Learning for Classification and Detection

DNNs can be used for classifying images, and also to
detect and classify objects within the image. Depending on
the available labeled training data, the images or objects can
be classified into two or more classes. It is important to note
that the confidence in such multi-class predictions may vary
depending on the amount of labeled data for each class.

Object detection requires both classification and localiza-
tion of structures. Localization is usually achieved with
bounding boxes around the objects of interest, where the out-
puts are the spatial coordinates of the object, a minimal width
and height of the bounding box, and the respective object
class. Object detection can be achieved in various ways:
(i) regions of interest can be proposed and classified as object
or background; (ii) CNN generated feature maps can be used
to find bounding boxes; or (iii) networks can be trained end-
to-end to simultaneously propose bounding boxes and classify
objects. The first approach requires a region proposal step
prior to classification (55), as used in the Regional CNN
(RCNN) model (56). This model, however, is relatively slow
as it needs to generate a number of region proposals per
image. For faster performance “faster R-CNN” (57) was pro-
posed, comprising only two networks; one for classification
and one for region detection. Hung et al. (58) used a faster R-
CNN architecture to identify and count malaria infected
blood cells in bright field images and achieved results compa-
rable to human annotations.

Ciresan et al. (59) used a CNN for detecting mitotic cells in
H&E stained breast cancer histology images. In this work, the
small training dataset was augmented using mirroring and rota-
tions. The CNN outputs a probability map, and as a post-
processing step, a smoothing filter suppressed noise before
detecting mitotic events. Similarly, Wang et al. (60) presented a
CNN for classifying neutrophil cells on H&E histology tissue
images to identify active inflammation. They combined the
CNN with a Voronoi diagram of clusters to deal with complex
cellular context. Input data was augmented by horizontal mir-
roring and random cropping. Mao et al. (61) presented a CNN
to classify circulating tumor cells in phase contrast microscopy
images. In an another work, Durant et al. (62) leveraged CNNs
to classify erythrocytes into 10 unique classes. They also per-
formed rotation and mirroring augmentations and achieved a
high degree of accuracy for measuring erythrocyte morphology
profiles. Recently, Fleury et al. (63) presented a light-weight
CNN, MobileNet, to detect and classify blood-borne pathogen
images directly on a smartphone.

An alternative approach to object detection is end-to-
end training for proposing and classifying bounding boxes.
For example, You Only Look Once (YOLO, (64)), does this
by dividing the input image into a rectangular grid and

predicting a confidence score for several bounding boxes in
each grid and the class probabilities for objects inside each
grid. By multiplying the box scores with the class probabili-
ties, one obtains a value per grid-cell that is thresholded to
give the final bounding box predictions. This approach is
comparably fast since it only needs one pass through the net-
work per image. Another related method is the Single Shot
MultiBox detector (65) which utilizes small convolutional fil-
ters for bounding box predictions and extracts feature maps
at different scales for class predictions.

CNNs can also be used for image quality control, dis-
carding poor quality images (e.g., those that are out of focus)
prior to further analysis. Work by Yang et al. (66) exploited
CNNs on synthetically defocused fluorescence images of
DAPI stained nuclei to determine the focus level of image
patches. Wei et al. (67) employed a CNN, pre-trained on
ImageNet data, to classify the focus of bright field and phase
contrast images in numerous z-level classes. They used this
approach to automatically control focus during time-lapse
microscopy.

Transfer Learning and Domain Adaptation

Domain adaptation and transfer learning are two related
deep learning methods for reusing acquired knowledge. In
transfer learning, the features learned by a CNN are reused
for different tasks in a similar domain (68) whereas in
domain adaptation a discriminative model trained in one
domain is applied to the same task in a different domain
(7,69). Both approaches are useful when labeled data are lack-
ing, such as in image cytometry, where manual annotations
are time consuming to make and require a high level of
expertise.

For transfer learning, large annotated datasets, like Ima-
geNet (70), can be used to pre-train state-of-the-art CNNs
such as Resnet (27) and Inception (71). The transferred
parameter values—providing good initial values for gradient
descent—can be fine-tuned to fit the target data (72). Alterna-
tively, the pre-trained parameters in the initial layers can be
frozen—capturing generic image representations—while the
parameters in the final layers can be fine-tuned to the current
task (73). Relative to training from scratch, transfer learning
allows the fitting of deeper networks, using fewer task-specific
annotated images, for improved classification performance
and generalizability.

The reuse of “off-the-shelf” features in domain adapta-
tion was exemplified by Chacon et al. (74) who combined two
U-NET architectures for segmenting mitochondria and syn-
apse EM images. In their case sufficient labeled data was
available for one brain region (source domain) but not for
another (target domain). However, neural network perfor-
mance may also degrade under domain adaptation (75).
CNNs trained on biomedical images, captured under specific
experimental conditions and imaging setups, may have poor
generalizability as a consequence of variability in the acquisi-
tion and staining processes. This is typical for histology appli-
cations. Unsupervised domain adaptation (76) has the
potential to resolve this problem. For instance, Yu et al. (77),
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successfully employed unsupervised domain adaptation for a
pre-trained CNN classifying epithelium-stroma in H&E
images from three independent datasets.

APPLICATIONS OF DEEP LEARNING METHODS

In this section we highlight a number of examples where
deep learning has been used in image cytometry (broadly
defined as extracting measurements from microscopy images
of cells or subcellular structures).

Deep Learning for High-Content Screening

In high-content screening (HCS), cells are systematically
exposed to different perturbants (typically small molecules or
siRNA) with the hypothesis that the perturbations of interest
induce quantifiable changes in cell morphology. Cells are
often labeled with one or more fluorescent stains (such as
fluorescence-labeled antibodies) specifically binding to subcel-
lular components, and imaged by fluorescence microscopy.
Imaging flow cytometry (IFC) combines fluorescence micros-
copy and the high-throughput capabilities of flow cytometry,
simplifying data processing as single cells are imaged, how-
ever at the cost of limited spatial information. HCS and IFC
both generate large amounts of image data from multiple spa-
tially correlated fluorescence channels, making deep learning
a suitable analysis approach (78,79).

In HCS, Dürr et al. (80) successfully used CNNs for phe-
notypic classification of cells treated with different biochemi-
cal compounds. CNNs have also shown good performance
for classifying the subcellular localization of proteins in yeast
cells (81,82). Sommer et al. (83) took an alternative approach
for phenotype classification by employing an autoencoder
trained on negative control samples (as a self-learned feature
extractor). The features extracted from cells exposed to stim-
uli were then clustered to obtain groups of stimuli resulting
in similar abnormal phenotypes. CNNs have also shown
potential in mechanism of action classification directly from
raw image data (82). Kensert et al. (72) and Pawlowski
et al. (73) grouped chemical compounds by applying net-
works pre-trained on ImageNet to the raw images, without
any cell segmentation.

Using data from IFC, Eulenberg et al. (78) trained a
CNN to classify cells into different stages of the cell cycle.
They thereafter extracted the activations in the last layer of
the network, and with non-linear dimensionality reduction
reconstructed the correct temporal progression of the full cell
cycle. Young et al. (84) developed a real-time CNN-based
method to count and identify cells in high-throughput
microscopy-based label-free IFC. However, deep learning in
IFC is still mostly uncharted territory, and the expectations
are high that CNNs will reduce manual tuning, subjective
interpretation, and variation in the analysis of this data (79).

Deep Learning for Cytology and Histopathology

Cytology and histology are two different approaches for
collecting and analyzing samples for diagnostic purposes. In
cytology, individual cells are removed from their tissue

context, for instance in the form of smears (e.g., cervical or
oral). In histology cells are collected either by a needle biopsy
or as a section from a larger tissue sample, such as a tumor
removed from a patient, with preserved contextual tissue-level
information. Both fields rely on similar microscopy modalities
at similar spatial resolutions. Increased adoption of digital
whole slide imaging (WSI), especially in histopathology (85),
but also in cytopathology (86), has provided a wealth of high-
throughput data that can potentially be analyzed with deep
learning. With respect to cervical cancer screening, Zhang
et al. (87) used a CNN based on transfer learning that took
nuclei centered image patches as input and achieved high
classification accuracy for both pap-smears and liquid-based
cytology images. An important aspect in automated screening
systems is accurate segmentation of overlapping cells. Song
et al. (88) proposed a multi-scale CNN to perform an initial
segmentation followed by border refinement to account for
overlapping cells.

In cytology, it is typically sufficient to have receptive
fields large enough to cover individual cells due to the lack of
contextual information. In contrast, in order to capture the
tissue context in a histopathological analysis, one often needs
to consider much larger parts of the sample. This difference,
in terms of scale, is a major technical challenge. The proces-
sing of a WSI, typically containing several gigapixels of data,
is often constrained by limited computer memory. Moreover,
scanning hundreds or even thousands of WSIs (typically
required for training deep networks) is usually infeasible. On
the other hand, a single WSI can contain millions of cells,
and in terms of pixels even moderately sized WSI datasets
contain an order of magnitude more data than the ImageNet
dataset (70). To leverage these properties and to allow effi-
cient processing, most proposed systems rely on patch-based
approaches, where a slide is divided into smaller patches, or
tiles (89–92). Each tile then constitutes a training sample, and
thousands of tiles can be extracted from a single WSI. Com-
putational efficiency can be improved further by sampling
only potentially relevant regions for further analysis (90,93).
The importance of scale is also reflected in the presence of
information at various hierarchical levels within a WSI - cells
in a tissue section are not independent, but are components
of structures such as glands, and these higher level structures
are in many cases crucial for histopathological diagnostics.
Stacked networks, and other types of multi-resolution
approaches, are applied to address this issue (94–96).

The interest in applying image analysis to histopathology
has recently manifested in the organization of several chal-
lenges, such as the detection of metastatic breast cancer from
lymph node biopsies in CAMELYON (89,97), mitosis count-
ing in TUPAC16 (92), HER2 biomarker scoring (98), and
segmentation of colon glands in GlaS (99). All of these chal-
lenges have been dominated by solutions relying on deep
learning.

Deep Learning for Time-Lapse Image Analysis

Time-lapse imaging holds great promise for elucidating
the complex behavior of cells over time (such as proliferation,
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division, differentiation, and migration). To fully utilize this
data, however, it is necessary to both detect and track cells.
Akram et al. (100) presented a joint detection and tracking
framework where first a cell proposal CNN was used to local-
ize cells, followed by a graphical model for connecting cell
proposals between adjacent frames. They used this approach
for HeLa and GOWT1 fluorescence cell images, as well as
glioblastoma–astrocytoma U373 and pancreatic stem cell
phase contrast images. Wang et al. (101) presented a frame-
work combining CNNs and Kalman filters to detect and track
the behavior of angiogenic vessels in phase-contrast image
sequences.

The heterogeneity and randomness in cell dynamics
(in terms of shape, division, and movement) poses challenges
to manually delineating cells over time, thereby constraining
supervised learning based methods. Alternatively, one can
employ unsupervised long-short-term memory (LSTM) net-
works (a variant of RNNs) to exploit image sequences by
storing current information for later use. Phan et al. (102)
presented such a network for detection and classification of
densely packed stem cells undergoing cell division in phase
contrast image sequences. This method performed on a par
with its supervised counterpart and also generalized well to
other image sequences where the cells were in different condi-
tions. Villa et al (103) leveraged a spatiotemporal model,
incorporating convolutional and LSTM networks, for count-
ing myoblastic stem cells cultured in phase-contrast micros-
copy image sequences.

Cells in culture display diverse motility behaviors that
may reflect differences in cell state and function. Kimmel
et al. (104) applied a 3D CNN together with a convolutional
LSTM (capturing the temporal dimension) for motility repre-
sentation. This joint framework provided accurate classifica-
tion of measured motility behaviors for multiple cell types,
including the characteristic behaviors seen in muscle stem cell
differentiation. They also successfully performed the same
task using unsupervised 3D CNN and LSTM based autoenco-
ders, implying that both supervised and unsupervised
approaches can uncover motility differences across a range of
cell types.

When attempting to minimize phototoxicity by apply-
ing low contrast imaging, accurate cell segmentation can
become difficult. The temporal coherence in time-lapse
images, however, can enable CNNs, under such conditions,
to extract sufficient features to segment the entire sequence.
For instance, Wang et al. (105) combined a pre-trained
encoder model and an adapted U-net to reconstruct cell
edges with a high accuracy using paxillin (a cell adhesion
marker) in fluorescence microscopy image sequences. Su
et al. (106) leveraged a convolutional LSTM model to detect
mitotic events of C3H10 mesenchymal and C2C12 myoblas-
tic stem cells in patches of time-lapse phase contrast
microscopy images. Their CNN-LSTM network was trained
end-to-end to simultaneously encode features within each
frame and between frames and detected mitotic events in
sequences of varying length.

CHALLENGES WHEN APPLYING DEEP LEARNING
METHODS

In this section we draw attention to some of the main chal-
lenges when applying deep learning methods in image cytome-
try, specifically those related to data, computational resources
and tools, and interpretability of the modeling outcomes.

Data Considerations in Deep Learning

Deep learning comes with a number of challenges and
limitations. One of the biggest challenges is inadequate data-
sets; one should only use deep neural networks if it is possible
to produce large high quality training datasets. When only
limited training data is available the risk of overfitting is high.
One can artificially augment the training data by generating
new yet correlated examples, where the choice of augmenta-
tion technique is often problem specific. As microscopy data
typically does not have a particular orientation (compared
with natural scenes), generic transformations such as rotation,
mirroring and translation can be employed. This encourages
the model to learn rotation- and translation-invariant fea-
tures, potentially improving generalization (as shown in many
of the articles discussed above). In addition to geometrical
transformations, color augmentation can be performed by
adjusting the intensity values in each color channel (107).
This can make the network more resilient to image-to-image
color variations and improve generalization to data collected
under different imaging settings. The demand for big datasets
when training neural networks can also be reduced by utiliz-
ing transfer learning, as discussed in section on “Transfer
Learning and Domain Adaptation.”

Apart from manual annotations, combinations of specific
stains can help automate training. This was exemplified by
Sadanandan et al. (108), where unstained cells imaged in
bright field were detected after training a network on cells
imaged first in bright field and later using fluorescent labels.
The fluorescence labeling made the cells easier to segment
with standard automated methods, and annotations could
thus be created without manual input.

A common problem for many datasets is class imbalance
(109). In the biomedical domain there is often an abundance of
data on normal cells or tissues, but only a limited amount
representing abnormal cases; if not addressed this can detri-
mentally affect both training and generalization. Data resam-
pling methods provide the simplest approach to compensate for
class imbalance. A balanced distribution can be obtained by
excluding some of the examples from the majority class, or
alternatively by oversampling from the minority class. The main
drawbacks of these alternatives are, respectively, the loss of
potentially useful training data and the risk of overfitting due to
repeated use of rare examples. The latter can be somewhat miti-
gated by applying data augmentation while oversampling.
Instead of random sampling, more advanced sampling and aug-
mentation strategies can be utilized in order to exclude only the
least informative samples. An alternative method is to adjust
the learning algorithm itself by introducing class-dependent cost
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functions and placing higher weight on the minority class.
Another largely unaddressed data problem in image cytometry,
which we discuss further in section “Future Perspectives and
Opportunities,” concerns ground-truth uncertainty (i.e., errors
in the annotations/labels provided by experts).

When exploring novel neural network architectures, it can
be invaluable to first test the methods on a benchmark dataset,
in much the same way as the computer vision community at
large has done with the MNIST dataset (11). Three such collec-
tions of microscopy image datasets are the Broad Bioimage
Benchmark Collection (BBBC, (110)), the Cell Image Library
(CIL-CCDB, (111)), and the CAMELYON dataset (112).

Computational Resources and Available Tools

Rapidly developing high-throughput techniques are now
generating medical image data at an unprecedented rate. The
requirements for the analysis of these data—in terms of large-
scale computational infrastructure—are approaching those of
sequencing data (113), demanding distributed computations
combining multiple CPUs or GPUs. For training deep learning
models GPUs (being optimized to perform matrix algebra
computations in parallel) are ideal, although individually they
have limited memory. Applying deep learning to terabyte-scale
datasets, while fully utilizing the capacity of modern GPUs,
also places high demands on the throughput of disk systems.
However, it is important to point out that these large computa-
tional resources are only required during model training. How-
ever, even if computational power increases in the future, the
demand for what to compute will also increase; networks that
are small and fast and possible to run in “real time” are desir-
able, especially if they are to be incorporated in microscopy
hardware to steer the live image acquisition process.

In terms of software there are many freely available
packages and frameworks for deep learning, with TensorFlow
(114), Caffe (115), Theano (116), Torch/PyTorch (117),
MXNet (118), and Keras (119) currently being the most
widely used. All of these support the use of GPUs and distrib-
uted computations. Serving a trained deep learning model, so
that it is made easily available for others, such as over a net-
work or the internet, is currently not a trivial task. A wide
range of frameworks are now emerging to tackle and simplify
this undertaking, while also offering means to enable repro-
ducible data preprocessing, model training, and deployment.
One such framework with high momentum is KubeFlow
(https://www.kubeflow.org/), which focuses on modeling with
TensorFlow.

Despite the availability of comprehensive software frame-
works and online tutorials, applying deep learning efficiently
demands computational and programming expertise. The
architectures of neural networks are constantly evolving in
terms of layer types, skip connections, activation functions, reg-
ularization methods, and the combinations and orderings of
these. Exploring this ever-growing space requires understand-
ing the effects of these architectural and parameterization
choices, as well as the boundary conditions dictated by avail-
able hardware. Therefore, collaboration across disciplines
engaging cell biologists, image analysis experts and computer

scientists, is currently the most fruitful and preferable approach
for neural network implementation, analysis, and evaluation.

Interpretability of Deep Learning Models

One of the major limitations of deep learning is that the
resulting networks often seem to be “black boxes” due to the
difficulties of understanding what they have learned and on
what basis decisions are made. For very deep networks, this
problem of interpretability is even more acute due to the mul-
titude of non-linear interacting components, with potentially
millions of parameters contributing to a decision. Interpret-
ability of CNNs is thus an important and sought-after prop-
erty for improving their performance, making scientific
discoveries, and for understanding why certain decisions were
given preference over others.

One way for rough comprehension of what the network
“sees” is to visualize encoded representations at specific layers.
For example, finding an image or image patch that maximally
activates a specific neuron. Using image flow cytometry,
Eulenberg et al. (78) demonstrated that some convolutional
kernels had high activation for cell border thickness, others
for internal cell area and others still for cross-channel differ-
ences. Consecutive layers in neural networks tend to extract
features of increasing abstraction. Pärnamaa et al. (81), pre-
sented a CNN to classify fluorescent protein subcellular locali-
zation in yeast cells, and found that the first layers detected
corners, edges and lines; intermediate layers represented com-
binations of these lower-level features; and the deeper levels
were maximally active for the characteristics separating the
cell classes, such as membrane structures and punctate pat-
terns. Similarly, Rajaraman et al. (120) demonstrated that the
highest activations in the deeper layers of their network corre-
sponded to the location of malarial parasites within the cells.

Another popular method for visualizing the encoded
representations is to propagate the final decision backward
through the entire network. Since each layer of the neural
networks has an inverse function (or one that can be approxi-
mated), it is possible to reverse the neural network and feed a
prediction through to generate an image. The generated
image is a saliency map that provides information about
which patterns in the input contributed to the decision (29).

By contrast, one can also explore the effects of purpose-
fully modifying the input data. For instance, with an ablation
study, where areas of the input are systematically removed
(e.g., by convolving the input with an empty square and mon-
itoring the predictions) the importance of a specific feature
on a given decision was explored by Zeiler et al. (29). Using
such a method, Ishaq et al. (121) showed that for distinguish-
ing whole-body zebrafish deformations it was not the visually
apparent bent tail that drove the network’s decision, but
rather the subtler deformations in the head region. The fea-
tures in the last layer of the network, as they come directly
before the classifier, tend to be the most linearly separable
and can thus provide insight into the workings of the net-
work. By reducing the dimensionality of the activation in the
last feature layer to a displayable dimension, one can also
visualize what has been learned. For example, Eulenberg
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et al. (78) showed that their network had learned the cell
cycle phases in chronological order using such a method.

The visualization methods described above can help to link
what the network has learned with the relevant biology. However,
one must note that careless data collection, such as inconsistencies
in capturing positive and negative controls, could result in a net-
work that captures these inconsistencies rather than the sought
after morphological changes in the observed sample.

FUTURE PERSPECTIVES AND OPPORTUNITIES

In this review we have attempted to shed light on the
broad applicability of deep learning methods for image cyto-
metry. The computerized image analysis field is transitioning
from using purely hand-engineered features to more and
more automated neuron-crafted features. CNNs are not
merely impressive feature extractors, they can also be
exploited in other ways, such as for producing filtered or even
super-resolution images. Given the astonishing results of
CNNs on a diverse array of applications, several potential
directions can be drawn for future research. Here we highlight
a handful of these; for a more in-depth coverage see “Oppor-
tunities and obstacles for deep learning in biology and medi-
cine” by Ching et al. (122).

Image captioning, whereby a CNN extracts features from
an image which an RNN proceeds to translate into a descrip-
tive sentence (123), could potentially aid image cytometry by
giving a more comprehensive understanding of what has been
learned. Visual question answering (VQA) algorithms, that
learn to answer text-based questions about images (124), may
deepen this understanding. Given the unique characteristics
of microscopy images, it remains an open challenge to apply
such systems in this field (19). Modeling methods that com-
bine diagnostic reports and images are likely to improve such
systems (125).

Applying the techniques discussed in this review in clini-
cal practice will reduce costs and workload of pathologists,
for example, by allowing automated exclusion of benign slides
while maintaining high sensitivity for detecting malignancies
(93), and will reduce subjectivity and variability in diagnostics
(85). In addition to aiding decision making, deep learning can
be utilized for tasks that are extremely difficult for human
experts, such as integrating multiple sources of information,
like genomics and histopathological images to discover new
biomarkers (126).

In the future we will see more and larger datasets that
cannot be stored in a single location, for example, due to pri-
vacy and regulatory or practical reasons such as the sheer size
of the data. Federated learning (127) enables training a global
model over multiple sources while sharing only non-sensitive
data. One example application is making predictions over his-
topathological data residing in different hospitals.

A key hurdle for widespread clinical adoption of deep
learning is the lack of standards to validate image analysis
methods (85). Reliable validation also requires orders of mag-
nitude more data. Even the CAMELYON dataset (112), which
is one of the largest publicly available resources of annotated

digital pathology images, may not transfer to the real life sce-
nario in the clinic because of the huge variance in real-world
samples (70). A tremendous time investment is required from
experts to create pixel-level annotations for model evaluation.
Weakly supervised methods that rely on slide-level labels (70)
and automated annotation approaches based on immunohis-
tochemistry (107,128) could alleviate this issue and pave the
way for more rigorous validation of deep learning algorithms
on larger patient populations.

For medical image data, however, there often exists a
high degree of uncertainty in the annotated labels (129).
Accounting for this as well as other forms of uncertainty
(such as model and parameter uncertainty), will be invaluable.
Deep learning methods that assign confidence to predictions
will also be better received by clinicians. Perhaps the simplest
means of doing this, as proposed by Gal et al. (130), is to use
dropout between all the network layers and run the model
multiple times during testing, which results in an approxi-
mate Bayesian posterior. Another option is to estimate the
uncertainty within the model itself, as was done by Xie
et al. (131) in their “Deep voting” approach. Alternatively,
one can use a method known as conformal prediction (132)
which works atop machine learning algorithms to enable
assessments of uncertainty and reliability, and can be readily
applied to deep learning applications at no additional cost
(133). Perhaps the most promising means of accounting for
uncertainty will come with the fusion of Bayesian modeling
and deep learning, thus permitting the incorporation of
parameter, model and observational uncertainty in a natural
probabilistic manner. Approximate Bayesian inference, based
on variational inference (134), is currently the preferred
method for Bayesian deep learning, although it is based on
rather limited distributional assumptions and is prone to
underestimating uncertainty. The recently proposed Bayesian
hyper-networks of Krueger et al. (135), combining Bayesian
methods, deep learning and generative modeling ideas, pro-
vide one means of overcoming the uncertainty underestima-
tion problem.

Deep learning methods that more closely mimic human
vision - combining active and intelligent task-specific search-
ing of the visual field, with a high resolution point of focus
and a lower resolution surrounding (e.g., by combining rein-
forcement learning, RNNs and CNNs)—will likely bring sub-
stantial improvements to cytometry image data analysis and
to computer vision more generally (8).

As a final note, we believe there is still much to be
gained by combining hand-engineered features, designed by
domain experts, and neuron-crafted representations, discov-
ered by the neural network (28,59). Furthermore, when
extracting accurate morphological features in cytometry the
cell shapes and sizes need to be preserved even in the pres-
ence of clustering and background clutter (136). Providing
the deep learning approaches with such size and shape infor-
mation directly results in more robust inference. Going even
further and equipping the DNNs with “intuitive physics”
(137)—such as rules governing the types of trajectories that a
cell may take in a given medium—will likely both diminish
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the amount of data required to train the models and yield
more grounded results.
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