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ARTICLE INFO ABSTRACT

Genetic circuits change the status quo of cellular processes when their protein numbers cross thresholds. We
investigate the regulation of RNA and protein threshold crossing propensities in Escherichia coli. From in vivo
single RNA time-lapse microscopy data from multiple promoters, mutants, induction schemes and media, we
study the asymmetry and tailedness (quantified by the skewness and kurtosis, respectively) of the distributions of
time intervals between transcription events. We find that higher thresholds can be reached by increasing the
skewness and kurtosis, which is shown to be achievable without affecting mean and coefficient of variation, by
regulating the rate-limiting steps in transcription initiation. Also, they propagate to the skewness and kurtosis of
the distributions of protein expression levels in cell populations. The results suggest that the asymmetry and
tailedness of RNA and protein numbers in cell populations, by controlling the propensity for threshold crossing,
and due to being sequence dependent and subject to regulation, may be key regulatory variables of decision-
making processes in E. coli.
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1. Introduction

The gene regulatory networks of bacteria, such as Escherichia coli,
include network motifs [1,2]. Some of these are responsible for deci-
sion-making processes that assist cells in adapting to environmental
changes [3,4]. Significant behavioural changes in these motifs usually
occur when the numbers of one or more of the component proteins
cross thresholds [3]. The underlying mechanisms that define the pro-
pensity for the protein numbers of a given gene to cross a specific
threshold are not yet fully understood.

In E. coli, it is common for the protein numbers to follow the cor-
responding RNA numbers [5,6]. These are determined by the rates of
RNA production and degradation. Interestingly, RNA degradation in E.
coli appears to be largely independent from the RNA sequence, abun-
dance and metabolic function [7-9], suggesting that little regulation
occurs at this stage. Meanwhile, various regulatory mechanisms of
transcription have been identified, which usually act at the stage of
initiation, suggesting that control over the RNA numbers is exerted at
this stage [10-12].

From the dynamics point of view, the regulation of transcription
initiation kinetics occurs via the tuning of the time-length of the rate-
limiting steps of initiation, respectively, the events prior and after
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committing to open complex formation [13-17]. In particular, recent
studies [14,16-18] have shown that, under full induction, the in vivo
kinetics of these rate-limiting steps, along with supercoiling buildups
[19], define, to a great extent, the distribution of time intervals between
consecutive RNA production events (here referred to as ‘At distribu-
tion’). Further, it was shown that not only the first moment (mean), but
also the second moment of this distribution (variance) can be tuned by
the kinetics of these steps [16,18].

Given this, we hypothesise that, by tuning the kinetics of these rate-
limiting steps, one can also tune the third and fourth moments of the At
distribution (respectively, the skewness and kurtosis). Further, we hy-
pothesise that these two moments can be tuned independently from the
mean and coefficient of variation. To test these hypotheses, we perform
in vivo time-lapse microscopy employing single-RNA detection by MS2-
GFP tagging [20-22], from which we extract the At distributions for
various promoters, media, induction schemes, growth phases, mutants
and a stress condition. Next, for each condition, we estimate their
mean, coefficient of variation, skewness and kurtosis. Subsequently, we
estimate the kinetics of the rate-limiting steps in each condition and
assess their influence on the skewness and kurtosis. Finally, to test
whether changing the skewness and kurtosis of the At distribution has
functional consequences, we measure the corresponding values of the
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Fig. 1. Schematic representation of the steps for the analysis of the dynamics of RNA production in individual cells, from in vivo single-RNA, single-cell mea-
surements. (A) Example confocal microscopy images over time of a cell expressing MS2-GFP and the target RNAs. (B) Segmentation of a cell and the MS2-GFP tagged
RNA spots within (white lines). (C) Scaled RNA spots intensity over time (grey circles) of the example cell, along with the best-fitting monotonic piecewise-constant
curve (black line) from which At intervals are estimated. (D) The distribution of time intervals between consecutive RNA production events in individual cells (At)
from which mean (M), coefficient of variation (CV), skewness (S) and kurtosis (K) are extracted. (E) Model of transcription initiation. The first box contains the
reactions occurring before commitment to open complex formation, with their mean time-length denoted as 7yio. The second box contains the reactions occurring
after commitment to open complex formation, with their mean time-length equals t.¢e. For a detailed description of these reactions and parameters see
Supplementary materials and methods, Section 1.6. (F) Western blot image of the RNA polymerase (RNAP) subunit in different media richness. (G) Relative inverse
transcription rate of the target gene, measured by qPCR. (H) Relative t plot (Lineweaver-Burk plot [25] of the inverse of the RNA production rate versus the inverse
of the RNAP concentration, [RNAP]) for estimating T, relative to M. (I) S and K versus Tpyrjor and T, in different conditions.

skewness and kurtosis of the distributions of single-cell protein ex-
pression levels.

2. Materials and methods

Fig. 1 informs on the models and methods used. In short, the main
empirical data (At distributions) are obtained by measuring when each
RNA appears in each cell. Also, we measure the average intracellular
RNAP concentration. From these concentrations and the corresponding
mean of the At distribution in each condition, we estimate the time
spent in transcription initiation prior and after commitment to open
complex formation (Tpror and Tager, respectively, with their sum
equalling At) (model in Fig. 1E).

In summary, we first estimate t,io/M from t plots [23]. For this,
the inverse of the RNA production rate relative to the control (as
measured by qPCR) is plotted against the inverse of the RNAP con-
centration relative to the control (as measured by Western blot, Sup-
plementary materials and methods, Section 1.4). Next, a line is fitted to
the data. The point where this line intersects the Y axis equals the ex-
trapolated value of the inverse of the transcription rate for an ‘infinite’
RNAP concentration. As such it should equal Tage/M, according to the
model in Fig. 1E. From this and the value of M, one can calculate T,fe,
and T,0r (Supplementary materials and methods, Section 1.5). Next,
from the same At distributions, we extract the coefficient of variation,
skewness and kurtosis in each condition.

Note that, although genes replicate during the cells lifetime by a
process that is not absent of noise and many variables control when
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each specific gene is replicated [24], we assume that the rate constants
controlling the kinetics of RNA production of our gene of interest
(Fig. 1E), which is on a single-copy F-plasmid, do not change sig-
nificantly during the lifetime of the cells. To validate this assumption
we compared the distributions of time intervals (between consecutive
RNA production events) that started and ended in the first half of the
lifetime with intervals that started and ended in the second half (Sup-
plementary results, Section 2.1). From the comparisons of these dis-
tributions in each condition (Table 1) we conclude that the assumption
is sufficiently accurate.

2.1. Bacterial strains, plasmids, growth conditions, MS2-GFP tagging
system, induction of the reporter and target genes, and measurement
conditions

The E. coli strain used was DH5a-PRO (identical to DH5aZ1) [26]
whose genotype is: deoR, endAl, gyrA96, hsdR17(rK— mK+), recAl,
relAl, supE44, thi-1, A(lacZYA-argF)U169, ®808lacZAM15, F-, A-,
PN25/tetR, Placlq/lacl and SpR. This strain produces, from the chro-
mosome and in abundance, the necessary regulatory proteins for their
constructs, namely, Lacl, AraC and TetR [26]. E.g. Lacl, the main re-
pressor of the control promoter (Pj,c/ara1), €Xists in a concentration
much higher than the wild type (~3000 copies vs ~20 in wild type
[26]). These characteristics allow tight regulation of both target and
reporter genes, ensuring that the observed RNAs are due to active
transcription and not the result of transcription leakiness (i.e. in the
absence of activation). In particular, we measured leaky expression of
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Description of conditions. Shown are the name by which the condition is identified, the target plasmid and corresponding inducer, the reporter plasmid and

corresponding inducer, and the media.

Conditions Target promoter Target inducers Reporter promoter Reporter inducer Growth media
LA Plac/ara-1 1 mM IPTG + 1% ara Plteto1 100 ng aTc 1x

LA(75) Plac/ara-1 1mM IPTG + 1% ara Plieto1 100 ng aTc 0.75%

LA(50) Piac/ara-1 1mM IPTG + 1% ara Prieto1 100 ng aTc 0.5x

LA(ara) Plac/ara-1 1% ara Piteto-1 100 ng aTc 1x

LA(IPTG) Plac/ara-1 1mM IPTG Piteto-1 100 ng aTc 1x

LA(oxi) Plac/ara-1 1mM IPTG + 1% ara Prieto-1 100 ng aTc 1x + 0.6 mM H,0,
Mutl Plac/ara1 (Mut-1) 1 mM IPTG + 1% ara Prieto1 100 ng aTc 1x

Mut2 Plac/ara1 (Mut-2) 1 mM IPTG + 1% ara Plieto-1 100 ng aTc 1x

Mut3 Plac/ara1 (Mut-3) 1mM IPTG + 1% ara Prieto-1 100 ng aTc 1x

Mut4 Plac/ara1 (Mut-4) 1 mM IPTG + 1% ara Prieto1 100 ng aTc 1x

tetA Preta - Plac 1mM IPTG 1x

tetA(st) Piea - Plac 1 mM IPTG Stationary phase
BAD Ppap 0.1% ara Plac 1mM IPTG 1x

BAD(st) Psap 0.1% ara Plac 1 mM IPTG Stationary phase

Plac/ara-1, in the absence of IPTG and arabinose, and found only ~5% or
less cells with an MS2-GFP tagged RNA, 2 h after inducing the reporter
expressing MS2-GFP.

We also use BW25113, whose genotype is F-, DE(araD-araB)567,
lacZ4787(del)::rrnB-3, LAM-, rph-1, DE(rhaD-rhaB)568, hsdR514,
which expresses Lacl and AraC from the genotype. The absence of TetR
allows the Tet promoter to express constitutively.

All cells carry two plasmids: a multi-copy reporter plasmid coding
for MS2-GFP under the control of an inducible promoter and a single-
copy F-based target plasmid coding for the transcript with multiple
MS2-GFP binding sites under the control of another promoter (Table 1).
Also, in all target plasmids, we inserted a sequence coding for a red
fluorescent protein, between the target promoter and MS2 binding sites.
Promoter sequences are specified in Supplementary Fig. S1. Tagged
RNAs can be visualized as fluorescent spots [14,20-23] (Fig. 1A).

In general, to observe RNAs tagged by MS2-GFP proteins, cells were
grown overnight in LB media with the respective antibiotics at 30 °C in
an orbital shaker with aeration of 250 rpm. From the overnight culture,
cells were diluted using fresh LB media (unless stated otherwise in
Table 1) to an initial ODggg of 0.05 (measured with a spectro-
photometer, Ultrospec 10; GE Healthcare) and incubated at 37 °C at
250 rpm to allow growth until reaching an ODggo of 0.25. In general,
the reporter gene was induced 1 h prior to the target gene, to allow for
sufficient MS2-GFP proteins to be produced prior to the appearance of
the target RNAs. For a detailed description, see Supplementary mate-
rials and methods, Section 1.1. Inducers of target and reporter genes are
described in Table 1.

The MS2-GFP RNA tagging technique, proposed in [27], is at pre-
sent the only direct method to measure time intervals between RNA
production events in live, individual cells [14,16,21,22]. This is pos-
sible because, first, once appearing, each tagged RNA spot exhibits ‘full’
fluorescence (assuming 1 min interval between microscopy images)
[22]. This removes uncertainty in the process of RNA counting as it
reduces the possibility for ‘partially fluorescent RNAs’. This uncertainty
is further reduced in that, once tagged, the fluorescence of the spots
remains near constant for longer than our measurement time (2h or
more) [22]. This provides significant reliability to the quantification of
the time-length of intervals between consecutive RNA production
events [21].

MS2-GFP tagging affects the spatial organization of the RNAs inside
the cell [28]. However, this does not affect the precision of quantifi-
cation of the intervals between consecutive RNA production events,
which are based solely on the total intensity of the MS2-GFP tagged
RNAs in a cell, not on their location.

To assess whether this technique has a negative impact on cell
physiology, we compared cell growth rates and morphology with and
without activating the expression of the MS2-GFP reporter.

Supplementary results in Section 2.2 show that growth rates and cell
morphology are not significantly affected by expression of MS2-GFP, in
agreement with previous studies [14,23].

Finally, it is also reasonable to assume that MS2-GFP tagging could
affect the protein expression levels of the target gene, due to partially
interfering with the target RNA (albeit in a different region from the
one coding for the red fluorescent protein). We tested this by comparing
protein expression levels when and when not activating the expression
on MS2-GFP (Supplementary results, Section 2.3). The results confirm
that the expression levels of the red fluorescent protein are not per-
turbed significantly by MS2-GFP tagging (Fig. S9).

Meanwhile, to measure the single cell distributions of RNAP con-
centration, we used E. coli RL1314 strain with fluorescently tagged p'
subunits (a kind gift from Robert Landick, University of Wisconsin-
Madison) [29]. From the overnight culture, we diluted the cells to an
ODggp of 0.1 in various media richness (Materials and methods) and
allowed them to grow to an ODggq of 0.5 at 37 °C at 250 rpm. Cells were
then pelleted by centrifugation and visualized under the microscope.

The plasmids (Table 1) construction and transformation were per-
formed using standard molecular cloning techniques [30]. To construct
Plac/ara.1-mCherry-48 binding sites (bs) mutants, we used a plasmid
carrying mCherry followed by a 48bs array in the pBELO vector back-
bone, originally constructed in [31]. To obtain the mutant promoters
(Supplementary Fig. S1), we synthesized new promoter sequences of
Plac/ara-1 With specific point mutants with support from Gene Script,
USA. Next, we inserted them into the pBELO vector backbone by Gibson
Assembly [32], to obtain a single copy F-based plasmid carrying the
target region Pj,c/ara.1-mCherry-48bs mutants. This product was trans-
ferred into competent E. coli host cells. The recombinants were selected
by antibiotic screening and confirmed with sequence analysis. It is
noted that the mutant promoters were selected solely based on that
their At distributions differed from the one of P, ara1-

2.2. Chemicals

The chemical components of LB media are Tryptone, Yeast extract
and NaCl, purchased from LabM (Topley House, Bury, Lancashire, UK).
The antibiotics used are Kanamycin 34 pg/ml, Ampicillin 50 pg/ml and
Chloramphenicol 35 pg/ml, purchased from Sigma-Aldrich (St. Louis,
MO). The inducers used are isopropyl B-D-1-thiogalactopyranoside
(IPTG), anhydrotetracycline (aTc) and arabinose (ara), purchased from
Sigma-Aldrich. Agarose (Sigma-Aldrich) was used for preparing the
microscope gel pads. For PCR, Phusion high-fidelity polymerase and
other PCR reagents were purchased from Finnzymes (Finland). Qiagen
kits (USA) were used for plasmid isolation. For qPCR, cells were treated
with RNA protect bacteria reagent (Qiagen, USA). iScript Reverse
Transcription Supermix for c¢DNA synthesis and iQ SYBR green
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supermix for qPCR were purchased from Biorad (USA).
2.3. Growth media

In all experiments, we used the LB media and its altered versions,
first described in [14]. Namely, we used the following media compo-
sitions per 100ml: 1g tryptone, 0.5g yeast extract and 1g NaCl
(pH 7.0), referred to as ‘1 x’ (Table 1); 0.75 g tryptone, 0.375 g yeast
extract and 1g NaCl (pH7.0), referred to as ‘0.75x’; 0.5g tryptone,
0.25 g yeast extract and 1 g NaCl (pH 7.0), referred to as ‘0.5x’; 0.25 g
tryptone, 0.125g yeast extract and 1 g NaCl (pH?7.0), referred to as
‘0.25 x’. These four media are used to attain various mean intracellular
RNA polymerase concentrations ([RNAP]) in cell populations, while not
affecting normal cell physiology and morphology [14,16,23] (Supple-
mentary Fig. S2A). Additionally, in two conditions, as in [23], we used
the stationary phase media obtained by centrifuging the overnight
culture of LB media at 10000 rpm for 10 min followed by filtration [23]
(growth rates shown in Supplementary Fig. S2B).

2.4. qPCR measurements

Cells with target plasmids were harvested by centrifuging them at
8000 x g for 5min. To the pelleted cells, twice the amount of RNA
protect reagent (Qiagen) was added, followed by the enzymatic lysis
with Tris EDTA lysozyme buffer (pH 8.0). Total RNA was isolated using
RNeasy kit (Qiagen) according to the kit instructions. The concentration
of RNA was quantified using the Nanovue plus spectrophotometer (GE
Healthcare). The RNA samples were treated with DNase to remove the
residual DNA, followed by cDNA synthesis, using the iSCRIPT reverse
transcription super mix. The cDNA samples were mixed with the gQPCR
master mix containing iQ SYBR Green Supermix (Biorad) with primers
for the target and reference genes. The reaction was carried out in
triplicates with the total reaction volume of 20 ul. For quantifying the
target gene we used following primers: for mRFP1 (Forward: 5" TACG
ACGCCGAGGTCAAG 3’ and Reverse: 5° TTGTGGGAGGTGATGTCCA
3"), for mCherry (Forward: 5° CACCTACAAGGCCAAGAAGC 3’ Reverse:
5" TGGTGTAGTCCTCGTTGTGG 3). For the reference gene, 16S RNA
primers (Forward: 5° CGTCAGCTCGTGTTGTGAA 3’ and Reverse: 5’
GGACCGCTGGCAACAAAG 3’) were used. The qPCR experiments were
performed by a MiniOpticon Real- time PCR system (Biorad). The fol-
lowing conditions were used during the reaction: 40 cycles of 95 °C for
10s, 52°C for 30 s and 72 °C for 30 s for each cDNA replicate. We used
no-RT controls and no-template controls to crosscheck non-specific
signals and contamination. PCR efficiencies of these reactions were >
95%. The data from CFX Manager TM Software was used to calculate
the relative gene expression and its standard error [33].

2.5. Microscopy

Measurements of integer-valued numbers of RNAs or of the mo-
ments when a new RNA appears in individual cells were conducted
using microscopy. For this, a few pl of cells carrying the induced re-
porter and target plasmids were placed between a coverslip and agarose
gel pad (2.5%), with the respective inducers and antibiotics. Next, an
FCS2 chamber (Bioptechs) was heated to 37 °C and placed under the
microscope. Cells were visualized using a Nikon Eclipse (Ti-E, Nikon)
inverted microscope, equipped with a 100 x Apo TIRF (1.49 NA, oil)
objective. Confocal images were obtained by a C2+ (Nikon) confocal
laser-scanning system. For measuring GFP fluorescence (to visualize
MS2-GFP ‘spots’ or RNAP-GFP), we used a 488 nm laser (Melles-Griot)
and an emission filter (HQ514/30, Nikon). For time series, confocal
images were taken every 1min for 2h. Previous studies [14] have
shown that these microscopy settings do not cause significant photo-
toxicity in this strain. Finally, phase-contrast images were obtained si-
multaneously, with an external phase-contrast system and CCD camera
(DS-Fi2, Nikon), every 5 min. Images were extracted using Nikon Nis-
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Elements software.
2.6. Image and data analysis

Microscopy images were analysed using the software ‘CellAging’
[34]. For details see Supplementary materials and methods, Section 1.2.
From these analysed time-lapse images, we extracted intervals between
consecutive RNA production events in individual cells, from which
empirical distributions of these intervals (At distributions) were ob-
tained (Fig. 1A-D). Data analysis was conducted using tailored algo-
rithms implemented in MATLAB R2017b (MathWorks).

2.7. Flow cytometry

Measurements of protein expression levels were conducted using
flow cytometry (FC). For this, cells from 5ml of bacterial culture were
diluted 1:10,000 into 1 ml PBS vortexed for 10s. We performed mea-
surements under various conditions. In each condition, a total of 50,000
cells were observed. Measurements were performed using an ACEA
NovoCyte Flow Cytometer (ACEA Biosciences Inc., San Diego, USA)
with a yellow laser (561 nm) for excitation and the PE-Texas Red
(mCherry) fluorescence detection channel (615/20 nm filter) for emis-
sion, at a flow rate of 14 ul/min and a core diameter of 7.7 pM. The PMT
voltage of 584 was used for mCherry. To avoid background signal from
particles smaller than bacteria, the detection threshold was set to 5000
in FSC-H analyses.

We applied unsupervised gating [35] (implemented in Python 3.6)
to the flow cytometry data. We set the fraction of the cells whose data is
used in the analysis (o) to 0.9, as it was sufficient to remove data points
produced by debris, cell doublets and other undesired events. Reducing
a further did not change the results qualitatively.

3. Results

3.1. Mean, coefficient of variation, skewness and kurtosis of the
distributions of time intervals between consecutive RNA productions in
individual cells differ with promoter sequence, regulatory factors and growth
conditions

First, we obtained empirical data on the At distributions in 14
conditions (see Table 1 for details). These conditions were selected so as
to test if the promoter sequence (conditions LA, Mut1, Mut2, Mut3, and
Mut4, see Supplementary Fig. S1), regulatory factors such as RNAP and
inducer concentrations (conditions LA, LA(75), LA(50), LA(ara),
LA(IPTG)), and variables associated to the environment (e.g. media and
stress) affect the skewness and kurtosis of the At distribution.

Results are shown in Supplementary Fig. S3. From these distribu-
tions, we estimated their mean (M), coefficient of variation (CV),
skewness (S) and kurtosis (K) (Supplementary materials and methods,
Section 1.3). The data was produced from at least 3 repeats per con-
dition. Since no significant differences were found between repeats, the
data for each condition were merged. Noteworthy, all target genes used
have identical sequences upstream and downstream of the promoter
region (Materials and methods). Also, as noted above, as they are in-
tegrated into single-copy F-plasmids, not anchored to the membrane,
they are not expected to be significantly influenced by transcription
halting due to positive supercoiling buildup [19,36].

From Fig. 2A, M and CV differ between conditions. S and K also
differ between conditions, but do so following a similar trend to one
another. Importantly, changes in S and K seem uncorrelated with the
values of M and CV. These results suggest that altering the promoter
sequence and/or the active regulation allows altering M, CV and S in-
dependently.

Observing only subsets of this data, we find it to be in accordance
with the model considered (Fig. 1E). E.g., consider the conditions LA,
LA(75) and LA(50), which differ only in [RNAP] [14]. In these, as
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Fig. 2. Skewness (S) and kurtosis (K) affect the probability of crossing upper-bound thresholds in the time length of the intervals between consecutive RNA
production events in individual cells (At). (A) Mean (M), coefficient of variation (CV), S and K of the distribution of At intervals (~600 cells per condition). S and K
vary independently from M and CV. Error bars denote SEM. (B) Pairwise differences (A) in M, CV, S and K between conditions (blue dots). The red diamond is the
difference between LA(IPTG) and Mut1 conditions that illustrates how changes in S and K can be independent from changes in M and CV. (C and D) Percentage of At
intervals (black dots) that are longer than a given threshold (from 2M to 6 M) against (C) CV and S, and (D) CV and K. Also shown is the natural neighbour

interpolation surface.

[RNAP] decreases, M increases and CV decreases. Meanwhile, S and K
decrease (weakly) as [RNAP] decreases. This change is weak enough so
that, as shown in the next section, the only significant difference in S is
between the two extreme conditions, LA and LA(50), and differences in
K are not statistically significant (Supplementary Table S1).

Mutations in P, ara.1 (Supplementary Fig. S1) also cause significant
behavioural changes. Namely, M, CV and S differ between the mutants
independently from each other, and only changes in S and K appear to
be correlated. The same is observed when considering only the induc-
tion schemes of Piac/ara1 (LA, LA(ara) and LA(IPTG) conditions).
Oxidative stress also affects M, CV, S and K significantly, when com-
pared to the control. Further, comparing the three promoters tested
here (Piac/ara-1> Preta @and Ppap), again M, CV and S differ in an in-
dependent way, and only the differences between conditions in S and K
exhibit a similar trend.

Finally, comparing P.s and Pgap in the exponential and stationary
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growth phases (Supplementary Fig. S2A,B), we find that both differ
significantly in M, S and K with the growth phase. This agrees with the
findings in [23], which reported that the kinetics of rate-limiting steps
in transcription changes with 0°® numbers (even in o”°-dependent
promoters). Interestingly, the differences in M, CV, S and K between
growth phases are, qualitatively, the same in both promoters, sup-
porting that they have the same cause.

We also tested whether the differences in M, CV, S and K between
conditions could be explained by differences between the distributions
of cell lifetimes or between the distributions of intracellular RNAP
concentrations. The results of this test indicate that the features of the
At distribution cannot be explained by the features of either these dis-
tributions (Supplementary results, Section 2.4; Supplementary Figs.
S4A and S5).
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Pearson's correlation coefficient r (with the corresponding two-tailed p-value) for all conditions, for the subset ‘Mutants’, where only the promoter sequence differs
between conditions, and for the subset ‘Regulatory factors’, where only the inducers or RNA polymerase concentrations differ between conditions. For p-va-

lues < 0.05, the null hypothesis that there is no correlation is rejected.

M vs CV Mvs S Myvs K CVyvsS CV vs K SvsK
All conditions —0.44 (0.12) —0.19 (0.52) —0.08 (0.80) 0.01 (0.98) —0.10 (0.73) 0.94 (< 0.001)
Mutants —0.12 (0.85) —0.64 (0.24) —0.56 (0.32) 0.27 (0.66) 0.07 (0.91) 0.96 (< 0.01)
Regulatory factors —0.47 (0.43) —0.24 (0.70) 0.02 (0.98) —0.17 (0.79) —0.54 (0.34) 0.91 (0.03)

3.2. Promoter sequence and regulatory factors suffice to alter skewness and
kurtosis of RNA production kinetics independently from its mean and
coefficient of variation

To determine whether changes in M, CV, S and K between condi-
tions are uncorrelated in a statistical sense, we first calculated linear
correlations between each pair of these features when considering all
14 conditions (Fig. 2A). Results in Table 2 show no significant corre-
lation between all pairs, except between S and K. The result holds also
when applying the Bonferroni-Holm correction for multiple compar-
isons (the corrected p-value in the case of S and K is < 0.001). Tests for
non-linear correlations (Kendall's and Spearman's rank correlation
coefficients) give the same qualitative results. While this could be due
to the lack of significant changes in M and CV, results in Fig. 2A reject
this hypothesis. We thus conclude that all features can differ between
conditions in an uncorrelated way, aside from S and K.

We also performed pairwise comparisons of M, CV, S and K between
each pair of the 14 conditions. The results (Supplementary Table S1)
show statistically significant differences between many pairs of condi-
tions, indicating that all features differ widely between conditions. In
detail, one observes that it is possible to alter S and K significantly,
while CV is kept unchanged (e.g. between LA(IPTG) and Mutl).
Similarly, the same is possible keeping M unchanged (e.g. between
LA(50) and tetA).

Next, we quantified the degree with which each feature can differ
between conditions while another feature is kept constant. In Fig. 2B we
show all pairwise differences in M, CV, S and K between conditions. In
all cases, we find that a feature can differ widely while the others re-
main mostly unchanged, except between S and K.

Finally, we investigated how S and K change as a function of the
promoter sequence and the regulatory factors. For this, we considered
two subsets of the data above. The first subset (‘Mutants’) includes the
original Pjac/ara.1 promoter (LA) and the 4 mutants, specifically 1 single-
point mutant (Mut1) and 3 three-point mutants (Mut2, Mut3 and Mut4)
(Supplementary Fig. S1). The second subset (‘Regulatory factors’) in-
cludes the control (LA), two conditions with different [RNAP] (LA(75)
and LA(50)) and two induction schemes (LA(IPTG) and LA(ara)). From
Table 2, we conclude that changes in S (and K), due to point mutations
and/or due to altering the concentrations of the regulatory factors, are
not correlated to the changes in CV and M.

As before, for both subsets, we tested whether the differences in M,
CV, S and K between conditions could be explained by differences be-
tween the distributions of cell lifetimes. Again, the results showed that
the features of the cell lifetimes distributions cannot explain the fea-
tures of the At distribution (Supplementary results, Section 2.4;
Supplementary Fig. S4B,C).

3.3. Increasing the skewness and kurtosis of RNA production kinetics
enhances the probability of crossing upper bound thresholds in intervals
between consecutive RNA production events

Stochastic models of gene expression assuming transcription in-
itiation as a two-step process predict that changing these steps' kinetics
can alter the noise in RNA production without changing the mean rate
of RNA production [37]. If the intrinsic noise in transcription changes,
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so will the probability of crossing thresholds based on RNA numbers.
Here we quantify this noise by the CV of the At distribution [17,18],
because this distribution is not affected by noise in RNA degradation.

If this noise was symmetric around the mean of the At distribution,
the CV would suffice to estimate the probability of threshold crossing.
However, recent results [16,17] suggest that it can be significantly
asymmetric. As such, a more accurate estimation of threshold crossing
probabilities in RNA numbers requires calculating S and K of the At
distribution.

To test whether S and K differ significantly between the conditions
(Supplementary materials and methods, Section 1.3), we first obtained,
for each condition, the fraction of individual At intervals that are longer
than a given threshold. We considered the thresholds 2M, 3M, 4 M, 5M
and 6M, to eliminate influences by the value of M. Results in
Supplementary Table S2 indicate that the fraction of intervals that cross
a specific threshold differ between conditions, particularly for higher
thresholds.

Next, to determine whether it is CV or S (and K) that is responsible
for the differences in threshold crossing probabilities between condi-
tions, we plotted the percentage of intervals in each condition that
crossed each threshold against CV and S. We also calculated the natural
neighbour interpolation surfaces (using MATLAB R2017b function
scatteredInterpolant [38]).

Results in Fig. 2C show that for the lower thresholds (2 M and 3 M),
varying S does not alter significantly the chance of threshold crossing,
while changing CV does. For higher thresholds (4 M and 5M), both S
and CV are relevant. For the highest threshold (6 M), the relevance of S
further increases. Equivalent conclusions are reached when considering
K instead of S (Fig. 2D).

Overall, tuning S and K of the At distribution allows altering sig-
nificantly the probability of crossing upper-bound thresholds in At va-
lues and, thus, of crossing lower-bound thresholds of RNA numbers in
individual cells.

3.4. Skewness and kurtosis of RNA production kinetics can be tuned by the
rate-limiting steps in transcription initiation

Previous studies have established that CV can be tuned by changing
the kinetics of the rate-limiting steps in transcription initiation
[14,16,17]. In particular, for example, changing the average time spent
in the events prior (tprior) and after (Taper) cOmmitment to open com-
plex formation without changing M, allows tuning noise in RNA pro-
duction without affecting the rate of this production [16]. We hy-
pothesised that S and K could be similarly regulated.

To test this, for each condition, we first estimated the mean fraction
of time spent in the events prior to commitment to open complex for-
mation (Tprior/M) from t plots (Materials and methods, paragraphs
1-2). Namely, we plotted the inverse of the relative RNA production
rate, as measured by qPCR, against the inverse of the relative RNAP
concentration, as measured by Western blot (Supplementary materials
and methods, Section 1.4). Then, we fitted a line to the data from which
we obtain Tpo/M (Fig. 3A and Supplementary Table S3). Finally, from
this and the value of M (Fig. 2A), we obtained the absolute values of
Tprior aNd Taser for each condition (Supplementary Table S3).

Cells in the stationary phase (conditions tetA(st) and BAD(st)) are
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Fig. 3. Skewness (S) and kurtosis (K) of the distribution of intervals between consecutive RNA production events in individual cells change linearly with the fraction
of time spent in events prior to commitment to the open complex formation (tyror). (A) Relative t plots. Transcription rates are measured by qPCR, and RNA
polymerase (RNAP) levels are measured by Western blot (Supplementary Fig. S2C). Values are shown relative to the control condition (red dot). Error bars denote the
standard error. The solid line is the best-fitting line, and the dashed lines denote the standard error of the fit. (B) S and K plotted against tpior. Values plotted for all
conditions and for subsets (‘Mutants’ and ‘Regulatory factors’). Error bars denote SEM. The black line is the best-fitting model. The linear relationships are statistically
significant when the set of variables allowed to change between conditions is restricted to either the sequence of the promoter or the regulatory factors. When all
variables are allowed to differ simultaneously, the best-fitting model is a polynomial of the third or fourth degree.

not considered since, in these conditions, 0>® numbers are sufficiently
high for the amount of core RNAP enzymes to become a less accurate
proxy of the RNAP-0”° holoenzymes levels [23]. Additional factors that
may differ include potential SRNA regulation [39,40], ppGpp [41],
cAMP (see e.g. [42]) contribute to these differences.

We assessed whether S and K change with tyor. For this, we plotted
S and K against Ty, in each condition (Fig. 3B) and performed like-
lihood ratio tests (at significance level of 0.05) between the best-fit
polynomial models (using weighted total least squares approach
[14,43]) with degrees ranging from O to N-1, with N being the number
of conditions (p-values are shown in Supplementary Table S4). We also
tested whether the data can be better explained by a model where tpyior
does not differ between conditions, by performing a likelihood ratio test
between this model and the selected best-fitting polynomial (Supple-
mentary Table S4). For both S and K, the zero-degree and the first-
degree polynomial models, as well as the models where 7., is con-
stant, are rejected in favour of higher-degree polynomials.

The fact that S and K are best fit by, respectively, third and fourth
degree polynomials (that still do not explain all data points) illustrates
the level of complexity of the data. This is likely due to the conditions
differing in several factors (promoter, induction scheme, etc.). We thus
next consider, as above, the subsets ‘Mutants’ and ‘Regulatory factors’.
For each, we perform, also as above, likelihood ratio tests to determine
the best fitting models (Supplementary Table S4). In both subsets, a 1st
degree model is preferred.

Meanwhile, from the Pearson's correlation coefficient (with the
corresponding two-tailed p-value) between Ty, and skewness (S) and
kurtosis (K), for the subsets ‘Mutants’ and ‘Regulatory factors’, we find a
significant correlation in all cases (absolute correlation values above
0.85 and p-values < 0.05), except for K in ‘Regulatory factors’, where
the p-value equals 0.06. Overall, the results suggest that, similarly to M
and CV, tuning t,rior can regulate S and K. This implies that the lower
bound threshold crossing probability of RNA numbers over time can be
tuned.

Next, we performed the same analysis for changing Taer and Tprior/
M. Contrary to when considering tyyior, the results (Supplementary Fig.
S6 and Supplementary Tables S5-S6) do not allow establishing statis-
tically significant relationships (also the p-values from the Pearson's
correlation were larger than 0.05).

Interestingly, the linear relationships of S and K with 7, are po-
sitive in the subset ‘Mutants’ and negative in the subset ‘Regulatory
factors’. This strongly indicates that tyor is not the only parameter
defining these features. Namely, we hypothesise that these relationships

may depend on what causes Tyor to differ between the conditions. For
instance, in one subset, the difference may be due to differences in the
mean time required by the RNAP to complete a closed complex for-
mation, while in the other subset the differences may be in the number
of times that the RNAP fails to commit to the open complex formation.
These potential differences could be accounted for in the model by
tuning k;, k_; and k, (Supplementary materials and methods, Section
1.6), but cannot be detected by the measurements conducted here.
Future work is needed to test this hypothesis.

3.5. Skewness and kurtosis of the RNA production kinetics and of the
distribution of protein expression levels in individual cells are negatively
correlated

To assess if changes in S and K of the At distribution could affect the
phenotypic distribution of cell populations, we next investigate whether
these changes result in significant changes in the distribution of protein
expression levels of a cell population. This is expected given the known
coupling between transcription and translation in prokaryotes [44-46].
Nevertheless, it is reasonable to assume that noise in the stochastic
process of translation (e.g. on the time to be completed once initiated)
would render changes in S and K ineffectual on protein expression le-
vels. A model of gene expression in prokaryotes accounting for the
coupling between the two processes is shown in Supplementary mate-
rials and methods, Section 1.6.

We first tested whether the mean protein expression levels of the
cell populations follow their mean RNA numbers. For that, we mea-
sured RNA numbers (by microscopy) and protein mean expression le-
vels (by flow cytometry) produced under the control of Pj,c/ara1 for
various induction conditions. We expect the same relationship in all
other constructs used here, as they have identical sequences following
the promoter sequence. Results in Supplementary Fig. S7 show that the
average number of proteins in a cell population follows the average
RNA numbers.

Given this, since M of the At distribution is negatively correlated
with the mean RNA numbers of the cell population, one can expect it to
also be negatively correlated to the mean number of proteins. Using the
same promoter as a case-study, we tested whether the skewness and
kurtosis of the distribution of protein expression levels of a cell popu-
lation are sensitive to the induction strength. For this, we measured the
total fluorescence intensity level of the proteins expressed by Pjac/ara-1
in individual cells for various induction levels using flow cytometry
(Materials and methods). From these, for each induction level, we
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obtained the distribution of fluorescence of individual cells (in arbitrary
units). For each of these distributions, we estimated the mean (Mp),
skewness (Sp) and kurtosis (Kp) as previously (Supplementary materials
and methods, Section 1.3). From Supplementary Fig. S8, we find that Sp
and Kp can differ with induction strength. Also, it is possible to have, for
similar values of Mjp, significantly different values of Sp and Kp (e.g.
conditions 0 to 25 uM). Further, conditions differing in Mp can have
similar values of Sp and Kp (beyond 100 uM). Overall, we find that, as
for the At distributions, Sp and Kp can change independently from Mp
and vice versa.

Next, we investigate whether changes in S and K of the At dis-
tribution due to changing the promoter sequence or its regulation re-
flect on the distribution of protein expression levels, as expected from
the model. For this, we consider, respectively, the subsets ‘Mutations’
and ‘Induction schemes’. We note that, within these subsets, the cells
are grown under identical culture conditions and do not differ in their
fundamental physiology, and are therefore not expected to differ in,
e.g., ribosome population and/or in any other global gene expression
regulators, such as [RNAP] or o factors. For these reasons, here we do
not consider the other conditions in Table 1, as the translation rate or
protein maturation time may differ significantly from the control.

For each condition considered, we measured the fluorescence in-
tensity from the target proteins by flow cytometry (Materials and
methods) and obtained the single-cell distributions of protein fluores-
cence intensity. Next, we estimated its Mp (in arbitrary units), Sp and
Kp, as previously. We also measured My for cells with an uninduced
Plac/ara-1 to Obtain a reference point for the values of Mp. In this regard,
the LA(ara) condition was not included in the subsequent analysis since,
for unknown reasons, its protein expression levels were not significantly
above those of the uninduced Pj,¢ a1 (Fig. 4).

In Fig. 4, we show Mp, Sp and Kp plotted against M, S and K, re-
spectively, along with the best-fitting models obtained by likelihood
ratio tests (Supplementary Table S7). In all cases, the linear model is
preferred. We also calculated the Pearson's correlation coefficient for
each case. The results agree with the likelihood ratio tests. Namely,
there are strong, statistically significant (p-values < 0.05), negative
correlations between M and Mp (—0.82) and between S and Sp
(—0.86). Between K vs Kp the negative correlation is also strong
(—0.70), but the p-value is 0.12, likely due to higher uncertainty. From
the statistically significant linear relationships, we conclude that the
differences in skewness and kurtosis of the At distribution between
conditions result in statistically significant differences between the
skewness and kurtosis of the corresponding protein distributions, in a
manner that is consistent with the model. As a side note, our data does
not allow investigating whether a similar (expected) correlation exist in
the case of CV and CVp, since LA, LA(IPTG), and the mutant promoters
have CV values that cannot be distinguished in a statistical sense
(Supplementary Table S1).

Finally, to assess if the values of M could explain the values of Sp
and Kp, we performed likelihood ratio tests (as above) between M and
Sp and between M and Kp. A polynomial model of the 1st order was

—= LA

—A—  LA(PTG)
Mut1
Mut2
Mut3
Mut4
LA(ara)

.

MP (a.u.)

=

15
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rejected in both cases (p-values equal 0.04 and 0.02, respectively). Also,
we failed to find linear correlations (p-values equal 0.06 and 0.25, re-
spectively). We conclude that M is not correlated with either Sp or Kp, as
expected from the lack of the correlation between M and S or K.

4. Discussion and conclusions

Previous research have established that bacterial transcription is
mostly regulated at the stage of initiation [10-12,47]. This regulation,
e.g. by transcription factors and o factors, affects the mean and variance
in RNA and protein numbers [10-12,19,48]. From the dynamics point
of view, these and similar regulatory molecules were shown to have
direct effect on the kinetics of the rate-limiting steps in transcription
initiation of a gene (assessed here by Tpror and Tager), resulting in
changes in the mean and variance of its distribution of intervals be-
tween consecutive RNA production events in individual cells (At dis-
tribution) [14,23].

Here we provided evidence that the fraction of cells that reach high
thresholds in RNA and protein numbers of an externally regulated gene
can be tuned by altering the skewness and kurtosis of its At distribution.
Also, we showed that this can be achieved without significantly altering
the mean and CV of this distribution. Further, this regulation is possible
by tuning Tpror and Tager alone which can be altered by changing the
promoter sequence, the induction scheme, or the intracellular RNAP
concentration.

On the other hand, we did not find significant evidence that the
skewness and kurtosis could be altered independently from one an-
other. Instead, they exhibit a strong positive correlation (Fig. 2B, AK vs
AS, and Table 2). We suggest that this may be due to the variability of
the time length between transcription events along with the existence of
mechanical constraints imposed by the transcription machinery. This
variability is visible in Fig. S3, which shows that the distributions of
intervals between transcriptions are broad, with several intervals
having a short time-length. This limits how much the kurtosis of this
distribution can increase by increasing the tail on the left side. This
limit does not exist on the right side. Thus, increasing the kurtosis of
one of these distributions by increasing the size of the right tail cannot
be easily compensated on the left side so that the skewness remains
unaltered.

Regulation of asymmetry and tailedness of gene expression, so far,
has only been considered in the context of small genetic circuits or
complex regulatory pathways (e.g. [3]). Given the above, our findings
suggest that regulatory mechanisms of individual genes suffice for this
regulation as well. In particular, based on the data from the conditions
in Table 1, we found statistically significant linear relationships be-
tween Tpror and the skewness and kurtosis of the At distribution, pro-
vided that either only the promoter sequence or the regulatory factors
(i.e. inducers and RNAP concentrations) differ between the conditions.
We hypothesise that relationships more complex than linear are also
possible, if more than one parameter is allowed to change. E.g. in the
future it would be of interest to investigate whether the data in Fig. 3B
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Fig. 4. Mean (M), skewness (S), and kurtosis (K) of the distribution of protein expression levels in individual cells change linearly with the corresponding features of
the distribution of time intervals between consecutive RNA production events (At distribution). (From left to right) Mp, Sp and Kp of the single-cell distributions of
protein levels against the corresponding feature of the At distributions (extracted from Fig. 2A). Error bars denote SEM (in some cases, the SEM is too small to produce
visible error bars). The solid line is the best fitting model. On the left plot, the horizontal grey line corresponds to Mp for an uninduced Pjac/ara.1 Which is used as a
reference point (SEM is too small to be represented). Mp of LA(ara) is not considered in model fitting.
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could be better explained by consider both Tpior and Tager simulta-
neously. Nevertheless, the linear relationships found here are evidence
that the skewness and kurtosis are evolvable (i.e. sequence dependent)
and adaptable (i.e. subject to regulation). Meanwhile, the strong cor-
relation between RNA production kinetics and single-cell distribution of
protein levels suggests that tuning these skewness and kurtosis can have
a significant impact on the phenotypic distribution of the cell popula-
tion.

It is well known that the two rate-limiting steps of transcription
initiation here considered (i.e. the events prior and after commitment to
open complex formation) are composed of specific ‘sub-steps’, such as
promoter escape [49-51], reversibility of the closed complex formation
and isomerization [13,52,53]. Further developments in the dissection
techniques of the in vivo kinetics of these sub-steps during transcription
initiation should allow characterising, in greater detail, their con-
tributions to the regulation of the skewness and kurtosis of the dis-
tributions of RNA production kinetics and corresponding protein
numbers. This should also allow establishing precise methods for tuning
the skewness and kurtosis of these distributions.

It is worth noting that the findings here reported do not discard the
importance of other mechanisms of regulation of protein numbers in E.
coli, such as regulation by sRNAs [39,40,54]. Here we did not consider
this mechanism since all target genes studied shared the same elonga-
tion region. It will be of interest to study whether this post-transcription
regulation process also allows tuning the skewness and kurtosis of
single-cell distributions of protein numbers, particularly given its
known effects on the cell-to-cell variability in protein numbers [55,56]
and protein numbers' threshold-crossing propensities [39,57].

Finally, while a strict relationship between the skewness and kur-
tosis in the RNA and protein numbers was established here, the im-
plications of these findings in the context of the qualitative behaviour of
genetic circuits remain to be demonstrated. We expect the amplitude of
these effects to differ with the circuit topology, as in the case of mean
and variance [58-60]. If the effects are significant, direct regulation of
these features in genetic circuits (by tuning the rate limiting steps of the
component genes) should allow a more precise control of their kinetics,
towards enhancing their robustness to fluctuations in molecular num-
bers or environmental changes, and sensitivity to external signals.
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