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Abstract—Energy storage enables modification of the customer 

load profile from the grid perspective without leading to a decrease 

in comfort level. To meet the future challenges of the energy sector, 

distribution system operators (DSOs) in Finland have recently 

discussed power-based distribution tariffs (PBDTs) for small 

customers. The current distribution tariffs of small customers do 

not respond well to current challenges, and they require reform. 

The peak powers of the customers can be decreased with energy 

storage, and via incentives included in the PBDTs, energy storage 

can prove to be profitable for household customers. In this paper, 

we study the profitability of electrical energy storage under 

different pricing structures. The study simulates changes in 

customer consumption with a modeled storage system. 

Simulations consider the requirement of load forecasting in the 

storage control system. The results of the study show that energy 

storage can be profitable if the consumption includes only a small 

number of high peak loads during the pricing period when 

applying new distribution tariff structures. However, the price 

level of the tariffs and the tariff mechanisms affect the results. 

 
Index Terms—Batteries, Cost optimal control, Energy 

management, Energy storage 

I.  INTRODUCTION 

EMAND response (DR) for small customers is not 

common, mainly because of its poor profitability and 

various other factors. For example, there is a lack of DR 
service providers that can offer profitable and easy ways to 

implement the necessary actions without any loss of comfort for 

the customers. Electrical energy storage makes it possible to 

change the load profile of the customer from the grid point of 

view such that the customer does not notice the changes. Energy 

storage can be used in DR if, e.g., it is controlled based on the 

hourly spot price of electricity in the day-ahead market [1]–[2]. 

In this manner, individual customers can participate in 

smoothing the demand of the entire power system. However, in 

recent years, variation of the energy price in Northern Europe 

has been so low that the profitability of energy storage has been 
poor [3], and its profitability in Finland has been studied, e.g., 

in [1]. Profitability can be improved if customers have their own 

energy production (e.g., solar panels), but currently, profits are 

still low. The benefits that a customer can derive from self-

production depend primarily on the energy-dependent 

volumetric component of the distribution tariffs. The magnitude 

of the volumetric portion of the electricity bill can be 

significantly lowered if the produced electricity is self-
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consumed on-site. Additionally, the type of electricity contract 

that the customer has with the energy retailer and the energy-

related taxes affect the benefits of self-production. Another 

possible benefit for the customer who owns energy storage is 

that it enables the use of electricity during power outages. 

 Smart metering is a key component in the development of 

electricity distribution pricing. Due to the decree set by the 

Finnish Government in 2009, almost all customers 

(approximately 98%) are currently supplied with a new smart 

meter that features hourly energy measurements as well as 

registrations of supply quality and DR functionality [4]. Much 
discussion of the use of power-based distribution tariffs 

(PBDTs) for small customers in Finland has ensued [5]. PBDTs 

have long been available for large customers, but with the help 

of advanced metering infrastructure, they could also be applied 

for smaller customers. PBDTs can create an incentive for 

customers to decrease their hourly average maximum power 

(HMP) values, which are determined by hourly energy 

measurements gathered from smart meters. If the HMPs could 

be decreased for several customers, the entire power system 

could benefit, e.g., if loading of the distribution transformers 

can be decreased [6]. 

PBDTs have been studied, e.g., in [7] and [8]. The 
operational environment of a distribution system operator 

(DSO) strongly affects the cost structure of the DSO. The 

variation in the operational environments between different 

DSOs means that the price levels of the distribution tariffs vary 

significantly. 

Energy storage has multiple advantages, and it is important 

to search for new ways to improve the profitability of energy 

storage because it is currently quite poor. At present, the prices 

of energy storage with sufficiently high efficiency (e.g., 

lithium-ion batteries) are high, but in recent years, their 

acquisition prices have become more affordable, and this trend 
is expected to continue in the future [9]. Lower acquisition price 

improves the profitability of energy storage, but in this paper, 

the focus is on assessing the cost benefits of energy storage in 

the near future and investigating how profitability could be 

improved, especially if PBDTs are applied across a wide scale. 

The cost benefit of the energy storage in this work means a 

difference in the annual total electricity bills of the customers 

(i.e., charges of the DSO and the retailer) when the storage is 

used versus not used. 

PBDTs have not been comprehensively studied with energy 

storage. Storage operations with demand charges have been 

studied, e.g., in [10]–[11], where the use of energy storage was 
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investigated in a similar setting to the one discussed in this 

paper. In the U.S., certain utilities apply tariffs, which include 

demand charges for residential customers. One possibility in 

designing demand charges for industrial and commercial 

customers, as presented in [10], is to make the customer pay for 
the highest 15-minute average power (kW) of the billing period. 

The results presented in [10] show that customers could achieve 

cost savings with the use of energy storage. Designs for the 

demand charge have been more widely introduced, and the 

impacts on residential customers with storage operations with 

one presented PBDT structure was studied in [11]. The results 

presented in [11] also showed that residential customers could 

achieve cost savings with use of energy storage together with 

the PBDT and control systems that are considerably different 

from those in our study. In this paper, different PBDTs and 

actual consumption data are used, and we highlight the fact that 

customer consumption must be forecasted for the future. 
Thermal energy storage with demand charges has been studied, 

e.g., in [12], but that study did not include electrical energy 

storage.  

The benefits of energy storage have been extensively 

investigated. Sizing of the energy storage and its optimal 

management with dynamic pricing and integration of renewable 

energy production have also been studied, e.g., in [13]. The 

study presented in [13] investigated the factors on which 

optimal storage sizing depends and strategies for how to control 

the storage in a profitable way. The results presented in [12] are 

similar to our studies in [1], but the problem formulation and 
the solution are different. 

The PBDT structures examined in this paper were presented 

in [14] and [15]. The studied tariffs and their components are 

listed as follows: 

1. Power tariff (PT), including basic charge (€/month), 

volumetric charge (€/kWh) and power charge (€/kW) 

based on the highest HMP of each month; 

2. Threshold power tariff (TPT), including basic charge 

(€/month), volumetric charge (€/kWh), and power 

charge (€/kW), which is used only if the HMP of the 

month exceeds a set threshold limit; 

3. Power limit tariff (PLT), including power charge 
(€/kW) based on a preordered capacity that the customer 

can select and commit to not exceed; and 

4. Step tariff (ST), including basic charge (€/month) and 

volumetric charge (€/kWh), which depends on the 

average power of each hour. If the average power 

exceeds a step limit, the unit charge is greater than that 

below the limit. 

The tariff structures have many advantages and disadvantages, 

and it is important that the properties of different options are 

studied thoroughly before they are introduced in practical 

implementation. The properties of various distribution tariff 
structures were compared from multiple viewpoints in [14]. In 

this paper, the focus is on household customers with energy 

storage. The study investigates the benefits of energy storage 

with PBDTs, and for this purpose, an evaluation method is 

introduced to assess their profitability. 

 Energy storage and its benefits have been investigated in 

previous studies. However, earlier work did not include a 

simulation case in which control of energy storage is based on 

PBDTs combined with the market price of electricity. A 

comparison of the impacts of different PBDTs on the 

profitability of energy storage by small customers has never 

been conducted. Additionally, the fact that the consumption of 

the customer must be forecasted for the control system to 

compute the amount of energy that must be stored at each 
moment was not considered in earlier studies. 

This paper proposes a novel energy storage control 

algorithm. Additionally, the profitability of household energy 

storage is evaluated in an operational environment that includes 

novel incentives. The evaluations applied in earlier studies did 

not consider different possible PBDT structures of the DSO 

combined with control based on the day-ahead market price of 

electricity. Additionally, this novel perspective simultaneously 

considers modeling of the energy storage losses, load 

forecasting and different incentives in use of the energy storage. 

Therefore, this paper offers a more comprehensive view of the 

profitability of energy storage compared with the evaluations 
presented in earlier studies. 

In summary, the novelty of this paper results from the following 

key items that supply a clear contribution to the scientific 

community. First, the study presented in this paper involves 

various PBDT structures and their impacts on the profitability 

of energy storage. These aspects have not been investigated as 

extensively in recent academic literature. Second, a novel smart 

control method for cost-based optimization is developed using 

load forecasting and including various cost incentives. 

Additionally, we study the impacts of errors in load forecasting. 

Finally, our study is based on actual load data from a large 
group of small customers, which increases the value and 

practicality of our investigations. 

The paper is organized as follows. A simulation model that 

includes battery modeling and control systems is described in 

Section II. Section III presents the input data used in the 

simulations. The simulations and their results are discussed in 

Section IV. Section V presents conclusions of the study. 

II.  SIMULATION MODEL 

The simulation model consists of a two-step control system 

and a battery model. Two-step control means that the control 

initially makes a decision as to what strategy is profitable 

during the next hour based on load forecasting and the state of 

charge (SOC) of the storage. The first step in the control is 

known as hourly control. The second control step is known as 

continuous control, and the purpose is to control the storage 

during the hour to execute the objective given by the first step. 

This scenario is rarely possible because the load forecast is not 

equal to the real consumption in every case, and various control 

actions must be performed during the hours. Simulation is 
applied for a large group of customers, and the optimization 

must be performed for every simulated hour, which requires the 

algorithm to be efficient. To perform the aforementioned tasks, 

we apply the following algorithm. 

A.  Battery model 

In battery modeling, the state of charge is the most important 
variable because all other variables model how the SOC 

changes between the two different time steps (i.e., hour) [1]. 

These changes can be modeled by the following (1) 
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, (1) 

where Et is the amount of stored energy at time t, Emax is the 

maximum capacity of the energy storage, the SOC at time t is 

SOCt , SOCt-1 is the SOC of the previous time step from time t, 

variable Bt is the energy transfer to or from the energy storage, 

and Beff is the efficiency of the transfer. 

The energy storage SOC model can be produced with (1) for 

all different battery types. Differences between battery types 
derive from losses, which are depicted by the variable Beff. The 

cell type of the studied battery is lithium iron phosphate (LFP, 

LiFePO4) with graphite as the negative electrode. This 

alternative is suitable for household use because of its long 

cyclic and calendar lifetime and its good safety features [16].  

 The energy storage systems losses mainly occur in the 

converters and in the storage itself [16]. In this study, the 

efficiency of the inverter ηinv is assumed to be 98%, and the DC 

converter efficiency ηdc is assumed to be 99%. Thus, the energy 

transfer efficiency between the network and storage is 97%. 

Energy storage losses occur during both charging and 
discharging, but the major portion of the losses occurs during 

charging [17]. In modeling the losses, it can be approximated 

that the battery discharge efficiency ηd and the charging 

efficiency ηc are equal. Therefore, modeling can be performed 

with a single equation for both flow directions. The charging 

efficiency depends nonlinearly on the charging current Ic [18]. 

When the battery is not charged or discharged completely, 

charging losses depend linearly on the charging current if the 

internal serial resistance Rb is assumed constant. In this case, 

charging efficiency can be calculated by (2). 

,          (2) 

where Vb is the nominal voltage of the battery. The advantages 

of including the internal serial resistance-based model is that 

the various batteries are easily compared with each other, and 

the aging of the battery can be modeled using the same 

resistance [19]. 

Charging and discharging of the electrical energy storage 

systems are modeled based on the battery, inverter, and 

converter efficiencies [16]. The SOC of the battery can be 

calculated by (1). The efficiency Beff can be obtained by 

multiplying the efficiencies ηdc, ηinv, and ηc. The energy transfer 
of storage Bt is calculated by multiplying the charging current 

Ic with the charging voltage Vc, which can be calculated by (3). 

            (3) 

 Based on the transmission of energy among the storage, 

consumption and power grid, the energy drawn from the power 

grid G can be determined by (4).  

,

     (4) 

where D is the consumption of customer. The upper portion of 

the equation is valid when charging, and when discharging, 

the lower portion of the equation is in effect. 

B.  Battery control boundaries 

Compliance with certain basic principles is necessary in 

battery control [1]. Use of a battery in a low SOC is not 

profitable because when the battery SOC drops, the internal 

losses increase rapidly as the terminal voltage decreases and the 

internal resistance of the battery increases, leading to increasing 

discharging losses [18]. For these reasons, the battery SOC has 

a lower boundary of 25% of the initial capacity. The limit is 

lower for an LFP battery, but for hourly control, this boundary 

is set higher such that the continuous controller can react better 

in unexpected situations. The battery SOC also has an upper 
limit of 95% of the initial capacity because with a notably high 

SOC, the internal resistance of the battery increases rapidly. 

C.  Load forecasting 

Load forecasting plays a key role in the control system 

because the future consumption of customers cannot be known 

exactly. The control system requires information on what will 
happen in the next few hours such that decisions can be made 

with respect to the amount of energy that must be stored for the 

coming hours. The load forecast for the simulation model is 

constructed using a MATLAB® function, and the forecast is 

based on the historical consumption of the customers and the 

outdoor temperature [20]. 

Consumption variation during the days can be forecasted 

with sufficient accuracy, as shown, e.g., in [1]. However, the 

individual daily HMPs are rather difficult to forecast because 

they depend strongly on customer choices, e.g., how various 

everyday electrical appliances are used. Forecasting errors are 
examined later in the simulations. Forecasting of hourly 

consumption is a highly important task if the control system 

attempts to minimize the HMP. If the forecasted HMP is too 

low, it leads to storage over usage when the control attempts to 

keep the HMP below the set limit. However, if the forecasted 

HMP is too high, the storage might not be used at all in the 

worst case. 

Because the results of the simulations depend on the 

accuracy of the load forecast, the effects of the forecasting 

errors are studied as follows. First, the number of customers in 

the study group is sufficiently high to enable stochasticity in the 

simulations. Individual load forecasts for each customer create 
variability of the forecasting errors in the study group, and this 

can be observed from the results in the benefit distribution. 

Second, the simulations are run using two types of load 

forecast: non-ideal and ideal. An ideal forecast means that the 

consumption of a customer is known exactly before any control 

actions are applied. This situation is highly unlikely in reality, 

but in the simulation, this scenario is used to compare the effects 

of forecasting errors and to evaluate the ideal cost benefits of 

the energy storage. When the load is forecasted, it is known as 

a nonideal load forecast thereafter. 

D.  HMP decrease with energy storage 

With the PBDTs, customers can decrease their electricity 

costs by decreasing their HMPs. Discharging the battery energy 

storage during the peak load hours is one way to accomplish 

this goal. The problem in this scenario is that the control system 

must know how much energy can be discharged from the 

energy storage during different hours such that the HMP is 
minimized for the entire pricing period. The risk exists that the 
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energy storage is empty when discharging is needed if the past 

HMPs have decreased the SOC to an excessive extent. For this 

reason, load forecasting is an essential component of the control 

system. However, forecasting errors cause unexpected 

situations in which it is often difficult for the control system to 
react. 

The solution for the optimization problem of decreasing the 

HMP is based on the optimal power limit, which is the 

optimized upper limit of the HMP. The control system aims to 

maintain the HMP below the set value. The power limit can be 

set based on the structure of the tariff. With the PLT, customers 

can select the HMP limit, and with energy storage, the control 

system aims to maintain the power below the set value. If the 

tariff structure is ST, the step-limit can also be set as the power 

limit. With TPT, the threshold can be set as the power limit, or 

if the energy storage capacity is not sufficient, minimization of 

the power limit must be attempted. The PT is the only tariff 
structure in this paper in which the power limit is based only on 

the minimization algorithm and the capacity of the energy 

storage can be utilized completely. 

Minimization of the HMP in this paper is accomplished with 

an algorithm, which is shown in the flow chart in Fig. 1. In the 

algorithm, load forecasting for the following 18 hours is 

performed hourly. The selected forecasting and optimization 

period is suitable, as presented in [1]. Based on the load forecast 

and the output power of the energy storage, the algorithm 

calculates a power that is the theoretical minimum. This power 

is set as the new power limit. The algorithm subsequently 
calculates whether it is possible to remain under the power limit 

when the changes in the SOC during the optimization period are 

considered. If the limit is not possible to achieve, the power 

limit is increased until it can be achieved in the set SOC range. 

The calculated power limit is used in energy storage control. At 

times, forecasting errors make it impossible to remain under the 

power limit if the real HMP is higher than the forecasted value. 

In this situation, the HMP is decreased as much as possible, and 

the highest HMP is set as the new power limit. The algorithm 

subsequently moves to the next hour. During the pricing period, 

the power limit only increases and never scales down because 

the power charge of the PBDT is billed based on the highest 
HMP of the pricing period. 

E.  Market price-based control of energy storage 

In the Finnish deregulated market, competitive energy 

retailers are in charge of energy trading, and the DSOs control 

the power delivery in the distribution networks and operate their 
businesses as monopolies. In one of the energy tariff options in 

Finland, the price of energy is based on the hourly spot price of 

the day-ahead electricity market, which means that a separate 

price exists for each hour. The customer can benefit from 

shifting consumption to cheaper hours and avoiding use of 

energy when the price is high. The benefits of market price-

based control have been studied, e.g., in [1]. In this paper, the 

same market price-based control algorithm is used. The 

algorithm is based on the near-future day-ahead market spot 

prices and on the load forecasting. 

The goal of the algorithm is to find pairs from the hours of 

the optimization period, i.e., when the prices are at their highest 
and lowest. If the price difference between the values is 

sufficiently high, the energy storage charges during the 

cheapest hour and discharges during the most expensive hour. 

The algorithm subsequently searches for the second highest and 

lowest prices, etc. Charging and discharging are limited such 

that the SOC must remain within the set boundaries, and 

feeding of electricity to the grid is not permitted. For this 

reason, load forecasting is important because it is essential to 

know how much energy can be discharged from the battery 

during the target hours. 
The use of energy storage for load shifting is not profitable 

if the price difference between different hours is not sufficiently 

high [1]. The lower price must be cheaper than the higher price 

multiplied by the efficiency coefficient of the energy storage, 

but even this is not necessarily sufficient because use of the 

battery causes aging. A sufficiently high price difference 

depends on many factors, such as the future load profile of the 

customer, which is difficult to determine exactly. 

F.  Combination of different control methods 

Different control aims can be combined at the same time. For 

example, energy storage can be simultaneously applied for both 

HMP decrease and for market price-based control. Fulfilling 

both objectives simultaneously might prove to be difficult 

because the benefits from both aims derive from different 

principles. 

The power-based charges of PBDTs are so high in this study 

that even a small decrease in the HMP gives at least the same 
benefit as market price-based control. For this reason, we use a 

control principle in which the energy storage is used first in 

HMP decrease and second in market price-based control to 

combine the two control methods. If the variation of the energy 

price increases as expected in the future market, which includes 

more weather-dependent renewables, it might change the 

outcome, i.e., the achievable benefits. In this case, we must 

calculate the costs of energy storage with different control 

methods and compare the results against the benefits. Based on 

this information, the control system attempts to reach the most 

profitable solution at each moment. 

 
Fig. 1.  Flow chart of the algorithm for HMP minimization. 
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III.  INITIAL DATA 

A.  PBDT prices 

To compare the effect of different PBDTs, we apply the 

charge components presented in [15] for the example network 

of the study. The studied network is located in a rural area in 

Finland. The tariffs aim to fulfill the planned revenue for the 

DSO when no major changes in the consumption behavior of 

the customers are expected (i.e., changes based on the tariffs). 
The tariff design principles are described in additional detail in 

[21]. The PBDT structures applied in the study are presented in 

Table I. 

B.  Spot prices 

In spot price-based control, we apply the day-ahead spot 

prices of the Nord Pool (Finland area price) from the year 2015 
[22]. The benefit of load shifting depends on the variation of 

electricity energy prices from hour to hour. The variation 

between different years and their effects on the benefits from 

the DR point of view has been studied, e.g., in [3]. The variation 

of spot prices was highest during the 2013-2016 period in 

Finland. In 2015, the average difference between the highest 

and lowest daily prices, which is also known as the average 

daily price range, was approximately 30 €/MWh, and during the 

other years of the same period, the range was approximately 22-

25 €/MWh. The average daily price varied in the range 30-41 

€/MWh during the 2013-2016 period, and the price was the 
lowest in 2015. 

C.  Consumption data 

Consumption measurements used in the study are hourly 

energy measurements collected from actual customers between 

January 2014 and August 2016. Customer consumption is 

measured using a smart meter, and the DSO automatically reads 
the consumption data remotely. The customers under 

investigation are household customers living in detached 

houses. Based on the information system of the DSO, the 

majority of these customers have electrical heating systems, 

which means that their electricity consumption is more or less 

dependent on the outdoor temperature. The group also includes 

a few larger customers, e.g., farms. The total number of 

customers in the study is 1525. 

 From the PBDT point of view, it is important to know how 

high the HMPs of the customers will be. Fig. 2 depicts the 

distribution of the HMPs in the study group. The average HMP 
is near 9 kW, but for the majority of the customers, this value is 

lower. The HMPs, together with average consumption, show 

how much the demand peaks of the customers could potentially 

be decreased using energy storage. For example, if the average 

consumption of the customer is 2 kW and the HMP is 7 kW, 

then even with an ideal energy storage system, the HMP can be 

cut by only 5 kW during the peak load hour of the customer. 

IV.  SIMULATIONS AND RESULTS 

A.  Forecasting errors 

Because the control algorithm uses the load forecast in 

decision-making, the forecasting errors affect the results of 

optimizations in hourly control. Forecasting is difficult if 

customers have high individual HMPs. Fig. 3 presents the mean 
absolute error (MAE) of the next hour load forecast as a 

function of the total annual energy consumption of the 

customer. We observe that the forecasting errors increase when 

the total energy consumption increases. The average total 

annual energy consumption of the customers in the study group 

is 13.6 MWh, and the average MAE of the next hour load 

forecast of the customer is 0.8 kW/h. 

Although the MAE is not as high, the magnitudes of the 

HMPs are especially difficult to forecast. The forecasting 

algorithm is based on the average consumption as a function of 

temperature and time. The forecasting does not consider 

individual high HMPs. For example, if the consumption of the 
customer has been smooth, and if at a certain point in time, the 

customer uses a high-powered electrical device, the HMP is 

highly difficult to forecast. For many customers, the HMP 

forecast is systematically too low because the forecast is based 

on average values. An HMP forecast that is too low does not 

cause much loss because the information from HMP timing is 

much more important than the exact information from the 

magnitude of the HMP. The size and maximum output power 

of the energy storage limit the maximum decrease of HMP, and 

the decrease does not depend on the magnitude of HMP. To 

evaluate the effects of forecasting errors, the simulations were 
also conducted using ideal load forecasts. 

B.  Decrease of yearly HMP 

If the power charge of the PBDT is determined by the HMP 

of the year and the energy pricing is not based on the market 

spot price, the capacity of the energy storage is only used to 

decrease the HMP. The potential for how much the HMP can 
be decreased depends on the load profile of the customer, the 

forecasting errors and capacity, the efficiency, and the C-rate of 

the battery energy storage. Our objective is to attempt to find a 

suitable battery size with a capacity and C-rate that is the most 

profitable solution for the customer. 

 
Fig. 2.  Distribution of HMPs of the customers in the study group in 2015. 
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TABLE I 

APPLIED PBDT STRUCTURES [15] 
 Basic charge Energy charge Power charge 

PT   4.74 (€/Month) 0.72 (c/kWh) 7.23 (€/kW/Month) 

TPT 23.61 (€/Month) 0.72 (c/kWh) 7.23 (€/kW/Month, 

if p>5 kW) 

PLT   258.84 (€/year/5 

kW) 

ST   4.74 (€/Month) 4.10 (c/kWh) or 8.43 

(c/kWh, if p>5 kW) 
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In the simulations, we assumed that every customer of the 

study group has an energy storage system. Fig. 4 shows how 

much the HMP can be decreased with energy storage of 

different sizes. We use three different capacities (3, 6, and 

9 kWh), each of which has three different C-rates (0.4C, 0.7C, 

and 1C). The average HMP decreases when the storage capacity 

increases, but the change is higher between 3 and 6 kWh than 

between 6 and 9 kWh. The same trend is also shown in the 
median and maximum values. When we look at the effect of the 

C-rate, we note that the average is highest with 0.7C and the 

median is highest with 0.4C, except for the 3 kWh storage, for 

which 0.7C leads to the highest value. The maximum is highest 

with 1C, but the change between 0.7C and 1C is minimal. We 

also observe that the increase of the C-rate enables a higher 

HMP decrease, but it also increases the risk that the control fails 

and the actual HMP does not decrease at all.  

C.  Impact of pricing period 

The power charge of the PBDT can also be determined by 

the HMP for the month, which means that the power decrease 

optimization must be calculated monthly. We can assume that 

the energy storage must be used approximately 12 times more 

often than the current yearly rate to gain the same benefit. The 

theoretical maximum of the HMP decrease is the same as the 

annual one, but the risk exists that the maximum decrease is not 

achieved. 
The difference between the monthly and yearly pricing 

periods can be evaluated by comparing the average of the 

monthly and yearly power decreases. Fig. 5 presents the HMP 

decrease of the customers when the pricing period is the whole 

year and the average monthly HMP decreases when the pricing 

period is one month. Energy storage with the capacity of 6 kWh 

and a C-rate of 0.7C is used in the simulation. 

The results show that approximately two-thirds of customers 

have a higher power decrease with a yearly period and one third 

has a higher average power decrease when the pricing period is 

one month. In the monthly case, zero customers achieved the 
maximum benefit, and only a few customers had high (a 

decrease of over 75% of the HMP) benefits. Most of the 

customers had rather similar benefits, and for only a few 

customers, the benefits turned out to be quite low because of 

discrepancies between the months and the customer behavior. 

The same customer can achieve the maximum benefit one 

month and a low benefit the next. This scenario also means that 

if certain customers do not receive any benefit from the yearly 

pricing period, the monthly pricing period can still lead to a 

near-average benefit for the whole group. 

 Another difference between pricing periods is how much and 
how often the energy storage must be used to obtain the benefit. 

The hours that the energy storage must be discharged compared 

with the HMP decrease for monthly and yearly pricing periods 

are shown in Fig. 6. We observe that the number of discharge 

hours and the magnitude of the HMP decrease do not show 

much dependency. With the same number of discharge hours, 

one customer might achieve a 4 kW HMP decrease, whereas 

another customer might not achieve any decrease in power. 

Energy storage must be used much more often with the 

monthly pricing period than with the yearly period to achieve 

the same benefit. With the monthly pricing period, the energy 

storage should be discharged for over 548 hours per year on 
average such that the average monthly HMP decrease is 

1.65 kW, which means that the energy storage must be 

discharged for over 332 hours on average to achieve a decrease 

of 1 kW. With the yearly pricing period, a 1.81 kW power 

decrease can be achieved with 78 discharge hours on average, 

meaning an average of 43 discharge hours for a 1 kW power 

decrease, which is approximately 13% of the hours needed in 

the monthly pricing period case. 

D.  Combination of HMP decrease and market price-based 
control 

The combination of different control methods produces an 

ideal situation to sum the benefits from both control methods. 

There is also a risk that when the spot price-based control is 

 
Fig. 4.  HMP decrease of 1525 customers with three different energy storage 

system capacities and three different C-rates. 
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Fig. 3.  Mean absolute error of load forecasting relative to the total annual 

energy consumption. 

 

0

1

2

3

4

5

0 20 40 60 80 100

M
ea

n
 a

b
so

lu
te

 e
rr

o
r 

(k
W

/h
)

Total annual energy consumption (MWh)

 
Fig. 5.  HMP decrease with yearly pricing period and average decrease with 

monthly pricing period when customers have 6 kWh energy storage with a C-

rate of 0.7C. The customers are not presented in the same order in both cases 

because the HMP decrease can differ between pricing period changes. 
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combined with the power decrease, different control targets can 

lead to loss of the achievable benefit from both methods. 

Changes in the HMP decrease of customers when the spot 

price-based control is used with an energy storage capacity of 

6 kWh and a C-rate of 0.7C are shown in Fig. 7. The changes 

are presented as histograms in which the customers are divided 

into groups based on their HMP decrease. We note that for the 
majority, the HMP decrease is lower when the spot price-based 

control is involved. If the pricing period is one year, the HMP 

decrease for approximately 26% of the customers remains the 

same or is better than it was without the spot price-based 

control. If the pricing period is one month, the same ratio is 

16%. Involvement of the spot price-based control caused a loss 

of benefits for all other customers. The HMP decrease might be 

higher even if the spot price-based control is involved. 

E.  Profitability of energy storage 

The investment costs and magnitude of tariff components 

affect the profitability of the energy storage. The investment 

costs of the energy storage include the costs of the battery and 

power electronics. These costs are estimated to decrease in the 

near future. The investment costs of the energy storage were 

studied, e.g., in [23], where it is stated that in 2015, the LFP 

battery cell prices were in the 200-350 €/kWh range and the 

estimated price in 2020 is expected to range from 100 to 200 
€/kWh. Taxes, installation costs, management system costs and 

other costs should be added to these prices. The realistic level 

of the consumer prices is closer to double what is listed. The 

cost of the necessary power electronics was in the 100-

150 €/kW range in 2015, and it is assumed to be approximately 

80-110 €/kW in 2020 [23]. In this paper, we assume that the 

power electronic costs are 120 €/kW and that the cell price is 

200 €/kWh. For a 6 kWh battery and 0.7C rate, the costs are 

approximately 2900 €. The lowest possible price in 2020 is 

approximately 1500 €, and the maximum price in 2015 is 

approximately 4800 €. These prices are used as benchmark 
values when we estimate the profitability of the energy storage. 

Investment in the energy storage system is profitable if the 

benefit from the annual electricity costs is sufficiently high that 

the total benefits exceed the investment costs before the lifetime 

of the energy storage ends. The calendar lifetime of the LFP 

battery system is approximately 15 years, as presented in [24]. 

If we calculate a discounted cash flow for the next 15 years of 

energy storage use, the value of cost benefits in the future will 

be higher than now. Additionally, the changes in energy prices 

are difficult to forecast. However, if we make a supposition that 

the prices remain stable and the losses caused by battery 

degeneracy are compensated with the changes in currency 

value, we can calculate that the benefit will be constant over a 
15-year period. This scenario means that the average yearly 

benefit must be at least 100 € with 1500 € investment costs, 194 

€ with 2900 € investment costs, and 320 € with 4800 € 

investment costs. 

Fig. 8 shows the savings in distribution costs with different 

PBDT structures and control methods when the non-ideal load 

forecast is used in the control. Similar results are presented in 

Fig. 9, but the calculation is based on the ideal load forecast. 

Customers are divided into groups based on their achievable 

savings in 10 € blocks. We observe that the losses in annual 

savings caused by the error in the load forecast are minimal. 

The use of load forecast impacts only a few customers, and the 
changes are so low that they are not noticeable from the 

distribution with the 10 € blocks. The results are quite similar 

in both Figs. 8 and 9. With PT, the annual cost savings are 

distributed between 0 and 340 €/a such that the majority of the 

customers achieve savings of approximately 150 €/a. The 

average savings per customer is 143 €/a with a non-ideal load 

forecast and 205 €/a with an ideal load forecast. If a threshold 

limit of 5 kW is included in the power tariff (TPT), the 

customers with HMP values below this limit do not receive 

benefits. Other customers can achieve notably high benefits if 

the HMPs are slightly over the threshold limit, and the best 
benefit can reach as high as 680 € in a year. The average cost 

savings per customer are 135 €/a with a non-ideal load forecast 

and 270 €/a with an ideal load forecast. The tariff and the 

control method ST lead to significant cost benefits (i.e., over 

100 €/a and even 460 €/a) for a small group of customers, but 

the majority is left either completely without cost benefits or 

with only a rather low benefit. The average cost savings per 

customer are 41 €/a with both load forecasts. Benefit 

distribution among customers with PLT appears highly 

interesting because almost half of the customers gain a 259 €/a 

benefit while the other half receives no benefit. The average 

cost savings per customer is 133 €/a with a non-ideal load 
forecast and 138 €/a with an ideal load forecast. 

 
Fig. 7.  Changes in HMP decrease of customers when spot price-based control 

is involved. 
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Fig. 6.  Discharge hours per year compared with HMP decrease with a monthly 

or yearly pricing period when customers have an energy storage capacity of 6 

kWh with a C-rate of 0.7C. 
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Figs. 10 and 11 show the total benefit achieved from energy 

and distribution costs with different control methods in which 

the spot price-based control is combined with the PBDT. In Fig. 

10, non-ideal load forecasts were used, and in Fig. 11, ideal load 

forecasts were used. Additionally, the benefit achieved from 
spot price-based control without the PBDT is shown in Figs. 10 

and 11. The forecasting errors affect the results significantly 

when spot price-based control is involved. The average savings 

per customer with different tariffs in PT, TPT, ST, and PLT are 

81, 142, 24, and 54 €/a, respectively, with a non-ideal load 

forecast and 214, 276, 55, and 151 €/a with an ideal load 

forecast. The average savings per customer with only the spot 

price-based control are 22 €/a with a non-ideal load forecast and 

27 €/a with an ideal load forecast. We observe from Figs. 8 and 

10 that with a spot price-based control, the cost benefits are 

lower on average than without it if the non-ideal load forecast 
is used in the control. Individual customers can achieve even 

higher benefits with a spot price-based control, but with all 

control methods, they are more likely to achieve higher benefits 

without it. A combination of the PBDT and a spot price-based 

control makes it possible to achieve higher benefits than with 

spot price-based control alone. 

The benefits from the combination of spot price-based 

control and control based on the PBDT could be higher if the 

load forecasts are accurate, and enhancing the accuracy of load 

forecasting to account for both control aspects requires further 

research. Based on the results of this paper, it can be stated that 

the importance of the load forecast accuracy is more critical in 

the case in which energy storage must be activated more often 

to gain the benefit. As shown in the study (e.g., in Fig. 6), usage 
of the energy storage varies between different PBDT structures, 

although the achievable benefits are similar. Actual cost 

benefits achieved from the energy storage depend on, e.g., the 

magnitudes and structure of the tariff components and the actual 

realized consumption behavior of the customer. When the 

PBDTs are widely introduced, their structures and prices vary 

between different DSOs. 

The results of this paper do not directly indicate whether 

energy storage is profitable or not. However, the results show 

how different tariff structures affect the benefits of customers. 

The prices of the energy storage system used in the study are 

rather rough estimates and are used only as benchmark values 
to compare the annual benefits of the energy storage and related 

investment costs. In this paper, the only flexible element is the 

energy storage, but it is also possible to combine the use of 

energy storage and traditional load control. For example, a 

portion of the high HMPs can be decreased by controlling the 

water boiler first, and after doing so, the energy storage can be 

used in further HMP decrease. The profitability and benefit 

studies of these types of DR actions require further research. 

 
Fig. 8.  Savings in annual distribution costs for customers with different energy 

storage control methods and distribution pricing structures when using a non-

ideal load forecast. Profitability limits with three different energy storage 

system prices are depicted by the vertical lines. 
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Fig. 10.  Total benefits for customers with different control methods and 

pricing structures when using a non-ideal load forecast. Profitability limits 

with three different energy storage system prices are depicted by the vertical 

lines. 
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Fig. 9.  Savings in annual distribution costs for customers with different energy 

storage control methods and distribution pricing structures when using an ideal 

load forecast. Profitability limits with three different energy storage system 

prices are depicted by the vertical lines. 
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Fig. 11.  Total benefits for customers with different control methods and 

pricing structures when using an ideal load forecast. Profitability limits with 

three different energy storage system prices are depicted by the vertical lines. 
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V.  CONCLUSIONS 

This paper introduces an evaluation method designed to 

assess the profitability of the DR, especially in the case of 

energy storage applied by household customers. The 

investment costs of energy storage and the load forecast of 

customers strongly affect the profitability, and the impacts of 

these factors are evaluated in this paper. Additionally, the 

electricity market environment, which defines the level of 

electricity prices and the volatility of the market spot prices, 

affect the profitability of the energy storage. This paper focuses 

on the impacts of power-based distribution tariffs (PBDT) on 

the benefits achieved through the use of energy storage. Novel 

PBDTs of small customers can significantly change the 
profitability and control targets of electrical energy storage in 

households. Without the use of the power-based component of 

the distribution tariff and with the present volatility of the 

market spot prices for electricity, energy storage is not 

profitable. The results of this paper show that energy storage 

can be profitable with a PBDT, or at least that the profitability 

can be improved. 

The results also show how different tariff structures affect 

the customer benefits. The tariff structure TPT enables the 

highest customer benefits for those with an HMP that is high 

relative to their average consumption. From the DSO 
viewpoint, this scenario is favorable because the TPT especially 

encourages these customers to lower their HMPs. With PT, the 

effect is similar to that of TPT but is not as powerful because 

the benefits are lower for customers whose HMPs are the 

highest. The PLT and ST structures are problematic because 

they include discontinuous steps or boundaries in the structures, 

which make the storage profitable for a subset of the customers. 

The benefits are not in line with the relationship of the HMP 

and average consumption. More accurate load forecasting can 

increase the profitability of the energy storage with PBDT 

structures, which requires frequent use of energy storage, e.g., 

with market price-based control. A topic for further research is 
the development of a stochastic control method that minimizes 

the effect of errors in the load forecasts or at least improves their 

accuracy. 

Although the results of this study are achieved in the Finnish 

electricity market environment, the proposed method and 

algorithm are globally applicable with modification and 

consideration of the differences in the given electricity market 

environment. Additionally, the algorithm can be applied in a 

home energy management system (HEMS) in the future. 
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