On the control of Rydberg state population with realistic femtosecond laser pulses
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We investigate computationally a method for ultrafast preparation of alkali metal atoms in their
Rydberg states using a three-dimensional model potential in the single active electron approxima-
tion. By optimizing laser pulse shapes that can be generated with modern waveform synthesizers,
we propose pulses for controlling the population transfer from the ground state to a preselected set
of Rydberg states. Dynamical processes under the optimized pulses are shown to be much more
complicated than in the traditional optical two-photon preparation of Rydberg states.

I. INTRODUCTION

Rydberg states have been observed in numerous systems
including, e.g., alkali metal atoms [I] and larger systems
such as water [2] and NO molecules [3]. Their features
include long lifetimes [I], macroscopic extent of the elec-
tron wave function, and large dipole moments [4]. These
features make them prime candidates for applications in,
e.g., quantum information and quantum computing [5].
They are also of fundamental interest in the study of
quantum chaos [6].

Experimental preparation of isolated alkali metal
atoms in Rydberg states can be achieved with a two-
photon absorption [4]. In rubidium, the successive ab-
sorption of 480 nm and 780 nm photons can excite the
valence electron to a high-n Rydberg state with up to
80 % probability [7]. However, the two-photon absorp-
tion technique requires (i) tuning of the laser frequencies
to the desired resonances and (ii) long irradiation dura-
tions to achieve reasonable yields [7].

Addressing these drawbacks may be achieved by us-
ing laser pulses with tailored temporal profiles. Stan-
dard techniques exist for the production of tailored fem-
tosecond laser pulses [§], and their applicability has been
demonstrated for controlling various dynamical phenom-
ena in atoms such as above-threshold ionization [9, [10]
and high-harmonic generation [ITHI7]. Population and
excitation control of atoms with femtosecond pulses has
been studied to some extent both experimentally [I7-
20], and computationally [18] [19]. However, control of
the excitation to high-n Rydberg states using multicolor
fields from modern light-field synthesizers has yet to be
demonstrated.

In this work we investigate the applicability of tailored
femtosecond laser pulses to ultrafast excitation of alkali
atoms to their Rydberg states. Using a computational
optimization scheme similar to Ref. [10], we optimize a
set of experimentally feasible pulse parameters and find
optimal laser pulses that can achieve up to 20 % popu-
lation transfer to the targeted states. The pulse dura-
tions are typically less than a few dozen femtoseconds —
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demonstrating the possibility of ultrafast Rydberg state
preparation.

This paper is organized as follows. In Sec. [l we
introduce the numerical methods and the optimization
scheme. In Sec. [[TI] we discuss the optimal pulse shapes
for ultrafast Rydberg state preparation and investigate
the underlying dynamical processes. Finally, in Sec. [[V]
we summarize our findings.

II. NUMERICAL METHODS

As a prototype atom for optimization simulations, we
use lithium within the single active electron (SAE) ap-
proximation with the static potential Vy(r) introduced in
Ref. [2I]. The optimization scheme is independent of the
precise atomic model, and the scheme is readily appli-
cable to other models of alkali metal atoms. The laser-
electron interaction is included in the dipole approxima-
tion, yielding the velocity gauge Hamiltonian (in Hartree
atomic units [22])

f)2
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where we have restricted ourselves to linearly polarized
laser fields.

Our goal is to transfer the maximum amount of pop-
ulation from the initial state, 2s, (with zero azimuthal
quantum number, m = 0) to a certain set Z of Rydberg
states |¢ 1) (preserving m = 0). This can be achieved
by maximizing the target functional

Z ‘<¢n,l|¢(Tmax)>|2 ) (2)
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where u is the set of optimizable parameters, and
[t (Tiax)) is the electron state at the end of the laser
pulse.

The optimizable parameters u define the temporal
shape of the laser vector potential A,[u](¢). Similarly to
the approaches in Refs. [10, 23], the pulse is constructed
as a superposition of multiple channels, each with a single
central wavelength, i.e.,
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FIG. 1. Total population of the target states as a function of
the optimization iterations demonstrating the working prin-
ciple of the two-level optimization scheme. After convergence
of the first local optimization (orange curve), the global opti-
mizer restarts the local optimizer in a different region of the
search space (at iteration number 102). Here we have targeted
the states n =7,1=0...2.

where A;, w;, 7;, ¢;, and o; are the amplitude, frequency,
time of envelope maximum, carrier-envelope phase, and
field FWHM of each channel. The channel envelope is
given b

exp —71%(2))2 (M)Q] , [t—71 <20
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env(t—7,0) =
0, otherwise

(4)
This is a modified Gaussian which goes to zero at twice
the FWHM, and it is infinitely times differentiable ev-
erywhere. This pulse parametrization allows us to model
realistic pulse shapes that can be generated with modern
light field synthesizers [g].

Calculation of the target functional in Eq. for
each pulse shape requires us to (i) compute stationary
states |¢n,) of the system and (i) propagate the ini-
tial state of the system under the laser vector poten-
tial. The stationary states are obtained by solving the
effective radial equation for each angular quantum num-
ber | with first-order finite differences. Time propaga-
tion of the electron wave function is carried out with the
QPROP software, version 2.0 [24] using the Crank-Nicolson
scheme [25]. For simulation parameters, we have used the
radial grid spacing 0.1 a.u. (0.005 nm), radial grid length
300 a.u. (16 nm), | quantum numbers up to 50, imagi-
nary absorbing potential of width 50 a.u. (2.6 nm), and
time-step 0.02 a.u. (0.5 as) for the simulations. Conver-
gence of a few selected results was checked with higher
accuracy.

The QPROP software was modified and wrapped for use
within Python 3 [26] for interfacing with the optimiza-
tion library nlopt [27]. Optimization is performed with a
two-level scheme: global optimization is carried out with
multi-level single-linkage (MLSL) algorithm [28] which

TABLE I. Summary of maximum achieved target populations
for different pulse channel combinations.

Target Channels (um) Max. population
2p 0.7 91 %
n="710= 2 08,0.7,04,0.3 14 %

0.8, 0.7, 0.4 5%
n="7101=4...6 2,08,0.7,0.4 6%

2,0.8, 0.4 3%
n="7...10,1=4 2,07 6%
n=7...10 2,0.8,0.7, 0.3 23%

2,1.6,0.8, 0.7,0.3 21%

essentially restarts local optimization while avoiding pre-
viously found local extrema [27], and for local optimiza-
tion we use the derivative-free, trust region -based al-
gorithm called the Constrained Optimization BY Lin-
ear Approzimations (COBYLA) method [27 29]. This
derivative-free optimization scheme does not require the
computation of the gradient of Eq. (2).

The optimization routine is provided with one to six
different channels with fixed central wavelengths 300 nm,
400 nm, 800 nm, 700.2243 nm, 1.6 pm, and 2 pm. The
value close to 700 nm is in resonance with the 2s— 2p
transition. Furthermore, each channel is constrained
to maximum electric field amplitude of A4; < 67 GV /m.
The time of the envelope maximum is allowed to vary
+ 6 fs, and the field FWHM of each channel can have
values between 2.4 fs and 15 fs.

III. OPTIMIZATION RESULTS

A typical optimization process is shown in Fig. [1l It be-
gins with a random initial pulse within the constrained
search space, and local optimizer looks for a local maxi-
mum of the target functional. After a local maximum has
been found, approximately at iteration number 102, the
global optimization routine takes over and provides the
local optimizer a new initial guess causing a sharp drop in
the target value. A typical optimization simulation runs
approximately 100 to 200 optimization steps providing
up to a few local maxima. Optimization of the pulse pa-
rameters is indeed crucial for reaching reasonable target
populations. In the example of Fig. [I| the optimization
starts with a random pulse combination reaching barely
1% target population, but the optimization shapes the
pulse to provide up to 5 % target population (at iteration
number 149).

The best results for each set of target states are col-
lected in Table[[] We only show the best one or two chan-
nel combinations for each target, but all possible channel
combinations were tested. The optimized target popu-



lations range from 90 % for the simplest target down to
3 % for more difficult to reach target states such asn =7,
Il =4...6. We have also investigated the excitation of the
system to a single target state: for 7f we have reached
up to 2.5% population and for 8i up to 1.7%. These
moderate populations of single target states suggest the
scheme lacks the finesse to target single Rydberg states.
However, due to finding only a few local extrema per tar-
get for each channel combination, it may be possible to
improve these results with more optimization simulations
and/or gradient based algorithms.

The maximum populations in Table [I] are less than
those achieved in previous works on optimal control
of population transfer in atoms and molecules, e.g., in
Refs. [30, B1]. However, one must take into account the
extremely constrained pulse combinations required by
modern waveform synthesizers. In particular, the pulses
with fixed channel wavelengths lack the ability to play
with the resonances of the system. Moreover, the Gaus-
sian envelope of each channel forbids any sudden changes
in the temporal profiles of the pulses, and shortness of
the resulting pulses forces the control scheme to consider
multiple complex transitions between the states.

Next we will inspect the population transfer mecha-
nisms behind the optimal pulses for a few select exam-
ples from Table [l The simplest transition to consider is
2s — 2p. This is forbidden for hydrogen, but for Li the
transition is allowed. This transition also serves as the
first step in the optical preparation of Rydberg states
through a two-step excitation [4]. We find the optimal
population transfer to be achieved with a pulse consist-
ing only of the 700 nm channel — not surprising since the
channel is in resonance with the transition. The pulse
and the populations of the few lowest states are show
in Fig. The optimal pulse has a small peak electric
field to avoid ionization, and a 90 % population transfer
is achieved with a pulse duration (intensity FWHM) less
than 10 fs. Merely increasing the pulse duration would
not improve the result since the initial state, 2s, is al-
ready depleted with the current pulse shape. At first,
the population transfer 2s — 2p seems like a simple few-
level process. Indeed, a two-level model with the states
2s and 2p under the laser pulse of Fig. [2|already yields an
80 % population transfer. However, even a bound-state
model with all states up to n = 10 fails to reach the 90 %
yield of the full model. This suggests either the involve-
ment of very high Rydberg states or perhaps even the
continuum in the full population transfer.

Let us turn our attention to ultrafast population of
Rydberg states. Targeting the states n = 7,1 =10...2,
our scheme yields a solid 14 % final population using the
channels 800 nm, 700 nm, 400 nm, and 300 nm (see
Fig. [3). These channels are mixed with peak electric
field ratios of 35 : 1 : 13 : 16. While the 700 nm chan-
nel is relatively weak compared to others, it is of utmost
importance. and without it the final target population
would drop to 0.2%. The optimized population transfer
is somewhat akin to the traditional two-step excitation:
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FIG. 2. (a) The optimized laser pulse for populating the 2p
state, (b) the power spectral density of the laser electric field,
and (c)-(e) the populations of the stationary states.

first the electron is excited from 2s to 2p by the weak
700 nm component; however, the second step is a much
more complicated process involving multiple transitions
resulting in most of the final target population in the 7d
state.

Next, we will focus our attention to a more complicated
target, n =7 [ = 4...6, which can not be reached with
two-photon absorption, in contrast with the previous ex-
ample. An optimized pulse of duration less than 30 fs can
transfer up to 6 % of the electron population to the target
states. The pulse, shown in Fig. [4[a), mixes the channels
2 pm, 800 nm, 700 nm, and 400 nm in ratios of electric
field peak amplitude as 1 : 1.8 : 2.25 : 0.04, The 800
nm and 700 nm channels activate simultaneously, while
the 2 pm channel activates 6 fs later than the previous
ones. The channels overlap significantly in time yielding
a complicated process for the population transfer. First
few femtoseconds, up to approximately ¢ = 12 fs transfer
the population from 2s to highers states with [ ~ 1...3
whereas the rest of the pulse makes the electron popula-
tion oscillate between multiple states and partly ionize.
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FIG. 3. (a) The optimized laser pulse for populating the set of
states n = 7, [ = 0...2 using the channels 800 nm, 700 nm,
400 nm, and 300 nm, (b) the power spectral density of the
electric field, and (c)-(e) the populations of the stationary
states.

A question arises, whether the 700 nm pulse is an es-
sential primer to achieve the initial 2s — 2p excitation.
This is not the case, as demonstrated in Fig. [5| where
we optimize the same target as previously but without
the 700 nm channel. A good initial population transfer
to the 2p state can still be found; however, rest of the
population transfer process is naturally different due to
different pulse temporal shape.

We will now turn our attention to targeting the pop-
ulation of a single angular quantum number, e.g., | = 4
with n = 7...10. The optimal pulse, shown in Fig. @(a)
is a sequence of 700 nm and 2 pm channels providing us
final target population of 6 %. To analyze the popula-
tion transfer process via pair-wise transfer rates, notice
first that the state populations |c, ;|2 = | (¢n.|¥(2)) | are
equivalent in the Schrodinger and interaction pictures of
quantum mechanics. In the interaction picture, the ex-
pansion coefficients obey the system of ordinary differen-
tial equations [32]
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FIG. 4. (a) The optimized laser pulse for populating the set
of states n = 7, 1 = 4...6 using the channels 2 pm, 800 nm,
700 nm, and 400 nm, (b) the power spectral density of the
electric field, and (c)-(j) the populations of the stationary
states.
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FIG. 6. (a) The optimized laser pulse for populating the set
of | = 4 states with principal quantum numbers n = 7...10
consists of first a few-cycle 700 nm primer followed by single
cycle 2 pm pulse, (b) the power spectral density of the electric
field, and (c)-(g) the populations of the stationary states.

where Wy, 1), (n/,17) is the z-component of the (n, 1), (n', ')
momentum matrix element in the Schrédinger picture.
Now the pair-wise transfer rates are given by

Tty () = Az () Wity )| (85105 @) 2. (6)

The transfer rates T for the optimized population
transfer to [l = 4, n = 7...10 are shown as a function
of time in the animation that can be found in Supple-
mentary Material. The first, 700 nm pulse excites the

system from the initial 2s state to a set of [ = 3 states
(n = 4...10) via 2p. Some population is left in the 2p
and 3d states. The second, 2 pm pulse first transfers
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FIG. 7. (a) The optimized laser pulse for populating the set
of states n = 7...10 using the channels 2 pm, 800 nm, 700
nm, and 300 nm, (b) the power spectral density of the electric
field, and (c) the final populations of the stationary states.

population leftovers from the 2p state via 4d state to the
f-states, and after its first optical cycle, the second pulse
transfers the population from the f-states to the targeted
g-states. Due to weak pulses, the system is essentially
not ionized, but rest of the population escapes to higher
bound states. Transfer rates seem the obvious choice for
interpreting the optimal population transfer processes for
each target, but they turn out to be significantly more

complicated for most of the other targets.

As a final demonstration, we target the states with
principal quantum numbers n = 7...10 without restric-
tions to the angular quantum number. Due to larger
number of targeted states, the total target population
reaches over 20% with the optimal pulses with the
highest yield achieved with the channels 2 pm, 800 nm,
700 nm, and 400 nm shown in Fig. [7] Most of the final
target population is in low-/ states, peaking at 7p and
8p followed by their neighbours by coupling, 8d and 9d.

IV. SUMMARY

We have demonstrated the applicability of a few-color
femtosecond pulses realizable by modern waveform syn-
thesis [8] to optimal control of population transfer from
ground state to a set of Rydberg states. Our control
scheme was found to achieve up to 23 % Rydberg-state
populations when transferring population to a few se-
lected states, but when targeting a single state the exper-
imentally restricted pulse combinations do not seem to
allow sufficient control over the excitation process. Typ-
ical simulations with such realistic multicolor waveforms
yield a complicated dynamical process which usually can
not be easily interpreted with clear excitation paths. In
this respect, our results demonstrate a very different opti-
mized dynamical process compared to having longer and
less constrained pulses, which allows the exploitation of
the resonances.

Further investigation would be warranted to study
the applicability of our scheme to, e.g., the prepara-
tion of circular Rydberg states, including field polariza-
tion as an additional control knob. In addition, adop-
tion of gradient-based optimization algorithms should be
straightforward and quite important especially when ex-
tending the demonstrated optimization scheme to full
multi-electron models with possibly even more compli-
cated optimization landscapes.
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