
This paper is a postprint of a paper submitted to and accepted for publication in 
IET software and is subject to Institution of Engineering and Technology 
Copyright. The copy of record is available at IET Digital Library.

Research Article

Fighting network restrictions of request-
response pattern with MQTT

ISSN 1751-8806
Received on 29th September 2017
Revised 10th February 2018
Accepted on 29th March 2018
doi: 10.1049/iet-sen.2017.0251
www.ietdl.org

Antti Luoto1 , Kari Systä1

1Laboratory of Pervasive Computing, Tampere University of Technology, Korkeakoulunkatu 10, FI-33101 Tampere, Finland
 E-mail: antti.l.luoto@tut.fi

Abstract: As Internet-of-Things (IoT) devices become more powerful, they can also become full participants of Internet
architectures. For example, they can consume and provide RESTful services. However, the typical network infrastructures do
not support the architecture and middleware solutions used in the cloud-based Internet. The authors show how systems
designed with RESTful architecture can be implemented by using an IoT-specific technology called message queuing telemetry
transport (MQTT). Their example case is an application development and deployment system that can be used for remote
management of IoT devices. To evaluate the proposed solution, they performed resource consumption experiments to compare
HTTP and request-response usage of MQTT. The results suggest that MQTT uses less central processing unit time and
memory.

1 Introduction
We assume that when the devices in the Internet of Things (IoT)
become more powerful and capable of performing complex tasks,
the execution will move towards the edge devices. This means the
devices become programmable and participate in rich interactions
with other peers on the Internet.

However, the network and system architectures of IoT systems
are usually constrained and optimised for minimal consumption of
energy and other resources. One typical constraint is that devices
are connected to the local network and that network is connected to
the Internet through a gateway. This kind of network configuration
imposes constraints, for example, the devices are not directly
accessible from services on the Internet.

In this article, we explore compatibility between IoT and
Internet architectures. The research was inspired by our existing
system [1] that uses the RESTful architecture for device
management and the management system has to address devices
directly. In this research, we show how the functionality of the
original system can be preserved even if the network configuration
imposes constraints.

Concretely, this study explores the issues between Internet
architectures and constraints in IoT systems by showing how
designs based on RESTful Internet architectures can be refactored
on top of message queuing telemetry transport (MQTT). The work
is based on earlier work where a web-based tool can be used for
both development and remote deployment of applications to IoT
devices. While evaluating and demonstrating this system, we
realised that the devices behind a network gateway could not be
accessed by other components. The original architecture of the
system is based on RESTful style and uses HTTP in all
communications. Depending on the task, any component –
including devices – of the system may either offer or consume
resources. This architecture could not work under the network
constraints.

MQTT is a lightweight protocol designed for device-to-device
communication in IoT environments. MQTT uses publish–
subscribe pattern for the communication and a centralised broker
handles all subscriptions and message deliveries. Due to that
communication is limited to devices sending messages to the
broker and the broker forwards the messages to active
subscriptions. This design is convenient in the constraining
network configurations since only the broker needs to be accessible
by all the components. In addition, MQTT was assumed to use
fewer resources than HTTP used by REST.

Our research question is that how a REST-based system can be
refactored to use MQTT in network configurations where the real
internet protocol (IP) addresses of all components are not visible to
the other peers in the system. The sub-questions include how big
changes are needed in the implementation and what are the
performance characteristics of the two options. The core technical
challenge is how to convert the request-response pattern assumed
by REST to the publish-subscribe pattern of MQTT version 3.1.1.

The proposed solution uses separate response messages and a
flexible MQTT topic hierarchy with specific request and response
topics. The solution is designed for an IoT system consisting of
multiple devices and it fits our case with a relatively small amount
of code refactoring. Additionally, we compared the resource
consumption of request-response styled MQTT usage with HTTP.
The comparison suggests that MQTT uses less central processing
unit (CPU) time and memory.

The rest of the paper is structured as follows. In Section 2, we
describe the problem domain and introduce the basics of MQTT. In
Section 3, we compare our work with the work performed by
others. In Section 4, we discuss a solution to the mismatch of
MQTT and REST and present our proof of concept. In Section 5,
we evaluate the work with a source code example and describe the
resource usage experiments. In Section 6, we discuss the usefulness
of the solution. Finally, in Section 7, we provide some concluding
remarks and thoughts for future work.

2 Background
2.1 Realistic IoT architectures

According to Datta et al. [2], a recent literature about IoT
architectures fails to address real life problems related to ‘device
and service discovery, controlling endpoints from mobile clients
and interaction with endpoints through standard protocol’. To
overcome this challenge, Datta et al. proposed a concept of
‘realistic IoT architecture’. It consists of machine-to-machine
(M2M) devices and endpoints, a wireless gateway with web
services and mobile clients. In such architectures, the network
elements, like firewalls and network address translations (NATs),
impose restrictions on applications. Almost every organisation and
private home user connected to the Internet has some kind of
firewall and NAT today.

Firewall is a security mechanism for filtering, validating and
blocking the network traffic. It protects the devices by separating
them from the other parts of the Internet. NAT is a method,

IET Softw.
© The Institution of Engineering and Technology 2018

1



implemented in firewall or gateway, which converts IP address to
another to save IP address space and to increase security by hiding
the local network from the public one. On the other hand, NAT also
causes restrictions in cases where the services in the Internet or
backend need to connect devices in the local network.

We experienced such problems with our case system that used
RESTful HTTP-requests from server-side to devices. This
happened, for example, when we demonstrated the system outside
of our laboratory network. Some of the devices were located in our
research network, but we needed to bring the development
interface and some example devices to remote locations. There the
connection was usually based on local wireless networks or
portable 4G access points. Due to the limitations of those networks,
some communications were not possible because our back-end
servers could not access the devices at the demonstration locations
with HTTP.

There are several ways to bypass the restrictions caused by
NAT. The most well-known techniques are based on relay servers
and hole punching [3]. For example, Lin et al. [4] discuss five NAT
traversal techniques used by voice over IP applications. Different
NAT traversal techniques also cause load on the gateway devices
doing the work.

One option is MQTT [5] that is a common technology in the
IoT domain. In this research, we wanted to see if MQTT can solve
these problems and if our systems can be made MQTT compatible.
Our initial studies also indicated that the changes to the original
system would be minimal with MQTT. Thus, we wanted to port
our system to use MQTT to ensure that our earlier research results
can be applied under realistic network configurations.

2.2 Basics of MQTT

MQTT uses the publish-subscribe communication pattern [5]. This
means that senders do not send messages directly to recipients.
Instead, the messages are just published for possible receivers.
Similarly, the receivers express interest by subscribing to
forthcoming messages. MQTT includes a special broker
component that manages the subscriptions and publishing of the
messages. In MQTT, the subscriptions and published message are
matched to each other with topics which may form hierarchical
structures. Topics are constructed so that a slash character separates
the different levels in the hierarchy. For example, if abc is the first-
level topic then abc/123 is a second-level topic. The subscriber
can use wild cards to subscribe to multiple topics in the hierarchy.
A special character + is used as a single-level wild card and #
character is used as a wild card for multiple levels. For example, a
subscriber of topic abc/+ gets messages sent to topics abc/123,
abc/xy, and to all other topics that start with abc/ and also have
only one additional level.

2.3 Research challenges

MQTT is not just a different protocol since it also imposes a
different style of distribution. While RESTful applications built on
top of HTTP are based on a synchronous request-response
paradigm, MQTT is based on the publish-subscribe pattern.
Change from request-response to publish-subscribe may potentially
lead to big changes in the architecture of the system.

HTTP is a relatively heavy protocol both computationally and
from network traffic perspective [6]. MQTT has lower power
consumption than HTTP in many cases [7]. This is important in the
IoT domain with low-resource devices. Our hypothesis was that
MQTT uses less CPU, memory, and energy than HTTP. However,
simple porting of a REST-based system on top of MQTT might not
use MQTT efficiently; for instance, the number of communication
may increase.

With the growing number of IoT devices, scalability needs to be
taken into account in the IoT domain. For example, more devices
mean more problems when devices in varying networks need to
communicate with each other. Since the scale is expected to grow,
the IoT domain should consider preparing for open IP networks to
prevent problems coming from NAT traversal and mobility [8]. For
example, some present IoT platforms support local connectivity but

not global connectivity [9]. Since secure global connectivity and
open IP networks are not available yet in the large scale, NAT
traversal with MQTT takes part in helping with the scalability
issues. In addition, when traversing NATs, security should not be
forgotten.

3 Related work
3.1 Relation of MQTT to request-response and NAT traversal

Request-response over publish-subscribe architecture is not a new
idea and different needs for such applications have been reported
[10–12]. However, our case system and the need to overcome
problems caused by the network gateways motivated us to
investigate the topic again. A draft document by Advancing Open
Standards for Information Society (OASIS) [13] acknowledges the
lack of built-in request-response pattern in MQTT. They state that
it is needed when (i) IoT device reads data from the server or from
other device or vice versa, and (ii) when the IoT device needs to set
a value in the server or other device or vice versa with a
confirmation that the operation was successful. Our case adds a
new third need – the logic of the application should be radically
changed for MQTT without request-response pattern.

A few studies about the relation of MQTT and REST exist.
Collina et al. [14] studied a broker that bridges MQTT and REST
by exposing MQTT topics as REST resources and vice versa so
that it is possible to use MQTT via REST but they do not try to use
MQTT similarly to REST. Chen and Lin [15] implemented an
MQTT proxy in their REST architecture comparing latency and
performance between the protocols. However, they do not discuss
how to implement functionality similar to REST with MQTT.
Neither of these studies tries to overcome the network architecture
restrictions that rise because of NATs or firewalls.

Bellavista and Zanni [16] also acknowledge the usefulness of
hierarchical MQTT topics in modelling IoT device trees and
MQTT's ability to help with NAT problems. Their aim is to use a
combination of MQTT and constrained application protocol
(CoAP) to get the best benefits from both since CoAP uses few
resources in certain situations.

Uehara [17] presents a general framework for IoT devices
where MQTT is used as a communication protocol. They use
MQTT for communicating beyond NAT and for request-response
traffic. Unfortunately, the details of request-response
implementation are a bit unclear.

3.2 Tool tutorials

Some tool tutorials [18–21] describe solutions that use request-
response with MQTT. While the techniques presented in the
tutorials could be useful for tackling the restrictions imposed by the
network architectures, we did not see enough benefits to integrate
the presented complex tools or use different programming
languages since our aim was in minimal refactoring. However, we
briefly summarise their request-response techniques. Reactive
Blocks [20] (a visual Java programming environment) and
Emitter.io example [21] use request identifiers, unique request-
response topics and subscription of hierarchical topic structures
with wild cards. Eclipse Kura IoT service gateway [18] instructs to
use response codes similar to HTTP codes and places REST verbs
to MQTT topic hierarchies. The tutorial of solace systems [19] (a
complex messaging middleware) has a different approach of using
general reply topics and correlation IDs in message payloads for
connecting replies to requests.

3.3 Alternative techniques

Techniques to implement the functionality without MQTT exist as
well. HTTP long polling could work but we wanted to use MQTT
because it supports IoT better. HTTP is not designed for pushing
data from the server to client [7] and HTTP long polling is
considered inefficient [22]. Websockets [23] could be another
alternative often used in web browsers to create two-way
communication. However, WebSockets are not designed for

2 IET Softw.
© The Institution of Engineering and Technology 2018



constrained devices and they do not support IoT domain well [24].
The use of native Websocket library could still be one option.

Destination network address translation (DNAT) is an enhanced
version of NAT that that allows remote peers to initiate a session
with peers in the local network. It also improves network access
and reliability issues [25]. To the best of our knowledge, the
relation of DNAT and IoT has not been explicitly discussed in the
scientific IoT literature. Gateways also need to be configured for
DNAT which is not always possible. We needed a solution that
works with any network and gateway.

Virtual private networks can be used for NAT traversal but it is
not simple [26]. Universal plug and play have also been suggested
for NAT traversal. However, it is often considered insecure (and
thus disabled in gateway devices) and it is not supported by all
NATs [27]. It is a relatively resource consuming technique to be
used in constrained IoT devices [28] and it does not work well with
nested NATs [29].

Srirama and Liyanage [30] propose a solution based on
transmission control protocol hole punching [31] for mobile
devices in 3G and 4G networks. The approach could also be
applicable in the IoT domain. However, studies suggest that
functionality of hole-punching depends on the NAT
implementation [32]. Although the use of hole punching for this
kind of IoT application calls for future research, in this research we
decided to use MQTT instead.

Other IoT protocols than MQTT exist. For example, Open
Mobile Alliance Lightweight Machine-to-Machine [33] is an IoT
protocol that supports device and application management [34].
LWM2M uses CoAP [35] protocol. CoAP is a lightweight version
of HTTP and it is assumed to have the same NAT problems as our
original implementation. As with HTTP, port forwarding or
particular connection requests can be used with CoAP [36] but
several authors [16, 17, 22] mention the benefits of MQTT when
communicating beyond NAT.

3.4 Summary

Better support for request-response pattern has been proposed to
the next version (5.0) of MQTT by OASIS [37]. The solution
combines three main ideas: ‘reply-to’ topics included in the
request, correlation-ID to connect the requests to replies, and
unique ‘reply-to’ topics, but unfortunately, the available material
does not provide a detailed explanation about them yet. The built-
in request-response seems promising but, in contrast, our solution
works with MQTT 3.1.1.

As a summary, several other researchers have worked on the
integration of HTTP/REST architectures to MQTT protocol. For
example, many parties acknowledge the need of request-response
in MQTT, MQTT is connected to HTTP systems in various ways
and the benefits of MQTT when communications behind NAT are
known. However, there seem to be relatively few scientific
publications about using MQTT in request-response (or REST)
style or design of MQTT topic hierarchies.

4 Proof of concept
4.1 REST-style request-response with MQTT

When a system that uses HTTP and follows RESTful architectural
style is ported on top of MQTT, some problems need to be solved.
In our example case, we recognised the following main challenges:

1. Addressing of the resources: While in HTTP, the addressing is
uniform resource locator (URL)-based and in RESTful
architectures, all resources have a unique URL, MQTT clients
subscribe to topics.

2. Request-response architecture: In HTTP, all sent messages
assume a response that includes information of about success
or failure, and an optional payload. MQTT messages are one
directional without a response.

The addressing problem is reasonable easy to solve since the
naming conventions of URLs and MQTT topics are very similar.

For example, a URL http://example.com/abc/123 can be mapped to
a three-level topic example.com/abc/123.

There are a few alternatives to implement the responses. We
need a mechanism to connect requests to corresponding replies.
Also, the broker's ability to deliver messages efficiently should be
taken into account. We reasoned a few options to implement
responding. We give two examples in this study:

1. Before sending any request, the caller subscribes to a unique
topic for the response to the request it will send next. In this
case, the content of the response message consists of a status
code and a payload assumed by the application. The topic
hierarchies need to be designed so that the topic for the
response message can be derived from the request
automatically. Unsubscription from the response topic needs to
be done so that the number of registered topics in a long-living
system does not grow without a limit.

2. Each caller has a generic response topic that it subscribes to,
and all responses to that caller are sent to that topic. The
respondent needs to know the response topic, the response
message needs to include request identification, and the client
needs to match the response to the correct request. This option
moves a part of the responsibility of directing a response to the
correct requester from the broker to the client. If an application
creates multiple requests – and they may be active
simultaneously, then the matching of the response to correct
topic becomes even more complicated. Compared with the
previous option, a smaller number of topics is needed and they
are not created and removed dynamically.

After analysing the options, we selected the first option since it
requires the least modifications to our application code, it uses the
broker more efficiently, and since the number of devices in IoT
systems is expected to grow, a flexible topic structure is beneficial.
The downside is the need for creating response topics dynamically
and subsequently a need to remove them dynamically, too.

In the second option, the clients would need to do more work by
parsing the payload to connect the requests to responses. Besides, a
general topic is considered as an anti-pattern in a high throughput
environment [38].

The status code, e.g. 200 indicates success, is core component
of the HTTP protocol. In principle, it could be encoded to the topic
hierarchy or added to the payload. In our case, adding it to the
payload requires few changes to the original source code, but also
keeps the topic hierarchy simpler.

4.2 Original system

The present work is based on our earlier research on programmable
IoT devices [1]. In that work, we have developed a system for
development and deployment of applications to IoT devices. The
original system consists of three active components: integrated
development environment (IDE), runtime environment and
resource registry (RR). The IDE runs on a web browser, and it is
used for programming, deploying and managing the applications
on devices. The runtime environment is pre-installed on the
participating IoT devices and it essentially makes devices small
application servers. The runtime environment provides a
representational state transfer (REST) API for installing, starting,
stopping and removing applications [39]. For example, when a new
application is installed on a device at address example.iot, the
IDE sends a POST request to URL http://example.iot/APP and the
payload of the request is the application package in TGZ format.

All devices and installed applications need to register
themselves with a central registry RR. The RR also provides an
API for the discovery of devices, device capabilities, installed
applications and services provided by the applications. The
architecture of the system is shown in Fig. 1. The arrows depict
communication between the components: IDE deploys and
manages applications in devices, devices register themselves and
update their applications to RR, and IDE queries devices and
installed applications from RR. All the communication in the

IET Softw.
© The Institution of Engineering and Technology 2018

3



original system is implemented using HTTP. Further information
about the original system can be found in [1, 40]. 

It should be noted that the logical control-flow of the original
system requires a response from the previous request before
sending the next. For example, IDE should not query the updated
state of the applications (six in Fig. 1) from the RR before it gets
the acknowledgment of a deployment (4 in Fig. 1) from the device.

4.3 MQTT implementation

We use node.js [41], MQTT.js [42], and Mosquitto [43] MQTT
broker which implements MQTT version 3.1.1. We implemented
the communication from the IDE to devices and from devices to
RR seen in Fig. 1 with MQTT. From the communication shown in
Fig. 1 the communication between IDE to RR is still implemented
with HTTP. The resulting architecture and communication are
presented in Fig. 2. The right side on Fig. 3 shows how an MQTT
broker is accessed by the other parties behind NATs. We think that
communication from IDE to devices and from devices to RR is
enough for a proof of concept to show MQTT working in our use
case. However, we do not foresee any problem in implementing
communication from IDE to RR with MQTT as well – if that is
needed. Note that RR is a central component in the IoT deployment
system whereas the MQTT broker only delivers MQTT messages. 

From the different options [(1) complex topic and requestID in
the topic, (2) general topic and requestID in message], to
implement the request-response pattern with MQTT discussed in
Section 4.1, we selected the one where a unique topic is created for
every request and response. The topic hierarchies designed for our
system are presented in Fig. 4. One notable detail in the hierarchies
is the relation of replies to corresponding requests. In our solution,
each topic mapped to a resource has request and reply subtopics
followed by unique identifiers (rID). Device identifications (dID)
are used as unique identifiers for devices. 

The left hierarchy in Fig. 4 consists of the following structure.
The first level ‘device’ is a topic describing the problem domain –
we are deploying applications to devices. Each device in the
system has a separate branch which is identified with a unique dID.
For example, a device with an identification XX has a topic
starting with device/XX. The devices manage their own branches
of topic hierarchies for messages that are directed to them.
Essentially this implements the addressing scheme discussed in
Section 4.1: the beginning of the topic (device/<DID>)
corresponds to IP address (domain name) and the rest corresponds
to the path of URL. For details, see Table 1 where a mapping
between some URLs of the system and MQTT topics is given. The
level ‘app’ of each dID branch is for applications installed on the
devices. The branches following from here are for requests and
replies addressed to the applications. It would be easy to extend the
hierarchy by adding a level of application IDs. For example, then it
would be possible to address a certain application with a topic
(device/<ID>/app/<APPID>). 

The topics enabling communication with RR are seen on the
right in Fig. 4. The first level indicates that the hierarchy is meant
for RR. The topics RR/devices/request and RR/devices/
reply are used for registering devices. Device identification is not
used yet because the unregistered device does not have a dID yet.
On the second level, each registered device has a separate branch
identified by dID. ‘Apps’ branch is used for managing the
applications running on the device or retrieving information about
them. For example, it is used by devices to publish the current
states of all its applications to RR using topic (RR/devices/
<DID>/apps/request/<rID>). As with device hierarchy, if an
individual application resource needs to be expressed, the hierarchy
can be extended by adding appIDs after ‘apps’ level.

The sequence charts in Fig. 5 describe how an HTTP request-
response relates to MQTT request-response. One request-response
sequence between device and RR requires multiple
communications between three components, device, MQTT broker
and RR. The message sequence chart in Fig. 5 depicts the devices’
registration both with HTTP and MQTT. For the RR to receive
registrations, it needs to subscribe to a topic for RR related requests
with a wild card (+). The device, in turn, subscribes to a topic

where it knows to expect the response. Then the device sends a
registration request to a topic that contains a unique identifier for
the request and is also subscribed by RR with the wild card. RR
will then send a response to the response topic subscribed by the
device. The status code in the reply tells whether the registration
was successful or not. After the registration, the device can
unsubscribe from the response topic. 

In Fig. 6, the situation is similar to the device registration case
with the difference that the communication happens from the IDE
to a device. In this case, a user deploys an application using the
IDE. Initially, the device (that has already been registered and thus
has a dID) must have subscribed to a topic that is used for
deploying applications to that device. Before sending the
deployment message, the IDE subscribes to a topic dedicated to the
response sent by the device. During the deployment, the IDE first
creates a unique rID, subscribes to a reply topic of that rID and
publishes a message to the topic that the receiving device has
subscribed to. After completion of the deployment, the device
publishes the response to the unique topic expected by the
requesting IDE. The response contains information whether the
deployment was successful or not. The IDE can unsubscribe from
the reply topic finally. 

5 Evaluation
5.1 Amount of refactoring

One of our targets and success indicators was the number of
required changes to the original system. We noticed that the
changes were relatively small and local. The adaptation to MQTT
was done by replacing the parts of the source code that sends the
HTTP requests with a source code that publishes an MQTT
message and subscribes to the reply topic.

The code examples in Fig. 7 show how the original JavaScript
code snippet using HTTP is refactored for MQTT. The operation
shown in the example is a device registering itself to RR. The
original code simply sends an HTTP POST to a URL hosted by RR
and saves the returned dID for later use. The handling of the
response in refactored code is a bit more complex because it needs
to be converted to a string and the response status and message
body are not automatically parsed. An alternative and possibly a
simpler way could be to include the status code in the topic
hierarchy but we did not try that in practice. 

While the snippets are an example from our case, the solution
can be generalised so that for using MQTT in request-response
style, dedicated request-response topics together with request IDs
offer one flexible solution. The solution also provides the other
benefits of MQTT such as lower resource consumption and ability
to use a normal publish-subscribe pattern when needed.

5.2 Resource consumption

We did not discover any performance issue while testing. The
maximum size of an MQTT message is about 256 MB and the size
of the messages in our system has been under 10 kB. The requester
removes temporary topics after receiving the response which
increases the amount of traffic a bit but prevents the system from
growing memory usage continuously. Our solution uses complex
topics though simple and short topic structures could use fewer
resources [38]. On the other hand, a flexible topic structure is
important when adding new features. Still, MQTT is IoT optimised
and using it should help to save the resources when compared with
HTTP.

We conducted experiments to compare the resource
consumption of the protocols with the request-response pattern. We
compared two applications. The first sent 1000 requests and
received replies for those with MQTT. The experiment setting was
such that Raspberry Pi (our constrained IoT device) worked as a
requesting MQTT client, the MQTT broker located in the
OpenStack virtual machine, and a modern laptop had the replying
MQTT client. The latency from Raspberry Pi to MQTT broker was
38 ms (throughput 14 Mbps), and from the laptop to MQTT broker
was 2 ms (throughput 262 Mbps). The request workload was ‘GET
x’ where x was a request ID integer between 0 and 999. The reply

4 IET Softw.
© The Institution of Engineering and Technology 2018



workload was ‘200 OK x’ where x was the corresponding request
ID. MQTT payload was symmetrically encrypted with AES-256.
The second application did the same thing with HTTP without
encryption. The setting was such that Raspberry Pi (again as
constrained IoT device) worked requesting HTTP client sending
requests to an Apache HTTP server. The latency from the
Raspberry Pi to the HTTP server was 20 ms. The reply workload
was empty.

The requests were sent as fast as possible without extra delay
between them. The experiments were conducted on the Rasperry Pi
version 2 (total memory 927 MB) running Raspbian operating
system and Node.js [41] version 5.4.0. The used MQTT library
was mqtt.js version 3.1.1. The MQTT broker was Mosquitto
version 1.4.10.

The measurements were done using process.memoryUsage()
function of Node.js and Linux command line tool time.
MemoryUsage function shows the total memory allocation and
time shows the used CPU time of a process execution.

Table 2 shows the results of five CPU time and memory
consumption measurements. MQTT used on average 10.3 s less
CPU time and HTTP used more than double the CPU time in every
measurement. On average MQTT used 1.6% points less memory. 

6 Discussion
The proof of concept works as expected and it allows
demonstrations outside of our lab. The original demo did not work
if IoT devices were behind a firewall because IDE could not access
the devices directly. Refactoring of the system on the source code
level required a relatively small amount of work. The MQTT
implementation has a centralised broker that is accessible from
everywhere. Thus, only the broker consumes a public IP address,
and the devices can stay behind NATs and firewalls. As a result,
our demonstration worked as expected.

Since the broker needs a public IP address, our proposal does
not work if it is located in a private IP space nor if the firewalls
have default MQTT ports blocked from inside to outside traffic. In
some cases, it might be possible to tunnel MQTT to other ports
than the default port but we did not study it.

Note that we do not think that adding request/<rID> or reply/
<rID> to the topic addressing a resource (for example,
example.com/resource123/request/<rID>) is a practice
used in REST. Actually, such a solution might be even argued to
resemble remote procedure call more than REST. Instead, we try to
describe a way to use MQTT efficiently and conveniently while
being consistent with REST as far as it is feasible. While the
MQTT version of the REST method (for example GET) uses to
request and reply topics, the target of the operation is identified by
the base topic example.com/resource123.

Our experiments with 1000 request-replies suggest that the
MQTT uses considerably less CPU time and less memory than
HTTP even with a request-response pattern. While 1000 request-
replies done as fast as possible might not be a real-world use case,
it gives hint about the resource usage between the protocols.
Reducing CPU and memory consumption improves energy-
efficiency, which is getting increasingly important. The differences
seen in our experiments can be significant on constrained devices
even if you do not need to worry about NAT traversal.

In HTTP-based systems, the clients get either a response or an
error condition. In the current MQTT system conditions like
network errors may lead to situations where the client never gets
any notice and the requesting subsystem has no way to discover
what went wrong. The quality of service (QoS) of MQTT could
provide a partial solution but most probably, some additional logic
needs to be added. The QoS level used by us is MQTT level ‘zero’
which means that there are no guarantees of delivery of the
messages. However, we have not discovered any cases of
undelivered messages in our tests.

If extra security is needed in REST, there are standard
mechanisms for encryption, authentication, and authorisation.
MQTT also provides security features such as authentication and
authorisation but those were not used with the proof of concept.
While they were not used, we think using the following features
would be relatively straightforward:

• Authentication by adding username and password while
connecting to broker [36].

• Authorisation by using Mosquitto broker's topic permissions
[44].

• Payload encryption [45]. (Our MQTT experiments done with
symmetric payload encryption suggest that resource usage still
remains lower than HTTP.)

In addition, transport layer security could (and should) be used
but it can be challenging with constrained devices [45]. Secure
MQTT [46] is also one proposed solution to improve MQTT
security.

7 Conclusions and future work
We presented a work where originally REST-based communication
was substituted with MQTT communication maintaining the
request-response behaviour from the application point of view. The
use case of the work was an IoT development and deployment
framework presented in [1]. The initial motivation for the work
came from the problems of using HTTP to access devices that are

Fig. 1  Original framework with HTTP. Numbers indicate an order of a
typical workflow

 

Fig. 2  HTTP replaced with MQTT. Numbers correspond to the numbers
seen in Fig. 1

 

IET Softw.
© The Institution of Engineering and Technology 2018

5



behind a firewall. Another reason is that MQTT is more suitable
for IoT devices with limited resources, and MQTT is used in
practical IoT implementations. The main technical challenges in

our research were related to the implementation of a request-
response paradigm. Our solution is based on separate response
messages and design of topic hierarchy with specific request and
response topics. In addition, a status code needs to be added to the
content of the response. Nevertheless, the similarities between the
concepts of REST and MQTT helped us in the design work. Our
comparison of resource usage between the protocols suggests that
MQTT uses less CPU time and memory even with the request-
response pattern, which is significant when using IoT devices with
low resources.

Fig. 3  Left: NATs restricts communication with HTTP. Communicating with parties behind NATs is difficult. Right: MQTT broker in the public Internet allows
communication despite the NATs. Similarly to left figure, the cloud presents the Internet

 

Fig. 4  Topic hierarchies for MQTT implementation. Left: device. Right: RR
 

Table 1 Mapping of the URLs to MQTT topics when a
device sends requests to RR
URL MQTT topic
RR-host-address/devices RR/devices/request/<rID>
RR-host-address/devices/<DID>/
apps/<APPID>

RR/devices/<DID> /apps/
request/<rID>

 

Fig. 5  Left: register a device with HTTP. Right: register a device with
MQTT

 

Fig. 6  IDE deploys an application to a device
 

6 IET Softw.
© The Institution of Engineering and Technology 2018



One way to extend the work would be to implement the whole
system to support MQTT. Currently, only the communication that
prevented us from demonstrating the system remotely has been
implemented with MQTT. For example, the IDE still uses REST
for communicating with the RR. The security aspects require
further analysis and research since the current implementation
assumes that all participating entities trust each other, which is not
case in the real world. By adding authentication and encryption

technologies, the security could be improved. In addition, the
system should be evaluated with a larger scale set-up and amount
of data. The number of messages, required processing, and energy
consumption should be measured in more detail in a real-world
scenario to answer the questions rising from the growing IoT
phenomenon. Comparison with other approaches, like CoAP,
HTTP long polling, and hole punching would also be an interesting
research topic.

Fig. 7  Top: Original HTTP version. Bottom: Original code refactored to use MQTT
 

IET Softw.
© The Institution of Engineering and Technology 2018

7



8 Acknowledgments
We would like to thank NOKIA for funding the work.

9 References
[1] Ahmadighohandizi, F., Systä, K.: ‘Application development and deployment

for IoT devices’. The Fourth Workshop on Cloud for IoT (CLIoT), Vienna,
Austria, September 2016

[2] Datta, S.K., Bonnet, C., Nikaein, N.: ‘An IoT gateway centric architecture to
provide novel M2M services’. IEEE World Forum on Internet of Things (WF-
IoT), Seoul, South Korea, March 2014, pp. 514–519

[3] Maier, D., Haase, O., Wäsch, J., et al.: ‘NAT hole punching revisited’. 36th
Conf. on Local Computer Networks (LCN), Bonn, Germany, October 2011,
pp. 147–150

[4] Lin, Y.D., Tseng, C.C., Ho, C.Y., et al.: ‘How NAT-compatible are VoIP
applications?’, IEEE Commun. Mag., 2010, 48, (12), pp. 58–65

[5] ‘MQTT’. Available at http://mqtt.org/, accessed 5 October 2016
[6] Lampkin, V., Leong, W.T., Olivera, L., et al.: ‘Building smarter planet

solutions with MQTT and IBM websphere MQ telemetry’ (IBM Redbooks,
2012)

[7] ‘Power profiling: HTTPS long polling vs. MQTT with SSL, on android’.
Available at http://stephendnicholas.com/posts/power-profiling-mqtt-vs-https,
accessed 5 October 2016

[8] Naito, K.: ‘A survey on the internet-of-things: standards, challenges and
future prospects’, J. Inf. Process., 2017, 25, pp. 23–31

[9] Kim, G., Kim, J., Lee, S.: ‘An SDN based fully distributed NAT traversal
scheme for IoT global connectivity’. IEEE Int. Conf. on Information and
Communication Technology Convergence (ICTC), Jeju, South Korea, 2015,
pp. 807–809

[10] Cugola, G., Migliavacca, M., Monguzzi, A.: ‘On adding replies to publish-
subscribe’. Proc. 2007 Inaugural Int. Conf. on Distributed Event-based
Systems, Toronto, Ontario, Canada, June 2007, pp. 128–138

[11] Hill, J.C., Knight, J.C., Crickenberger, A.M., et al.: ‘Publish and subscribe
with reply’. (No. UVA-TR-CS-2002–32), Department of Computer Science,
Virginia University, Charlottesville, 2004

[12] Rodríguez-Domínguez, C., Benghazi, K., Noguera, M., et al.: ‘A
communication model to integrate the request-response and the publish-
subscribe paradigms into ubiquitous systems’, Sensors, 2012, 12, (6), pp.
7648–7668

[13] Technical Committee, O.A.S.I.S. M.Q.T.T. ‘Request/reply message exchange
patterns and MQTT version 1.0 working draft 02’. Available at https://
www.oasis-open.org/committees/download.php/56280/reqreply-v1.0-
wd02.docx, accessed 5 October 2016

[14] Collina, M., Corazza, G.E., Vanelli-Coralli, A.: ‘Introducing the QEST
broker: scaling the IoT by bridging MQTT and REST’. IEEE 23rd Int. Symp.
on Personal indoor and mobile radio communications (PIMRC), Sydney,
NSW, Australia, September 2012, pp. 36–41

[15] Chen, H.W., Lin, F.J.: ‘Converging MQTT resources in ETSI standards based
M2M platform’. 2014 IEEE Int. Conf. on the Internet of Things (iThings),
and IEEE Green Computing and Communications (GreenCom), and IEEE
Cyber, Physical and Social Computing (CPSCom), Taipei Taiwan, September
2014, pp. 292–295

[16] Bellavista, P., Zanni, A.: ‘Towards better scalability for IoT-cloud interactions
via combined exploitation of MQTT and CoAP’. IEEE 2nd Int. Forum on
Research and Technologies for Society and Industry Leveraging a Better
Tomorrow (RTSI), Bologna Italy, September 2016, pp. 1–6

[17] Uehara, M.: ‘A case study on developing cloud of things devices’. IEEE
Ninth Int. Conf. on Complex, Intelligent, and Software Intensive Systems
(CISIS), Blumenau Brazil, July 2015, pp. 44–49

[18] ‘Kura remote device management’. Available at https://eclipse.github.io/
kura/ref/mqtt-namespace.html#mqtt-request/response-conversations, accessed
5 October 2016

[19] ‘Request/Reply’. Available at http://dev.solacesystems.com/get-started/mqtt-
tutorials/request-reply_mqtt/, accessed 5 October 2016

[20] ‘Request/Response Pattern Over MQTT’. Available at http://
www.bitreactive.com/mqtt-request-response/, accessed 10 May 2016

[21] ‘Stock Explorer: Using Pub/Sub for Request/Response’. Available at https://
www.codeproject.com/Articles/1159256/Stock-Explorer-Using-Pub-Sub-for-
Request-Response, accessed 3 February 2017

[22] Fremantle, P.: ‘A reference architecture for the internet of things’. WSO2
White Paper, 2014

[23] Fette, I.: ‘The websocket protocol’, RFC 6455, 2011
[24] Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F., et al.: ‘A survey on

application layer protocols for the internet of things’, Trans. IoT Cloud
Comput., 2015, 3, (1), pp. 11–17

[25] Wu, Z., Luo, H., Zhang, S., et al.: ‘Design of a distributed network address
translation system architecture’. Proc. Int. Conf. on Advanced Intelligence
and Awareness Internet (AIAI 2011), Shenzhen, China, October 2011, pp.
207–210

[26] Kubota, A., Miyake, Y.: ‘Public Key-based rendezvous infrastructure for
secure and flexible private networking’. IEEE Int. Conf. on Communications
(ICC'09), Dresden, Germany, 2009, pp. 1–6

[27] Eppinger, J.L.: ‘TCP connections for P2P apps: a software approach to
solving the NAT problem’, Institute for Software Research, 2005, pp. 1–8

[28] Duquennoy, S., Grimaud, G., Vandewalle, J.J.: ‘The Web of things:
interconnecting devices with high usability and performance’. IEEE Int. Conf.
on Embedded Software and Systems (ICESS'09), Zhejiang, China, 2009, pp.
323–330

[29] Müller, A., Carle, G., Klenk, A.: ‘Behavior and classification of NAT devices
and implications for NAT traversal’, IEEE Netw., 2008, 22, (5), pp. 14–19

[30] Srirama, S.N., Liyanage, M.: ‘TCP hole punching approach to address devices
in mobile networks’. Int. Conf. on Future Internet of Things and Cloud
(FiCloud), Barcelona, Spain, 2014, pp. 90–97

[31] Ford, B., Srisuresh, P., Kegel, D.: ‘Peer-to-peer communication across
network address translators’. USENIX Annual Technical Conf., General
Track, Anaheim, CA, USA, 2005, pp. 179–192

[32] Pyylampi, T.: ‘Design and implementation of a real-time multiplayer system
for android operating systems’. Master Thesis (in Finnish), Tampere
University of Technology, 2015

[33] ‘OMA LightweightM2M V1.0 Overview’. Available at http://
www.openmobilealliance.org/wp/overviews/lightweightm2m_overview.html,
accessed 29 September 2017

[34] Rao, S., Chendanda, D., Deshpande, C., et al.: ‘Implementing LWM2M in
constrained IoT devices’. IEEE Conf. on Wireless Sensors (ICWiSe), Melaka
Malaysia August 2015, pp. 52–57

[35] ‘CoAP – RFC 7252 constrained application protocol’. Available at http://
coap.technology/, accessed 29 September 2017

[36] ‘MQTT and CoAP, IoT protocols’. Available at https://eclipse.org/
community/eclipse_newsletter/2014/february/article2.php, accessed 3
February 2017

[37] OASIS MQTT Technical Committee.: ‘MQTT request/reply MQTT-197’.
Available at http://www.oasis-open.org/committees/download.php/58854/
MQTT.Request-Reply.Overview-Sept.2016.pptx, accessed 16 August 2017

[38] ‘MQTT essentials part 5: MQTT topics & best practices’. Available at http://
www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices,
accessed 5 October 2016

[39] Ahmadighohandizi, F.: ‘Liquid-IoT runtime environment (LIoTRE) API
specification’. Available at http://farshadahmadi.github.io/, accessed 8
February 2018

[40] Hylli, O., Ruokonen, A., Mäkitalo, N., et al.: ‘Orchestrating the internet of
things dynamically’. Proc. 1st Int. Workshop on Mashups of Things and APIs
(Middleware'16, 17th Int. Middleware Conf.), Italy Trento, 2016

[41] ‘Node.js’. Available at https://nodejs.org/en, accessed 8 November 2016
[42] ‘MQTT.js’. Available at https://www.npmjs.com/package/mqtt, accessed 5

October 2016
[43] ‘Mosquitto – an open source MQTT v3.1/v3.1.1 broker’. Available at https://

mosquitto.org/, accessed 5 October 2016
[44] ‘Configuring and testing Mosquitto MQTT topic restrictions’. Available at

http://www.steves-internet-guide.com/topic-restriction-mosquitto-
configuration/, accessed 10 February 2018

[45] ‘MQTT security fundamentals: MQTT payload encryption’. Available at
https://www.hivemq.com/blog/mqtt-security-fundamentals-payload-
encryption, accessed 10 February 2018

[46] Singh, M., Rajan, M.A., Shivraj, V.L., et al.: ‘Secure MQTT for internet of
things (IoT)’. Fifth Int. Conf. on Communication Systems and Network
Technologies (CSNT), Gwalior, India, April 2015, pp. 746–751

Table 2 Means and confidence intervals of the
measurements. Confidence level is 90%

Mean Confidence interval
HTTP CPU, s 17.72 [17.43, 18.01]
MQTT CPU, s 7.46 [7.37, 7.55]
HTTP memory, % 6.05 [6.04, 6.06]
MQTT memory, % 4.46 [4.45, 4.47]

 

8 IET Softw.
© The Institution of Engineering and Technology 2018

http://mqtt.org/
http://stephendnicholas.com/posts/power-profiling-mqtt-vs-https
https://www.oasis-open.org/committees/download.php/56280/reqreply-v1.0-wd02.docx
https://www.oasis-open.org/committees/download.php/56280/reqreply-v1.0-wd02.docx
https://www.oasis-open.org/committees/download.php/56280/reqreply-v1.0-wd02.docx
https://eclipse.github.io/kura/ref/mqtt-namespace.html#mqtt-request/response-conversations
https://eclipse.github.io/kura/ref/mqtt-namespace.html#mqtt-request/response-conversations
http://dev.solacesystems.com/get-started/mqtt-tutorials/request-reply_mqtt/
http://dev.solacesystems.com/get-started/mqtt-tutorials/request-reply_mqtt/
http://www.bitreactive.com/mqtt-request-response/
http://www.bitreactive.com/mqtt-request-response/
https://www.codeproject.com/Articles/1159256/Stock-Explorer-Using-Pub-Sub-for-Request-Response
https://www.codeproject.com/Articles/1159256/Stock-Explorer-Using-Pub-Sub-for-Request-Response
https://www.codeproject.com/Articles/1159256/Stock-Explorer-Using-Pub-Sub-for-Request-Response
http://www.openmobilealliance.org/wp/overviews/lightweightm2m_overview.html
http://www.openmobilealliance.org/wp/overviews/lightweightm2m_overview.html
http://coap.technology/
http://coap.technology/
https://eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://eclipse.org/community/eclipse_newsletter/2014/february/article2.php
http://www.oasis-open.org/committees/download.php/58854/MQTT
http://www.oasis-open.org/committees/download.php/58854/MQTT
http://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices
http://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices
http://farshadahmadi.github.io/
https://nodejs.org/en
https://www.npmjs.com/package/mqtt
https://mosquitto.org/
https://mosquitto.org/
http://www.steves-internet-guide.com/topic-restriction-mosquitto-configuration/
http://www.steves-internet-guide.com/topic-restriction-mosquitto-configuration/
https://www.hivemq.com/blog/mqtt-security-fundamentals-payload-encryption
https://www.hivemq.com/blog/mqtt-security-fundamentals-payload-encryption

