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Machine learning analysis of extreme events in
optical fibre modulation instability
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A central research area in nonlinear science is the study of instabilities that drive extreme

events. Unfortunately, techniques for measuring such phenomena often provide only partial

characterisation. For example, real-time studies of instabilities in nonlinear optics frequently

use only spectral data, limiting knowledge of associated temporal properties. Here, we show

how machine learning can overcome this restriction to study time-domain properties of

optical fibre modulation instability based only on spectral intensity measurements. Specifi-

cally, a supervised neural network is trained to correlate the spectral and temporal properties

of modulation instability using simulations, and then applied to analyse high dynamic range

experimental spectra to yield the probability distribution for the highest temporal peaks in the

instability field. We also use unsupervised learning to classify noisy modulation instability

spectra into subsets associated with distinct temporal dynamic structures. These results

open novel perspectives in all systems exhibiting instability where direct time-domain

observations are difficult.
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A characteristic feature of many nonlinear dispersive sys-
tems is the process known as modulation instability (MI),
whereby noise on an input signal can be exponentially

amplified to create localised structures of high intensity1,2. There
has been significant interest in studies of MI in nonlinear
Schrödinger equation (NLSE) systems, with many experiments
reported in fibre optics, hydrodynamics and other fields3.

When seeded by noise, the localised structures emerging from
MI show complex dynamics and random statistics, and it has
even been suggested that MI may be linked to the development of
extreme events or rogue waves4–6. Such studies have been of
particular interest in nonlinear fibre optics because recent
developments in real-time measurement techniques7,8 have
allowed the emergent dynamics to be characterised experimen-
tally in both the temporal and spectral domains. Specifically, in
the temporal domain, although optical MI typically occurs on
timescales that preclude direct electronic measurement, time-lens
magnification has been used to characterise picosecond random
breathers and solitons9,10. In the spectral domain, the dispersive
Fourier transform (DFT) has permitted real-time characterisation
of a range of instabilities in both optical fibres and laser cav-
ities11–17.

These new real-time measurement techniques have essentially
revolutionised the study of ultrafast instabilities in nonlinear fibre
optics18–20, but they nonetheless remain limited in several
important respects. For example, time-lens magnification is
experimentally complex, typically involving a nonlinear wave-
length conversion process which constrains the measurement
bandwidth and power. As a result, there are relatively few
experiments that have directly measured ultrafast (picosecond or
shorter) extreme events in the time domain9,10. The DFT tech-
nique is experimentally simpler because it involves only propa-
gation in dispersive fibre, but is typically associated with a
relatively low dynamic range of 20–25 dB21. This is a significant
limitation to the detailed study of extreme events in MI which are
associated with extension in the spectral wings below the −40 dB
level22,23.

In this paper, we describe the development of a new high
dynamic range real-time spectrometer that allows the mea-
surement and analysis of unstable MI spectra with an experi-
mental dynamic range approaching 60 dB. Although our
measurements are performed in the spectral domain, the
application of machine learning to our data allows us to
nonetheless compute corresponding statistics for the maximum
intensity of the localised temporal peaks in the MI field, peaks
that are preferentially associated with rogue wave events. Our
approach employs a supervised learning algorithm, first using
data from numerical simulations to train a machine learning
model (based on a neural network) to correlate the complex
spectral and temporal properties of noise-driven MI. We then
apply the trained network to analyse high dynamic range
experimental measurements of MI spectra in an optical fibre
system, and from these data we determine a probability density
function for the associated peak shot-to-shot temporal intensity
maxima. The temporal probability density function obtained
from the experimental spectra is found to be in excellent
agreement with numerical modelling, including in the dis-
tribution tails that contain the high intensity extreme events. In
addition to supervised learning analysis, we show how unsu-
pervised learning can classify noisy MI spectra into subsets
associated with distinct temporal dynamic structures. In par-
ticular, we show using simulations that machine learning can
identify spectral clusters physically associated with different
localised breather and rogue wave solutions of the NLSE6. Aside
from the direct relevance of our results to optics, our approach
has a far wider impact in showing how machine learning

applied to only spectral data can be successfully used to study
the properties of extreme events in the time domain.

Results
Modulation instability and machine learning. Machine learning
is an umbrella term that describes the use of statistical techniques
to analyse data sets with the aim of detecting patterns and
building predictive models. Machine learning has been widely
used in areas such as control systems, speech processing, neu-
roscience and computer vision24, and has very recently been
applied to predicting the behaviour of chaotic systems25,26.
Applications of machine learning in the field of photonics is also
relatively recent, but a number of studies have been reported in
laser optimisation27,28, ultrashort pulse measurements29, label-
free cell classification30, imaging31–33 and coherent communica-
tions34. In our case, we aim to apply the techniques of machine
learning to the study of chaotic nonlinear dynamics in optics,
with the particular aim of studying the statistics of the maximum
intensity of temporal peaks in noise-seeded modulation instability
using only spectral measurements.

Machine learning algorithms are usually described in terms of
two classes: supervised and unsupervised learning24. With
supervised learning, prior knowledge of how the input and
output of a system are related is used to build a function or model
that describes the system response. With unsupervised learning
on the other hand, the analysis is more exploratory, and an
algorithm will search for inherent patterns and structures in a
data set without using any a priori knowledge about the data or
system. Here, we have applied both unsupervised and supervised
learning to analyse the shot-to-shot spectral fluctuations in noise-
seeded MI, and we find that they provide complementary and
important insights.

We begin by presenting results applying supervised learning to
analyse spectral data from noise-seeded MI. This first involves a
training step where a set of MI data with known spectral and
temporal characteristics is fed into a neural network to determine
a transfer function capable of correlating desired input and
output properties. To this end, we use stochastic numerical
simulations of a generalised NLSE model to generate a large
ensemble of training data (both temporal and spectral) associated
with a chaotic MI field. The simulations are parameterised to
model our experiments (described below) where MI develops
from picosecond pulses injected into the anomalous dispersion
regime of a nonlinear optical fibre. The simulations consider
input pulses of 3 ps duration (full width at half maximum
(FWHM)) and 175W peak power evolving over a propagation
distance of 0.68 m. The MI is seeded from a broadband quantum-
limited one photon per mode spectral noise background35. See
Methods for further details. It is important to note here that the
NLSE simulation model used has been previously shown to
provide a very accurate quantitative description of the statistical
and noise properties of MI, supercontinuum generation and
optical turbulence9,10,13,36,37. This is essential for its use in
training the network to subsequently process experimental data.
We also note that the use of numerical data to train a network
prior to analysing experimental results has previously been used
in ultrashort pulse measurement applications29.

Typical results from a single simulation showing the spectral
and temporal evolution with distance are plotted in Fig. 1. We see
the growth of distinct MI sidebands in the spectral domain
(Fig. 1a) associated with the development of a strong modulation
and emergence of localised breathers on top of the pulse envelope
(Fig. 1b). In the picosecond regime, MI dynamics are highly
sensitive to input noise, and for identical initial pulses but with a
different random noise background, the spectral and temporal
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evolution can vary dramatically. This is shown explicitly in
Fig. 1c, d where we plot four output spectral and temporal
intensity profiles for different random noise seeds (see Methods),
as well as the corresponding average profiles calculated over a
larger number of 50,000 realisations. The single-shot profiles
clearly show complex structure and vary dramatically from shot
to shot, but of course these instability characteristics are not seen
when the spectra and temporal profiles are averaged. It is for this
reason that real-time measurement techniques have proven so
valuable in understanding the nonlinear dynamics of MI.

These simulation results allow us to gain insight into the
statistics associated with the shot-to-shot variations of MI38. To
this end, the solid line in Fig. 1e plots the probability density
function (PDF) of the intensity of the localised MI peaks across
the pulse envelope. This PDF is calculated from the ~106

temporal peaks identified from analysing the structure on the
temporal envelopes obtained from the ensemble of 50,000
realisations. This probability distribution shows typical charac-
teristics of MI with an extended tail, and the dashed vertical line
shown in the tail region indicates the rogue wave threshold
intensity IRW defined as IRW= 2I1/3 where I1/3 is the mean
intensity of the highest third of intensity peaks.

In the context of relating MI dynamics to the appearance of
extreme events and rogue waves, our aim is to determine the
intensity of the maximum peak occurring in a given (single-shot)
temporal profile (i.e., the points indicated by circles in Fig. 1d)
from only the corresponding spectral intensity profile. Note that

the associated PDF of these maximum intensity peaks from the
simulation data is shown as the red dashed line in Fig. 1e. It is
clear that by focussing on the maximum intensity peak from each
realisation, we preferentially select out those events which have a
greater probability to be classified as rogue wave events from the
full distribution.

However, determining the magnitude of these temporal peaks
from only spectral intensity profiles (without spectral phase) is a
difficult problem because of the complexity of the noisy MI
spectral characteristics. Moreover from an experimental point of
view, the highest temporal peaks are associated with broad
exponentially decaying spectral wings extending over many 10s of
dB dynamic range, and determining the spectral bandwidth is not
straightforward when dealing with noisy spectra consisting of
multiple breathers with random amplitude and phase. As we will
see, however, when combined with our novel experimental
technique for real-time high dynamic range spectral measure-
ments, machine learning provides a robust and convenient
solution that solves this problem.

The specific approach we use is supervised machine learning
based on a feed-forward neural network to relate the input
(spectral intensity profile) and output (temporal intensity
maximum) obtained from simulations. This is illustrated in Fig. 2
(see Methods for further details). In particular, the spectral
intensity from a single simulation realisation with index n is
written as a vector input Xn= [x1, x2...xN] where xi is the spectral
intensity at wavelength λi and mapped via a neural network to a

Single-shot spectral intensity evolution Single-shot temporal intensity evolution
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Fig. 1 Simulated MI dynamics from picosecond pulse propagation in optical fibre. a, b Results are shown from a single simulation illustrating spectral and
temporal evolution over 0.68m of propagation. c Spectral data at the fibre output from multiple simulations: the top figure shows the average spectrum
over 50,000 realisations; the bottom figure shows the spectral output from four realisations to illustrate the complexity of the spectra and the shot-to-shot
variations. d Temporal data at the fibre output from multiple simulations: the top figure shows the average temporal intensity over 50,000 realisations; the
bottom figure shows the temporal intensity from the four realisations corresponding to c to illustrate the strong temporal modulation observed. The peak
intensity (maximum instantaneous peak power) in each case (shown by a circle) is the parameter we are aiming to predict from the corresponding single-
shot spectra. e Calculated probability density function of temporal intensity peaks from simulation data. The solid line shows results from all peaks (over a
1.5 ps window), while the dashed line shows only the distribution of the maxima temporal intensity peaks. IRW marks the rogue wave intensity threshold,
defined as twice the mean intensity of the highest third of all the temporal peaks
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scalar output Yn corresponding to the maximum intensity of
the associated temporal profile. The objective here is to use
the training data to determine the weights and biases of the
constituent nodes (neurons) that allow the network to perform as
a transfer function to link Xn and Yn. In our case, the neural
network was trained using data from an ensemble of 30,000 simu-
lations. The typical dynamic range of the simulation spectra
(between the pump and the MI wings) was ~60 dB, and
anticipating the use of this network on experimental data, the
spectra were also pre-processed to account for experimental
conditions such as wavelength response and system resolution
(see Methods).

After training, the model was tested on 20,000 simulations
from a distinct ensemble of data not used in the training step. The
aim here is to test how well the transfer function obtained from
training is able to estimate the maximum temporal intensity from
a new simulated single-shot spectrum, by comparing the value
obtained from the machine learning algorithm with the known
value from the time-domain simulation data. The results of this
test are shown in Fig. 3. Here Fig. 3a shows a false colour density
plot of the “predicted” maximum temporal intensity against the

“target” value extracted from the simulation temporal data for the
20,000 test realisations. In order to highlight the grouping of data
points, the density plot uses a histogram representation where the
data points are grouped into bins of constant area. The colour
scale shown corresponds to the normalised density of points in a
particular bin. Note also the log scale for better visualisation. We
see clear grouping around the expected x= y linear relationship
(white dashed line), with very strong correlation (Pearson's
correlation coefficient ρ= 0.92).

It is especially important to test the ability of the machine
learning model to reproduce the statistics of the MI temporal
peaks, and this comparison is shown Fig. 3b. The blue line shows
the known PDF of the maximum intensity peaks from the
simulation test ensemble, whereas the corresponding PDF
determined by the machine learning algorithm is shown as the
red dashed line. It is clear that the algorithm performs
impressively in reproducing the shape of the probability
distribution, especially the slope of the distribution tail (over
nearly three orders of magnitude) as it extends to the regime of
higher intensity extreme events. In this context, we note that
although this agreement might be expected because the training
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and simulation data are generated from the same numerical
model (and indeed possess indistinguishable average spectra), the
purpose of the testing step is to evaluate how well the neural
network has been configured during the training to yield an
accurate mapping from input to output when correlating spectral
and temporal properties.

As a further test during this evaluation phase, we examined
whether lower-dynamic range spectral measurements (e.g., from
conventional fibre-based DFT) could also be suitable for such
machine learning analysis. To this end, we repeated the neural
network training but truncated the dynamic range of the spectra
applying a reduced dynamic range limit of 25 dB which is typical
for real-time fibre-DFT systems. We plot the corresponding
three-dimensional histogram results obtained when applying the
network algorithm to the 20,000 test data in Fig. 3c. From Fig. 3c
it is clear that there is greatly reduced visual grouping around the
one-to-one relationship (white dashed line) and indeed the
Pearson's correlation coefficient here is only ρ= 0.69. Moreover,
the predicted PDF shown in Fig. 3d fails to reproduce the slope of
the tail, emphasising the importance of the high dynamic range in
capturing extreme events. Note that we performed similar tests
over a wider range of parameters, and found that machine
learning was only able to construct a reliable model when the

spectral data possessed a dynamic range exceeding 50 dB. It is of
course also important in this regard to ensure that the training
and experimental conditions are as close as possible, and the
network performance will be reduced if this is not the case. For
example, applying the network algorithm as trained above to an
ensemble of test data generated with a ±20% difference in input
pulse peak power yields a PDF with an overall shape similar to
that expected from simulations, but the algorithm in this case
does not reproduce the slope of the tail of the PDF corresponding
to the highest maximum intensities.

In addition to the supervised learning approach described
above, we also applied unsupervised learning to analyse the MI
process. The motivation here is to automatically classify unstable
MI spectra into subsets associated with different classes of
localised breather structures possessing particular analytic solu-
tions38. Because of the very complex nature of these spectra with
much low-amplitude fine structure (e.g., see Fig. 1c), this is a
challenging objective, but as we show below, machine learning
succeeds in performing such classification.

The approach used was to apply a clustering algorithm to
partition a large ensemble of simulated spectra into distinct
clusters whose structure exhibits similarity based on a distance
metric relative to the cluster centroids (see also Methods)39. Note
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Fig. 3 Supervised learning analysis of 50,000 simulated MI spectra. a, c A comparison is shown of the “predicted” maximum intensity (instantaneous peak
power) from the machine learning algorithm with the exact “target” value from the simulated time-domain data. The top and bottom panels correspond to
truncating the input spectra data at 60 dB (except on the long wavelength side, see main text) and 25 dB dynamic range (typical for standard fibre-DFT),
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power) predicted by the machine learning algorithm with the exact value from the simulated time-domain data. The value ρ in the legend is Pearson's
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that such an algorithm does not classify the spectra using a single
measure such as bandwidth or amplitude, but rather identifies
clusters based on the structure of the spectra over their full
bandwidth, making it sensitive to complex features such as
sidebands, fine structure and the slope of low-amplitude wings.

In our case, we ran a k-means clustering algorithm on an
ensemble of 50,000 simulations and found that a partition
number k in the range 5–30 yielded similar results. In particular,
independent of the number of clusters used, the results showed
that the spectra in the cluster with the largest population were
associated with temporal profiles whose maximum intensity was
close to the maximum of the probability distribution (Fig. 1e). In
addition, the mean bandwidth of the spectra in this cluster was
closest to that calculated from all the spectra in the ensemble.
Significantly, this result allows us to expect on physical grounds
that the temporal profiles of the highest intensity peaks
corresponding to the spectra in this cluster would be well fitted
by the Akhmediev breather solution to the NLSE at the point of
the maximum MI gain, as this is the breather solution which
dominates the dynamics38. Similarly, we were able to confirm that
the cluster with the smallest population grouped together spectra
whose associated temporal profiles had maximum intensities in
the tail of the probability distribution, and the spectra in this
cluster had the largest calculated mean bandwidth. Again on
physical grounds, we can then expect these spectra to be
associated with temporal peaks corresponding to the strongly
localised Peregrine soliton solution of the NLSE, and perhaps
even higher-amplitude profiles associated with breather
collisions9.

To show this explicitly, Fig. 4 presents results obtained using 9
clusters. Firstly, we consider the results in Fig. 4a, b which show
spectral and temporal profiles associated with the cluster of
spectra closest to the mean of the spectrum across the whole
ensemble. This cluster includes 8402 elements. The superposed
blue curves in Fig. 4a show individual spectra from this cluster,
while the black curve shows their calculated mean. The individual

temporal profiles of the highest intensity peaks in the corre-
sponding time-domain fields are shown as the superposed blue
curves in Fig. 4b and the black line plots the mean of these
temporal peaks. The yellow line plots the analytic Akhmediev
breather at maximum MI gain (see Methods), and we note the
excellent agreement between the cluster mean and the analytic
breather solution.

The results in Fig. 4c, d show spectral and temporal profiles
associated with the cluster of spectra with largest mean
bandwidth and which includes 2153 elements. Again, the
superposed blue curves in Fig. 4c show individual spectra
while the black curve shows their calculated mean. The
individual temporal profiles of the highest intensity peaks in
the corresponding time-domain fields are shown as the blue
curves in Fig. 4d and the black line plots the mean of these
temporal peaks. The yellow line here plots the analytic
Peregrine soliton (see Methods), and we note again the
excellent agreement between the cluster mean and the analytic
solution.

Experimental setup and results. Our experimental setup was
designed to measure a large ensemble of high dynamic range
spectra from noise-seeded MI, suitable for analysis using machine
learning as described above. To this end, we first generated a
noisy MI field by injecting 3 ps duration (FWHM) pulses of 175
W peak power into 0.68 m of photonic crystal fibre (PCF) with
zero-dispersion wavelength around 750 nm. At the pump wave-
length of 825 nm, the fibre exhibits strong anomalous dispersion
such that clear characteristics of MI are observed. The pump
source used was an 80MHz mode-locked Ti:Sapphire laser. Note
that the simulations described above used identical parameters to
these experiments.

To characterise the shot-to-shot spectra with high dynamic
range, we developed a novel real-time spectrometer setup as
shown in Fig. 5. We first reduce the MI signal repetition rate to
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150 kHz (using an acousto-optic modulator placed after the Ti:
Sapphire laser) and use a rapidly rotating mirror to scan
sequential spectra onto different vertical positions of the entrance
slit of a 1.1 nm resolution Czerny–Turner spectrograph. Most
importantly, this approach is combined with spectral windowing
and differential attenuation to capture the central region and the
lower amplitude wings of the individual spectra separately, such
that the two distinct spectral regions are recorded with the full
available dynamic range of the detector. Post-processing is then
used to recombine the two windowed components, yielding a
dynamic range approaching 60 dB, a near four-order magnitude
improvement compared to conventional fibre-DFT. See Methods
for further details.

Figure 6 shows experimental results where this technique was
used to measure an ensemble of 3000 MI spectra. Firstly, Fig. 6a
shows a sequence of 60 consecutively recorded spectra to
illustrate how the real-time measurements capture the large
shot-to-shot fluctuations expected from MI in the picosecond
regime9,12,35. It is especially significant that the high dynamic

range clearly reveals variations in the structure of the spectral
wings below the −40 dB level. As a check on the fidelity of these
measurements, we computed the mean of the 3000 real-time
spectra (dashed red line in Fig. 6b) to compare with an
independent measurement (solid yellow line) using an inte-
grating optical spectrum analyser (OSA). We see very good
agreement between the OSA measurement and the average of
the real-time measurements for the central region, the MI
sidebands and the slope of the wings on the short wavelength
edge. Note that the discrepancy observed for wavelengths
beyond 875 nm in the wings when compared to the OSA is due
to reduced throughput efficiency of the system (i.e., grating and
camera response).

To further highlight the advantage of the windowed-real-time
technique developed here, the inset to Fig. 6b compares the
average from our high dynamic range measurements with the
results of additional experiments where we used a standard fibre-
DFT setup with dynamic range of ~22 dB (see Methods for
details). The near four orders of magnitude improvement using
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spectral windowing is very apparent from this comparison. To
show explicitly how this enhanced dynamic range reveals shot-to-
shot differences in the spectral wings, Fig. 6c compares the
structure of two measured single-shot spectra (dashed red line)
with the average computed over the 3000 measured spectra (solid
black line). We also plot on this figure (blue solid line) the mean
spectrum calculated from the full ensemble of 50,000 numerical
simulations of our experiments as described above. In this context
we note that for the supervised machine learning training step,
the simulated spectra were multiplied by a spectral response
function to match the experimental fall off above 875 nm. This
ensures that the model obtained from training using simulations
can be applied to experimental results.

Results applying the trained supervised learning model to the
experimental data are shown in Fig. 7. Here, we aim in particular
to determine from the measured single-shot spectra the
associated maximum temporal intensity. Figure 7 plots the PDF
obtained from the machine learning analysis of the experimental
data (dashed red) compared with that from numerical simula-
tions (solid blue). We see very good agreement between the
experimental and simulation probability density functions,
especially in the slope of the distribution tail for the highest
intensity extreme events. These results show very clearly that even
though the only available experimental data are that of the
spectral intensity, we can nonetheless extract significant physical
information about the corresponding temporal behaviour, and in
particular reproduce the long tail of the statistics associated with
the emergence of localised breather and rogue wave structures.

We also ran the unsupervised learning clustering algorithm on
the ensemble of 3000 experimental spectra to cluster the spectra
into 9 partitions as in our analysis of the simulation data. These
results are shown in Fig. 4. Specifically, the dashed red line in
Fig. 4a plots the mean of the partition whose bandwidth is closest
to that of the mean of the full ensemble, while the dashed red line
in Fig. 4b plots the mean of the cluster with largest spectral
bandwidth. We see how the spectral clusters identified from the
experimental data closely match those from the numerical
simulations.

Discussion
There are several major conclusions to be drawn from these
results. Firstly, for the modulation instability system studied here,
we have shown that real-time measurements of only the spectral

intensity can be combined with supervised machine learning to
yield quantitative information about temporal characteristics
using training based on accurate numerical simulations. In par-
ticular, by relating spectral characteristics to the maximal inten-
sity of the corresponding time-domain peaks, we can extract a
probability distribution that preferentially selects out events
which satisfy rogue wave criteria. Since this allows the presence of
deleterious high-power temporal spikes to be captured even
though only optical spectra are being measured, this is of
potential practical significance in imaging and spectroscopy
experiments using supercontinuum sources seeded by an initial
regime of modulation instability. Secondly, our simulation results
showing the ability of unsupervised machine learning to cluster a
large ensemble of modulation instability spectra into different
classes associated with specific dynamical structures is another
important aspect of our work. A further significant element of our
results concerns the experimental technique used to capture the
shot-to-shot instability spectra with high dynamic range. By
windowing the complex modulation instability spectra and using
differential attenuation, it has been possible to measure spectra in
real time and with nearly 60 dB dynamic range. Being able to
characterise spectra with such a large dynamic range is an
essential component in successfully applying machine learning to
our data. This approach is experimentally straightforward and
can be implemented at all wavelengths where suitable spectro-
meters are available. In this context we note that it is a long
standing problem in ultrafast optics to relate temporal and
spectral information when only the intensity properties are
known; the underlying fields also contain phase components, and
it is generally extremely difficult to correlate temporal and
spectral properties without this phase information. The possibility
to infer time-domain properties in optics only from real-time
spectral measurements that are easier to implement experimen-
tally is significant not only from the point of view of studying the
particular process of modulation instability as we do here, but
also more generally in the field of ultrafast optics. We also note in
this context that the use of accurate simulations to train a neural
network subsequently applied to experimental data opens up
many possibilities for the applications of machine learning in
optics. Indeed, the use of simulation-based training applied to
real-world data (”sim-real transfer”) is a burgeoning field of
machine learning, and with the wide availability of realistic
numerical models for many propagation scenarios in both linear
and nonlinear optics, we anticipate many future applications in
the analysis of optical systems.

Finally, although demonstrated here in an optical context, the
principle of using machine learning to study temporal properties
of a nonlinear system based only on spectral intensity measure-
ments would be expected to apply to many physical systems
exhibiting chaos and instability where direct time-domain
observations are precluded.

Methods
Numerical modelling. Our numerical modelling is based on the well-known
generalised NLSE model describing the evolution of a field envelope in an optical
fibre35. This model has been previously shown to provide a very accurate quan-
titative description of the statistical and noise properties of MI and super-
continuum generation13,36. Here, we model the propagation of 3 ps (FHWM) P0=
175W peak power hyperbolic-secant pulses in the anomalous dispersion regime of
a 68 cm-long PCF (NKT Photonics NL-PM-750) with Taylor-series expansion
dispersion coefficients at 825 nm: β2=−1.03 × 10−26 s2 m−1, β3= 4.74 × 10−41 s3

m−1, β4= 2.35 × 10−56 s4 m−1, β5=−1.17 × 10−70 s5 m−1 and β6=−9.07 × 10
−85 s6 m−1. The nonlinear coefficient γ= 0.1W−1 m−1. For completeness, we also
include the Raman and shock terms in the model, but for our parameter regime,
these had minor influence on the dynamics (although the Raman effect does lead to
the observed MI sideband asymmetry.)

Simulations used 4096 grid points with a temporal window of 12 ps
corresponding to an 83 GHz spectral resolution. Noise was included in the
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frequency domain via a one photon per mode spectral background with random
phase to seed the growth of MI sidebands outside the bandwidth of the pump
pulse. This random phase background in the initial conditions varies between
different simulation realisations. We generated an ensemble of 50,000 numerical
simulations corresponding to different input noise seeds with 30,000 used for
training and 20,000 for testing of the neural network. To account for experimental
shot-to-shot fluctuations introduced by using an acousto-optic modulator (AOM)
to operate at reduced repetition rate, the simulations also included an additional
±5% random variation of input peak power between different realisations in the
ensemble. Because the MI modulation frequency at maximum gain is given by Ω=
(2γP0/|β2|)1/2, this leads to a very small variation in the temporal modulation
frequency on the pulse envelope for each realisation in the ensemble. However, the
intrinsic randomness of the temporal structure from shot to shot is determined by
the initial background spectral noise which is amplified nonlinearly by the MI
process. Indeed, without the one photon per mode broadband noise background,
the simulations do not show the growth of MI at all.

Analytic breather and Peregrine soliton solutions for MI. We give here the
analytic form of the Akhmediev breather and Peregrine soliton solutions of MI that
are plotted for comparison with the clustering results in Fig. 4. Akhmediev
breathers form a one-parameter class of localised solutions of the NLSE, and at
their point of maximum localisation (maximum amplitude and minimum tem-
poral width), their analytic form in dimensional units is given by:

AABðtÞ ¼
ffiffiffiffiffi

P0
p ð1� 4aÞ þ ffiffiffiffiffi

2a
p

cosðωmtÞ
ffiffiffiffiffi

2a
p

cosðωmtÞ � 1
; ð1Þ

where parameters 0 < a < 0.5 and ωm are related by 2a ¼ 1� ω2
mjβ2j=ð4γP0Þ.

The solutions plotted in Fig. 4 are the Akhmediev breather solution
corresponding to the frequency of maximum MI gain where a= 0.25 in Eq. (1),
and the Peregrine soliton solution which is obtained in the asymptotic limit a=
0.5. In this latter case, the Peregrine soliton takes the rational form:

APSðtÞ ¼
ffiffiffiffiffi

P0
p

1� 4= 1þ 4γP0t
2=jβ2j

� �� �

: ð2Þ

Note that the parameters used for the analytic solutions in Fig. 4 are the
experimental values given in the preceding section. Finally we remark that the
simulation and analytical intensity profiles are normalized according to the
common convention in nonlinear fibre optics to show instantaneous power35.

Machine learning. Machine learning describes the use of computational and
statistical techniques to analyse data sets with the aims of classifying data and
building models24. Machine learning algorithms are usually described in terms of
two classes. A supervised learning algorithm uses classification and regression
techniques to train a model from a known set of input and output data such that
the model can be used to map new inputs to new outputs. In contrast, unsupervised
learning is used to find patterns or intrinsic structures in data sets without any a
priori knowledge of the system or data properties. We now present further details
of how these techniques were used here.

Supervised learning. The goal of supervised learning is to use a set of known
”training” data to determine a function or model that will map an input to an
output. In our case the input X represents the intensity spectrum of a modulation
instability field, while the output Y represents a single number—the intensity of the
highest peak in the corresponding temporal intensity profile.

Our training data are obtained from an ensemble of 30,000 numerical
simulations, and we denote the training data pairs as (Xn, Yn) with n= 1…30,000.
The mapping function used in supervised learning can take various forms
including decision trees, regressions, neural networks or Bayesian classifiers40,41,
and in our implementation, we used a multilayer neural network as shown in
Fig. 2. Such a network consists of basic computational units (nodes or ”neurons”)
organised into different layers: an input layer which accepts the input data Xn,
intermediate hidden layers that perform operations on the data and the final layer
which computes the network output. Each node in a given layer accepts multiple
inputs from the previous layer and these are weighted, summed and combined with
an additive bias to yield a resulting single real-value which is passed to an
”activation function” to generate the node output.

In more detail, the network we used consisted of an input layer, two dense (i.e.,
fully connected) layers of hidden nodes with a nonlinear activation function and an
output layer. The two dense hidden layers had 30 and 10 nodes, respectively.
The output layer is a single linear node. The output of a generic node hðkÞi in layer k
is calculated by combining the outputs hðk�1Þ

j from the previous k− 1-th layer:

hðkÞi ¼ f
X

Nk�1

j¼1

wðkÞ
ij hðk�1Þ

j þ bðkÞi

 !

: ð3Þ

Here wðkÞ
ij are the weights between nodes nðk�1Þ

j and nðkÞi of layers k− 1 and k,
respectively and the summation is calculated over Nk−1, the number of nodes in

layer k− 1. The term bðkÞi represents the bias for each node nðkÞi in layer k, and
f(x)= 2/[1+ exp(− 2x)]− 1 is the nonlinear (hyperbolic tangent sigmoid)
activation function. For the output layer, a linear activation function was used. The
node weights and biases are initially set to random values and then optimised using
conjugate gradient back-propagation42,43 in order to minimise a cost function,
defined as:

ϵ ¼ 1
N

X

N

n¼1

Yn � Y ′
n

� �2
: ð4Þ

where N is the number of samples in the training data, Yn is the target value and Y ′
n

is the output of the network. The weights wij are iteratively adjusted by an amount
Δwij with learning rate η towards the negative gradient of ϵ such that
Δwij ¼ �η ∂ε

∂wij
. This process is repeated over a number of ”epochs” (one forward

pass and one backward pass of all (Xn, Yn) training pairs through the network)
until convergence (no change in the gradient descent with subsequent multiple
iterations). At this point the network is suitably configured to perform as the
desired transfer function linking Xn and Yn pairs.

Because our goal is to apply the machine learning algorithm to real-world
experimental data, the simulated MI spectra were pre-processed to account for
experimental constraints, i.e., the wavelength-dependent response (which falls off
above 875 nm) and the 1.1 nm resolution of the spectrometer. With this pre-
processing, the input vector then consists of N= 121 uniformly distributed spectral
intensity bins such that each MI spectrum from the simulation ensemble was
discretised onto a vector Xn= [x1, x2...xN]. The neural network was trained for 300
epochs of all 30,000 training sets.

Unsupervised learning. Clustering is the most common unsupervised learning
technique used for exploratory data analysis. In our analysis, we used the k-means
method that divides unclassified data into k mutually exclusive clusters by mini-
mising the distance from the data to the cluster centroid. The algorithm begins
with random initialisation of the centroid locations, and this is followed by a
classification of the data into clusters based on distance to these centroids. The
centroids of these clusters are then calculated, the cluster populations are updated
based on these new centroid locations, and this process is repeated until the
centroid positions stabilise. It is important to note here that the k-means algorithm
does not cluster on a single metric such as, e.g., the spectral bandwidth or
amplitude, but rather identifies the clusters of different spectra based on the
structure and shape of the spectra over their full bandwidth. Indeed, it is the ability
of the clustering algorithm to detect patterns in the shot-to-shot spectral structure
that demonstrates its utility for this purpose.

Using this method, the 50,000 simulated spectra were classified using different
number of clusters (k varying from 5 to 30) to ensure that any conclusions drawn
would be independent of the number of clusters used. For the spectra grouped in
each cluster, we calculated the corresponding time-domain intensity profile locally
around the intensity maximum and examine these for all clusters. Independent of
the number of clusters used, the cluster containing the largest number of spectra
yielded local temporal profiles with maximum intensity close to the maximum of
the probability distribution (Figs. 1e and 7). On the other hand, clusters
corresponding to lower or higher intensities than the distribution maximum
contained fewer spectra so that the cluster sizes essentially follow the probability
distribution. In the distribution tail at the highest intensities, we found only one
cluster would be identified from the algorithm, and this cluster contained the
smallest number of spectra. Results in Fig. 4 illustrate the classification results using
k= 9 for the clusters with the largest and smallest number of spectra produced by
the algorithm both for the 50,000 simulated spectra and the 3000 experimental
spectra. For completeness here, we give the number of elements in each cluster
generated from the simulated data. Specifically for the 50,000 simulations, the
cluster sizes ordered from largest to smallest population were: 8402, 6948, 6327,
5853, 5596, 5074, 4973, 4674 and 2153. Note that the results in Fig. 4 correspond to
the clusters with the largest and smallest populations. For the 3000 experimental
spectra, the cluster populations were found to be: 528, 526, 471, 430, 429, 317, 280,
210 and 49. Note that the algorithm does not return the clusters with any sorting
order. Any physical interpretation of the clusters identified must be performed
independently of the algorithm itself as we have done above by associating the
spectra in particular clusters with their associated temporal properties.

High dynamic range real-time spectrometer. Single-shot MI spectra were
measured in real time at the fibre output using a rapidly rotating mirror mounted
on a galvanometer (Nutfield QS-12) with angular speed ω= 240 rev. per min, and
focussed with a lens of focal length f= 150 mm at the entrance slit of a
Czerny–Turner spectrograph. The spectrograph used a grating with 300 lines per
mm and 500 nm blaze (ThorLabs GR25-0305) to disperse consecutive spectra onto
different lines of a high-sensitivity electron-multiplying charged-coupled device
(EMCCD) camera (Andor iXon 3), allowing single-shot spectral intensity mea-
surements with a 1.1 nm resolution. With this scan rate and our setup, it was
necessary to reduce the repetition rate of the laser to 150 kHz using an acousto-
optic modulator, but acquisition speeds up to the MHz range would be possible
either using a faster galvanometer, using a multi-pass geometry44 or by increasing
the focal length at the spectrograph entrance slit.
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The camera was cooled to −80 °C and used 5× pre-amplifier gain to decrease
the noise level to a single electron level corresponding to a maximum dynamic
range close to 40 dB. In order to increase the effective dynamic range of the
measurement, we used a differential spectral attenuation scheme that captures the
central part and wings of the MI spectra separately with the same dynamic range.
In this scheme, the MI field at the fibre output is divided between two arms of
unequal length corresponding to a 200 ps delay. Differential attenuation was
induced in the two arms using a notch filter with a 40 dB, 20 nm rejection band
centred at 825 nm (Edmund Optics) and a variable neutral density filter,
respectively. Beams from the two arms are then recombined with a beamsplitter
such that the central part and wings of the individual spectra are recorded with the
same dynamic range and 200 ps delay by the individual lines of the EMCCD. The
spectral response of the system was carefully calibrated by measuring the mean
spectrum with and without the filters. The full spectra are subsequently
recombined by post-processing with an effective 60 dB dynamic range,
representing a more than three orders of magnitude improvement compared to a
conventional fibre-based DFT approach12,13. Direct comparison of the average MI
spectrum at the PCF output was performed with an integrating optical spectrum
analyser (Ando AQ6315B).

Conventional fibre-DFT. The conventional fibre-DFT implemented for compar-
ison with the high dynamic range real-time method used a 100 m custom fabri-
cated fibre (IXfibre IXF-SM series) designed to be single mode over a broad
wavelength range in the near-infrared and with total dispersion β2L=+4030 ps2 at
825 nm. The input to the dispersive stretching fibre was attenuated to ensure linear
propagation. The real-time spectra were recorded with a 25 GHz InGaAs photo-
diode (UPD-15-IR2-FC Alphalas) and 20 GHz real-time oscilloscope (DSA72004
Tektronix), leading to an effective resolution of ~0.03 nm.

Data availability
The data that support the plots, code modules used in data analysis and other
findings of this study are available from the corresponding author upon reasonable
request.
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