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Abstract

While data parallelism aspects of OpenCL have been of primary interest due to the massively data parallel GPUs being
on focus, OpenCL also provides powerful capabilities to describe task parallelism. In this article we study the task
parallel concepts available in OpenCL and find out how well the different vendor-specific implementations can exploit
task parallelism when the parallelism is described in various ways utilizing the command queues. We show that the vendor
implementations are not yet capable of extracting kernel-level task parallelism from in-order queues automatically. To
assess the potential performance benefits of in-order queue parallelization, we implemented such capabilities to an open
source implementation of OpenCL. The evaluation was conducted by means of a case study of an advanced noise reduction

algorithm described as a multi-kernel OpenCL application.

Keywords OpenCL - Task-level parallelism

1 Introduction

OpenCL is a widely-adopted programming standard for
parallel heterogeneous systems. The goal of the standard
is to support a wide range of heterogeneous platforms
efficiently and provide source code portability across them.
While data parallelism aspects of OpenCL have been
of primary interest to its users due to the massively
parallel GPU devices being on focus, OpenCL also
provides extensive capabilities to describe heterogeneous
task parallelism by means of pushing commands to one or
more command queues controlling one or more devices, and
using events, command queue barriers or kernel argument
buffer data dependencies for synchronization.

We consider this side of the standard underutilized
despite it being the feature to efficiently harness devices in
heterogeneous platforms to collaboratively execute multi-
kernel applications by reducing the “master role” of the
host program. OpenCL command queues (CQ) provide a
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means to describe larger parts of the application structure to
the OpenCL runtime, giving it an opportunity to optimize
the execution at the higher level [9]. OpenCL 2.0 [10]
introduced additional task-related features, allowing devices
themselves to launch new kernels asynchronously, which
blurs the original division of responsibilities between a
“master host” and “slave devices”.

In this article we study the task parallel concepts of
OpenCL and evaluate how well vendor-specific implemen-
tations of OpenCL can currently exploit task parallelism.
As we found out that the vendor implementations are
not yet capable of extracting kernel-level task parallelism
from in-order queues automatically, we also propose a task
scheduling runtime which can analyze the data dependen-
cies automatically and utilizes multicore processors with
various memory hierarchies efficiently.

The rest of the article is organized as follows. In Section 2
we discuss the background of OpenCL and its potential
in harnessing entire heterogeneous platforms. Section 3
describes how task parallelism can be expressed using
OpenCL constructs, whereas Section 4 shows the steps to
efficiently construct multi-device heterogeneous task graphs
out of multiple command queues. Section 5 details the
proposed command queue runtime. Section 6 evaluates
the performance using a case study of an advanced noise
reduction algorithm. Finally, conclusions and our future
plans are presented in Section 8.
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2 Platform-Wide Execution
of Heterogeneous Task Graphs

Due to its history as a standardized programming model
for GPGPUs, OpenCL has been mostly used to reap
quick performance increases from GPUs where the parallel
performance is abundant, but requires data parallel kernels
to exploit to the maximum. Therefore, a common parallel
programming pattern in OpenCL accelerated applications
has been a straightforward host-slave “single kernel at a
time” offloading model where most of the application logic
is written in standard C/C++ with only the accelerated parts
calling the OpenCL API for getting speedups available with
the more parallel devices. The parts of the application not
suitable for parallel GPUs have been thus naturally mapped
to the host processor, which is usually a general purpose
CPU that can execute serial code faster due to higher clock
frequencies, branch prediction and speculative execution.

But why should the programmers bother writing larger
parts of the application as OpenCL kernels that are
pushed to command queues when large speedups can be
already reached by the simple model of CPU to GPU
offloading? So far there has been only limited number
of non-GPU based devices available that could have been
efficiently programmed using OpenCL. However, more
and more OpenCL support for devices originally designed
for other tasks than graphics processing has appeared
to the market from vendors such as Movidius (Myriad
vision processing units [12]) and Texas Instruments (C6000
DSPs [15]). Synopsys also now provides OpenCL support
for application-specific processors produced using their
ASIP Designer tools [14]. Also FPGA vendors have
acknowledged the benefits of a heterogeneous parallel
programming standard for providing more efficient results
from high-level synthesis [2, 3] with a rising trend of
integrating configurable logic at the chip or package
level with CPUs and GPUs [5, 16]. As this development
progresses, and a wider diversity of OpenCL-supported
devices are becoming accessible in a same platform,
the performance benefits of structuring the OpenCL
implementation application for efficient coordinated multi-
kernel execution is becoming more tangible.

The power performance promise of heterogeneous
computing can only be redeemed when the application
is properly partitioned and each part mapped to a device
with the best matching architecture. However, the costs
of mapping kernels in the application to multiple devices
must not shadow the power-performance benefits of
utilizing a more suitable device for the task at hand.
Such costs include the additional synchronization related
communication needed when a consumer task is not
residing in the same device as the producer task. This
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is costly especially in case the synchronization has to
be done across different chips, but also adds to power
consumption and traffic congestion in case of using on-
chip interconnection networks. If the device communication
requires operating system calls in the host, it also adds
context switch overheads.

In addition to the lack of diversity in OpenCL supported
devices, from our experience, another major reason for
resorting to the simple single kernel offloading model
has been the often quoted low level of the OpenCL
programming model. Many programmers consider it too
burdensome to describe the whole application logic using
the OpenCL constructs, therefore programmers tend to
implement most of the logic in the host program without
calling OpenCL. This is emphasized in case of legacy
applications that are accelerated using OpenCL.

In this aspect, OpenCL can be considered to have
a bit of an identity problem; on one hand it is too
low level as an end user programming model, leaving
a lot of decisions such as kernel-to-device partitioning,
or the style of data parallelism to the shoulders of the
programmer. On another hand, it contains rather high level
abstractions and “programmer-targeted features”, such as
two kernel description languages, instead of only defining
a kernel intermediate representation for the compilers to
target. In contrast, the more recent Heterogeneous Systems
Architecture (HSA) [1] standard clearly sets itself to a
lower level in the heterogeneous parallel software stack with
very strictly defined hardware features, bit exact in-memory
control structures, and synchronization protocols that the
conformant heterogeneous platforms must implement.

If OpenCL is considered too low level to efficiently
implement large applications with, or requires a lot of
boilerplate code when accelerating legacy applications,
should more focus be put on using it as a portable
software stack layer below more programmer productive
higher-level programming languages? In this use, OpenCL
provides a benefit over HSA; its looser requirements to the
underlying hardware platform resulting from the somewhat
higher level abstractions. HSA requires a coherent shared
virtual memory across the whole system of which power
efficient and scalable implementation is considered an
open research challenge [7, 8, 13]. While hardware based
cache coherency is not a problem for many classes of
heterogeneous platforms, it is a too strict requirement to
place for a programming model used as a portability layer
which is desired to cover also the most challenging high
performance low power use cases and the highly embedded
devices of “Internet-of-Things” use cases.

We believe OpenCL has untapped potential of being
efficiently utilized as a portability layer for wide range
of heterogeneous platforms that are capable of executing
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heterogeneous task graphs across various devices in an
independent manner. Its task graph description capabilities
are powerful enough to describe task graphs that are
“heterogeneous”, that is, which can utilize various type of
devices and explicit synchronization that can be optimized
by the runtime, and thus spread the execution across diverse
heterogeneous platforms.

3 Task Parallel Concepts in OpenCL

OpenCL programs structure the computational parts of the
application into kernels and specify that there must be no
data dependencies between the “kernel instances” (work-
items) by default. This allows the programmer to describe
parallelism in the single program multiple data (SPMD)
style. In this style, multiple parallel work-items execute
the same kernel function in parallel with synchronization
expressed explicitly by the programmer. Another concept
utilizing the SPMD model is the work-group (WG) which
bundles sets of work-items that can possibly synchronize
with each other. The specification states that the groups
itself can be executed completely independently from each
other. These concepts allow exploiting scalable data level
parallelism at multiple levels with a single kernel command;
across work-items in a single WG and all the WGs in the
work-space.

Thread-level parallelism can be utilized in OpenCL in
multiple ways: First, as WGs are assumed to be data
independent of each other, they can be executed as coarse-
grained “embarrasingly parallel” tasks, to exploit multiple
hardware threads (or cores) available in the devices. At the
higher application abstraction level, an abstraction called
command queue (CQ) is used for pushing tasks to the
devices in the platform.

There are two modes of operation available for the CQs:
In-order mode, which has an implicit ordering constraint
derived from the order the commands are enqueued in.
The other mode of execution is out-of-order (OoO) with
which the command execution ordering is constrained by
explicit synchronization commands and explicitly defined
event dependencies.

The event based command synchronization follows
the common event handling scheme: Each event object
encapsulates an execution status of a command, which
other commands can monitor. Command dependencies are
formed by defining an event wait list when enqueuing a
command. It contains a list of events that must signal the
finished status before the enqueued command is ready for
execution.

OpenCL versions 1.0-1.2 state that commands in in-
order queues must be executed in the order they have
been queued, even if an external observer couldn’t tell the

difference. However, starting from version 2.0, reordering
the command execution also in case of in-order CQs is
explicitly allowed as long as the execution semantics are
preserved [9, 11]. This is fulfilled in case the updates
on the memory objects accessed by the kernel commands
are visible to succeeding reads defined by the command
enqueue order, and if commands that have other side effects
are not reordered.

The less constrained in-order CQ execution semantics
of OpenCL 2.0 mean that the practical difference of in-
order to OoO CQs is that the programmer can rely on
data dependence analysis based on the buffer arguments of
the kernel commands to enforce the ordering constraints.
This is in contrast to OoO CQs with which one must mark
command dependencies explicitly with events or by using
command queue barriers.

Commands between multiple CQs, regardless if they are
in-order or OoO CQs are assumed independent from each
other unless synchronized by events. A single CQ always
targets a single device, but a single device may be targeted
by multiple CQs in the same OpenCL context to expose task
parallelism. Utilizing multiple CQs controlling multiple
devices, the programmer can communicate the higher level
application logic to the OpenCL runtime which can then
perform static and dynamic scheduling for performance
improvements.

Multiple command queues and shared (sub-)buffers can
be used to form multiple device kernel execution that
relieves the host as shown in Fig. 1. In this style of
execution, OpenCL buffers residing in a shared memory
are used to pass data between successive kernel commands.
It allows describing execution of task sequences across
the devices in the platform without having to synchronize
buffers with the host after each executed kernel like in the
simplest “CPU to GPU offloading model”.

Kernel sequences connected with buffers is an efficient
means in OpenCL to implement such type of applications
where the sequence of tasks to execute vary, for example,
per each frame of a video stream, and where the different
tasks benefit from different style of devices. The model
resembles, but is different from the streaming model
enabled by OpenCL 2.0 pipes. Pipes are designed for
forming data flow style execution pipelines with kernels
residing in the devices for long periods of time, processing
packets as they appear from other kernels.

4 Converting Command Queues to Task
Graphs
In task scheduling, the tasks of the application and their

dependencies are commonly expressed as a task graph (also
sometimes referred to as a macro-dataflow graph). A task
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Figure 1 Example of a
multi-device multi-kernel task In pu t data
sequence connected with
buffers.
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graph is defined as a directed acyclic graph (DAG) G
consisting of a tuple of sets:

G=(V,E,C,T) (D

The graph topology is defined by set V which consists
of the tasks in the application, and by the edge set E
which defines communication direction or other ordering
constraints between tasks. These two sets are enough to
describe the semantics of the application to avoid illegal task
execution ordering decisions by the scheduler. Additional
information can be defined as labels by the set C that stores
communication costs associated with edges, and by the set
T which records the execution times of the tasks. [17]

The general task-scheduling problem is to manage the
execution of the tasks in a set of processors in the
platform as efficiently as possible, typically with the goal
of minimizing the total execution time of the application or
maximizing the energy efficiency. In order to accomplish its
goal, the scheduler must make two decisions for each task:
Which processor should execute each task (the partitioning
decision) and at which time, or in which relative order to the
other tasks (the scheduling decision).

When all G nodes and edges are labeled with their
costs before the run time, that is, when the sets C and T
are known before execution, the launch times of the tasks
can be defined statically in advance. In this ideal situation
there is no need for notifying the finishing of a task to the
dependent tasks due to the common assumption of the tasks
finishing early enough for the produced results to be valid
and consumable by the dependent tasks. However, due to
the dynamic nature of shared resource systems and data
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dependent task execution times that call for dynamic load
balancing, fully static scheduling of task graphs to the extent
of omitting explicit task synchronization is not practical.
Therefore, task completion notification costs must be taken
into account when designing an efficient task scheduling
runtime system for executing both coarse and fine grained
tasks.

In OpenCL, command queues, which are used to pass
tasks to the runtime, are associated with a single OpenCL
device. Thus, the partitioning problem of the tasks is
partially delegated to the programmer or to a higher level
programming model. Due to the relative simplicity of
the contemporary OpenCL-programmable platforms, the
OpenCL application partitioning decision is usually driven
by the characteristics of the kernel at hand; massively
data parallel kernels are mapped to GPUs, while kernels
with more control oriented or uniformly executed parts are
targeted to the CPU or a DSP. However, the OpenCL devices
are often multicores themselves, leaving the choice of which
compute unit inside the device to execute the task in to the
runtime. Especially in case of multicore devices with non-
shared cache hierarchy levels, the compute unit mapping
choice for the work-group or a kernel command can make
a big difference in terms of cache hit ratio. Clearly, also
when scheduling for asymmetric multicore devices such
as ARM’s big.LITTLE CPUs that have multiple different
types of cores with the same instruction-set architecture, the
compute unit partitioning decision has a major impact.

In order to exploit the OpenCL buffer data locality,
the runtime must ensure the buffers are not needlessly
synced or moved around in the global memory hierarchy.

Kernel —>»Buffer 5
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In addition, especially with applications involving a lot of
small granularity kernels, it is important to reduce the global
synchronization needs during execution, by ensuring that
only the kernels that need to be notified of an event are
notified while bothering the host or other devices as little
as possible. In order to exploit application-level properties
such as task dependencies and communication demands
in task parallelization, the OpenCL runtime can utilize a
task graph representing the kernels and their dependencies
involved in the application.

4.1 Constructing the Task Graph

OpenCL standard, which is at the time of this writing at
version 2.1, does not directly include a concept of a task
graph. Therefore, the sets of G have to be populated from
CQ abstractions such as events and commands while taking
in account the special cases and differences in the versions
of the standard.

When building a G from CQs, the set V is populated
with nodes consisting of three different task types that
can be directly converted from CQ concepts: Memory
transfer tasks which move or synchronize buffer data,
synchronization tasks which are used to explicitly restrict
the execution order of commands, and kernel tasks for
executing user defined compute tasks in a device.

In addition to the task types derived from CQ concepts,
we use several other task types for improving the parallelism
and optimizing the scheduling process: Kernel compilation
tasks are added due to the possibility of OpenCL to
build kernels online in the host program — presenting the
compilation as tasks in the task graph enables the runtime
to overlap kernel compilation with other tasks. Compilation
task is implicitly added when a new kernel command is
added with a dependency edge added to ensure compilation
is finished before the kernel task can start. The kernel
tasks are further split to work-group tasks for allowing fine-
grained control of work-group execution across multiple
compute-units.

While constructing the task nodes is a straightforward
process, adding the edges require considering the different
mixes of inorder and out-of-order queues. Extra care must
be taken to extract as much task parallelism as possible
while still preserving the application semantics as defined
by each standard version. The edge set is constructed from two
main data sources: Explicit events used to synchronize com-
mands in one or more CQs and buffer data dependencies
defined by the buffer arguments to kernel commands.

The rules for constructing the edges can be formalized
to a set of conditions which are checked when considering
two tasks (vg, vp) € V : v, # vp from command queues
(gx,qy) € Q, where Q represents the set of all command
queues in the OpenCL context. In case at least one of the
following conditions is fulfilled, an edge v, — v}, is added
to E.

gx = qy ANinorderq(qy) A
(OpenCL_version <2.0 V
(gafter(vq, vp) A datadep(vg, vp)) )

where inorderqg() is true in case the given command
queue is an in-order queue. Function gafter (v,, vp) returns
true in case v, was pushed to the CQ after v,. Function
datadep(v,, vp) is true in case there is a data dependency
between the two tasks according to their buffer arguments
or shared program scope variables, a feature introduced in
OpenCL 2.0. This condition handles nodes in the same in-
order queue. An example of such a task graph is illustrated
in Fig. 2. The example program writes kernel input data
to the device memory, then launches the kernel B, which
produces input for the next kernel C. Finally, the host reads
back the results from the device. Edges between the nodes
are implied by the in-order semantics of OpenCL 1.2.

(gx # qy v —inorderq(qy)) A waitson(vg, vp) 3)

where waitson(v,, vp) marks an event dependency such
that v, waits on a completion event produced by v,. Out-of-
order queues and event synchronization is handled by this
condition. In case the two commands are from two different

Implicit dependency
in in-order queue

—

Command Queue 0, Device 0

A: Write Buffer ==——==>| B: Exec. Kernel ——=>{C: Exec. Kernel ——=>{ D: Read Buffer

Figure 2 Example of a simple task graph constructed from a single command queue in OpenCL 1.2. All tasks implicitly depend on results from

the preceding task.
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Command Queue 0, Device 0

A: Write Buffer

E: Exec. Kernel

38

B: Write Buffer

=——=> Event dependency

Command Queue 1, Device 1

C: Write Buffer

35

D: Write Buffer

F: Exec. Kernel g G: Exec. Kernel ——=>{ H: Read Buffer

Figure 3 Example of a task graph extracted from a two-device program.

queues, they are always treated like they are from an out-
of-order queue and must be event synchronized to ensure
a predefined ordering. An example of a G built from two
different queues possibly controlling two different devices
is shown in Fig. 3. It can be seen that this application
has task parallelism that can be exploited with multiple
device or multiple compute unit execution. For example, the
buffer commands can be executed in parallel in case there
is enough memory bandwidth available, or overlapped with
kernel execution from the other queue.

4.2 Command Queue Data Dependence Analysis

OpenCL programmers typically use in-order queues for
their ease of use; the burden of extracting parallelism and
enforcing adequate synchronization is placed to the runtime.
Thus, in the edge creation conditions formulated in the
previous section, the datadep() function is placed major
responsibility in extracting task parallelism from programs
using in-order queues. The function returns true in case an
edge should be added due to of either a known memory
access conflict or because of being unable to prove there is
no dependence between the given tasks. It relies on the fact
that in OpenCL 2.0, it is legal to reorder the in-order queue
commands in case semantical differences to the original
order cannot be observed from the outside. In practice,
state in OpenCL applications that is visible to the outside
observers is transferred in memory objects (MO) the kernels
receive as arguments and indirectly by means of program
scope variables (PSV). In this context Pipe memory objects
are excluded, since their use cases differs greatly from
normal Buffer and Image memory objects.
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In case only considering any uses of MOs or PSVs, it is
straightforward to add a set of edges to the task graph that
constraint the execution order to prevent illegal command
orderings. However, finer grained analysis that determines
the read-write relationships of the accesses should be
conducted for improving task parallelization opportunities.

When considering data dependencies between tasks,
read-after-read dependencies can be ignored because they
involve no data races which require serialization. Only the
other access relationships, that is, write-after-read, read-
after-write and write-after-write add restrictions to the
execution ordering, and thus imply edges in the task graph.
There are various ways to extract the access type information
from CQ tasks. For memory transfer tasks, the access
type is explicitly defined by the used API function. For
example, c/WriteBuffer() writes a MO to the device memory
and reads it from the host memory, while c/ReadBuffer()
performs an opposite direction memory transfer task.

Analyzing the MO usage of kernel tasks can be done by
exploiting explicit information and by means of static kernel
memory access analysis. In the task graph build process,
there are three ways are used to derive the access type
information:

1. At creation time, the MO can be flagged with
CL_MEM _READ_ONLY or
CL_.MEM_WRITE_ONLY, indicating that any kernel

task using the MO may only read it or write to it.

2. Restricted to Image MQ’s only: to check the arguments
of the kernel task for __read only and __write_only
access qualifiers that have the same semantics with
the corresponding MO flags, but can be defined at the
granularity of a kernel task.
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3. In case the buffer is in the constant address space, only
read accesses are allowed.

4. When none of the above flags or qualifiers are present,
read/write access is assumed by the standard. Static
compiler analysis can be attempted to resolve whether
kernel is only reading the data in the buffer.

PSVs are per-device global variables in kernels that have
the same lifetime as the whole OpenCL application and
once initialized, they can be read and written by other
kernels in the same program module. PSVs are a completely
device-side construct — no information of PSVs are given by
the programmer at the host side. In addition to static kernel
analysis, the following predicates can be derived from the
specification text to reduce the number of task graph edges
when a kernel is known to use PSVs:

1. If the kernel tasks v, and v, are not from the same
program, there is no PSV-induced dependence.

2. If the kernel tasks v, and v}, are not queued to the same
device, there is no PSV-induced dependence.

5 Implementing a Task Scheduling Runtime

For this study, we extended an open source OpenCL
implementation with a runtime that is able to extract task
graphs from command queues and dynamically schedule
their execution on shared memory single instruction set
multicores (often referred to as CPUs).

There were two main challenges when developing the
runtime: First, the point of time during the host application’s
execution affects the size of extracted task graphs heavily.
This problem is discussed in the next subsection. Second,
the mapping of kernels and work-groups to cores in various
multicores is not trivial due to differing memory hierarchies
and topologies. The proximity and the size of caches affects
the resulting performance heavily. The implementation
specifics resulting from this, with a portable OpenCL task
scheduling algorithm are presented in the latter subsection.

5.1 Dynamic Construction of Task Graphs

In OpenCL applications, the extent of the task relationships
that can be extracted to build a task graph that is beneficial
in task scheduling is limited by calls made by the host
program to OpenCL APIs such as c/Finish() or clFlush().
When the program calls these functions, it communicates
to the runtime that it assumes progress will be made in the
execution of the CQ given as a parameter.

A common OpenCL host program idiom is an asyn-
chronous execution style where one or more commands are
pushed to a queue, and then c/Flush() is called in hopes of
kernels executing concurrently in a device while the host

program is running and possibly pushing more tasks to
the queue. This is typically done in a loop to produce a
streaming style of execution using the command queues.

When clFlush() is called, it often means that more
commands will be pushed to the CQ by the host application
— otherwise it would have called clFinish() to indicate the
finalization of the queue. When the host program needs to
synchronize with commands running in the devices, it calls
clWaitForEvents() to ensure a particular command and all
its prerequisite commands in the chain of dependent tasks
have finished, or blocks until all commands in the queue
have finished execution by calling c/Finish().

When clFinish() is called, the runtime is signaled that
no new commands will be pushed to the queue which
would allow analyzing the contents of all CQs involved
in the application to construct an expansive task graph.
However, because the command queues can be constructed
and sent for execution incrementally with an assumption
of asynchronous execution progress for the already queued
tasks, it means the task graph used by the runtime must
be adaptive and efficiently expanded with new information
when new commands are pushed to the runtime. This task
is trivial with out-of-order queues and their explicit event-
based synchronization that maps directly to task graph
edges, but with in-order queues it requires some additional
work.

In the proposed task graph based runtime, TG is
constructed incrementally whenever new commands are
pushed to a CQ. In order to speed up the edge analysis and to
enable dynamic construction, the edge predicate checking is
performed only between the newly pushed tasks and a set of
previous ones. To analyze data dependencies dynamically,
a data access bookkeeping structure as shown in Fig. 4 is
attached to each MO or PSV. The structure keeps track of
the last queued task that modifies the given MO or PSV, and
the tasks that read the data and have been enqueued after it.
When a new write to the same object is encountered, read-
after-write edges are created between the first write and the
reads, and between all the reads and the new write. After
a new write is encountered, the earlier last write and last
read sets of tasks can be discarded with newly pushed data
reading tasks being associated with a new last write record.

5.2 Dynamic Task Scheduling for Shared Memory
Multicores

In the proposed dynamic task scheduling algorithm for
various shared memory multicores, we group the compute
units (processor cores) according to their cache hierarchy
proximity to “compute groups”. Physical cores (or hardware
threads) that share the same lowest level cache entity,
form a compute group. The purpose of the grouping is to
enhance data locality improvements when task parallelism
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a)
Write: Kernel 1:|Kernel 2:|Kernel 3:
CQl1l Data X read X read X read X
write | write ] | write K
|
+ Explicit event
dependency
Write:
CQ2 Data X
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Data X |- | Last Write —>  Write |
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Figure 4 An application with a commands enqueued to two in-order when all commands are enqueued, but none have completed yet, and
command queues with an explicit event synchronization point, b a c the extracted task graph that exposes parallelism, but preserves the
dynamic data access book keeping structure for data X (MO or PSV) in-order queue semantics.
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is available by prioritizing cores in the same group when
launching tasks that are dependent on the previous kernels
executing in the group. Especially in a “tiled” execution
model typical in image or video processing pipelines the
data is processed in smaller blocks with multiple successive
kernels this type of execution is expected to enhance cache
hits as the product of the previous kernel is likely still
remaining in the close cache for the next kernels to read.

Each compute group contains a work queue for each
physical core and a worker thread for each hardware thread.
All of the worker threads are bound to one of the physical
cores belonging to the compute node.

The initial work sharing is performed as follows.
Enqueued commands are stored to a task list in their order
of arrival. When a command queue is flushed, the task list is
dismantled by utilizing the event dependency information to
compose the task graphs as was described previously. Task
graphs are pushed to the compute groups in a round robin
fashion as soon as they are extracted. Inside the compute
groups, the task graphs are further round robin distributed
to the work queues.

During execution, the load is balanced by means of
locality aware work stealing: Each worker thread has a
priority ordered list of work queues from where they
seek for work. When executing commands, workers try to
maintain depth first ordering by preferring immediate task
graph successors of the commands they execute in order to
enhance data locality.

The worker thread execution thus proceeds in the
following main steps, which is looped until no commands
are available:

1. Go through the work queues in the compute group until
a launched task graph or a ready to launch task graph is
found.

2. Keep executing commands from the chosen task graph
until there are no commands to execute or there are only
commands blocked by other events.

3. When own compute group runs out of task graphs, the
first worker in the node to make this observation tries to
steal one full task graph from another compute group.

4. If stealing was not possible start going through work
queues in the next compute group, emphasizing groups
with shared lower level cache hierarchies.

6 Case Study
6.1 The Application

We evaluated the current state of OpenCL task parallelism
in vendor SDKs and the proposed command scheduling
algorithm using an advanced noise reduction that consists

of multiple steps that were natural to divide to multiple
OpenCL kernels.

The algorithm is called BM3D [4]. Its OpenCL
implementation was partitioned into multiple kernels
executing individual steps forming a kernel pipeline. The
pipeline begins with a block matcher kernel which reads in
smaller tiles of the input image, and searches for similar
tiles from the other parts of the image. Find matches kernel
does the ordering of the matching blocks from the most
similar to the least similar. Threshold kernel does the actual
noise canceling by using haar transforms and thresholding.
Aggregate returns blocks back to their places in the output
image, and finally, Aggregate division computes a weighted
average of the blocks written to the output.

The kernel pipeline is launched for 30 input frames in
parallel in order to produce abundant task-level parallelism
for the tested runtimes to exploit.

6.2 Tested Runtimes

We used the following OpenCL implementations for
comparing their runtimes’ capabilities to exploit kernel
level parallelism: The latest release of Portable Computing
Language (pocl-0.14 [6]), pocl 0.14 with the proposed
task scheduling runtime, Intel OpenCL runtime v16.1.1 and
AMD APP SDK v3.0.

The benchmarked multicore platforms were: A dual-
socket Intel Xeon E5-2697 v3, the CPU of AMD A10-
7850K (Kaveri), and Intel Core i7. The Xeon platform is a
NUMA architecture with two separate 12-core (24 hardware
thread) processors each having their own cache hierarchy.
This CPU incurs high penalties from bad task assignments
due to the multi-socket setup. AMD A10 is a quad core
that consists of two dual core processors with their own L2
caches. Intel Core i7 is a quadcore with a single shared L3
cache.

Clearly, the AMD OpenCL implementation is assumed
to be optimized on AMD CPUs and the Intel’s on their own,
it is possible to run them in their competitors’ CPUs. Thus,
just for the sake of comparison we included numbers of
AMD OpenCL SDK on Intel’s CPUs and vice versa.

Multiple different ways to use command queues to
expose task parallelism were evaluated: The first one is
the case simplest to the programmer; all commands are
enqueued to a single in-order command queue without
explicit kernel-level task parallelism. The second alternative
uses a separate in-order command queue for each of the
30 frames, thus explicitly communicating that commands
processing each of the frames are mutually independent.
The third option is a single out-of-order command queue
where all available task parallelism is stated explicitly by
forming event dependencies only between those commands
that must be ordered. Finally, the fourth alternative uses
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Task-serial execution time for 30 frames
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Figure 5 Total execution times for each platform with a single in-order queue.

a separate out-of-order-queue for each frame with event
synchronization. The proposed implementation’s in-order
queue parallelization capabilities were also evaluated with
a single in-order queue, assuming OpenCL 2.0 command
queue execution semantics which explicitly allow in-order
queue parallelization. We found that the other SDKs do not
yet support this mode at the time of this writing.

The total execution times are not feasible to compare
between the OpenCL platforms because the performance
of the kernel compilers varies a lot (e.g., due to executing
an Intel SDK on an AMD CPU and vice versa) which
affects the cache footprint and the synergy between multiple
kernels running at the same time. Regarding the kernel

compiler we found that the Intel’s performs the best for
most of the cases and that pocl 0.14’s kernel compilation
performance has fallen behind. However, as the focus of this
article is in how task parallelization differs with different
command queue usage styles, we computed the speedups
in comparison to the kernel serial execution in each case. It
should be noted that the compared kernel serial execution
can still utilize work-group level parallelism across multiple
cores and the additional task level parallelism measured here
results from concurrent execution of multiple commands.
The task-serial execution times of the application on each
platform is shown in Fig. 5. This is the baseline we measure
the task parallelization speedups from.

Task-parallization speedups: Intel Xeon E5-2697 v3
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Figure 6 Speedups from utilizing task parallelism on the Intel Xeon CPU.
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Task-parallelization speedups: AMD A10-7850K
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Figure 7 Speedups from utilizing task parallelism on the AMD A10 CPU.

Intel Xeon results are shown in Fig. 6. Intel and AMD
both can exploit the abundance of cores in this CPU the
best. Proposed runtime gets speedups up to 1.96x, while
Intel’s SDK up to 2.3x and AMD’s up to 2.44x. However,
AMD requires multiple command queues to be used in order
to execute kernels in parallel. Intel can also extract task
parallelism from a single out-of-order queue. The proposed
runtime is the only one that can utilize the automatic in-
order queue kernel parallelization and can reach the same
parallelization performance utilizing only a single in-order
queue for all the commands. Similar benefit can be seen
with the other CPUs as well. Pocl 0.14 reaches only up to
1.2x speedup in its current state.

AMD A10 results are shown in Fig. 7. The results from
proposed and Intel are quite similar to Xeon platform,
both platforms gain some performance improvement when
task parallelism is available. Intel’s task parallelization

speedup is 4 - 10%. Proposed gets a steady speedup of
4%, also with the automatic in-order queue parallelization.
Pocl 0.14 gains no performance improvement from kernel
level parallelism regardless of how it was described. AMD
SDK results are quite unexpected since it seems to suffer a
25% performance penalty when multiple queues are used to
describe kernel level parallelism. It is likely utilizing some
sort of a simple but fair round robin scheduling scheme,
executing a command from each queue at the time, which
leads to a bad cache foot print as it doesn’t exploit the
data locality between kernels processing a single frame.
The speedups in general are considerably lower than with
the Xeon. This is likely due to the individual kernels in
the application sufficiently utilizing all the cores via work-
group parallelization.

Finally, Intel i7 results are shown in Fig. 8. On this
platform, proposed gets steady 7% speedups, while Intel’s

Task-parallellization speedups: Intel Core i7
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speedup is capped at 14%. For some reason Intel’s single
ooo-queue case is 3% slower than the base line. Pocl 0.14
again gains no speedups from kernel level parallelization.
AMD SDK does not gain anything from a single out-
of-order queue and again suffers over 20% performance
penalty in multiple command queue scenarios.

In conclusion, the proposed task scheduler which was
added to pocl 0.14, improves its performance of task parallel
execution and is the only one of the compared ones currently
capable of task parallelizing commands from a single in-
order queue efficiently. However, Intel OpenCL SDK has
overall fastest implementation on the tested CPUs. It can
also efficiently utilize task parallelism described using
the different command queue schemes. This is especially
visible on the dual Xeon platform. It also performs well
even when using rather large number of command queues
to isolate the task parallel parts.

AMD SDK, on the other hand, seems not to be optimized
for task parallel execution. The dual Xeon platform makes
an exception where speedups are on par with Intel’s. The
results suggest that AMD’s SDK is not currently making
data locality aware scheduling decisions based on the com-
mand queue dependencies, but schedules from command
queues “fairly” which had severe impact on the platforms
with more limited cache resources of this case study.

7 Related Work

This article presented the ways task-level parallelism can be
described and utilized in OpenCL programs, and evaluated
how well this aspect of OpenCL applications is taken
advantage of by commercial and open source runtimes. To
the best of the author’s knowledge, there is no article with
similar information published.

The article also described runtime techniques involved
in extracting task level parallelism from in-order-queues
utilizing the explicit data dependency information. The
proposed runtime is the only one that can do automatic
in-order queue kernel parallelization and reach the same
parallelization performance utilizing only a single in-order
queue for all the commands.

Of the related evaluated OpenCL runtimes, Intel OpenCL
SDK had overall fastest runtime implementation on CPUs,
efficiently utilizing parallelism described using the different
command queue schemes. Intel’s SDK driver offloads the
task level scheduling to the Threading Building Blocks,
which has advanced algorithms tuned to exploit Intel
multicore CPUs.

The other related OpenCL runtime for CPUs, AMD’s
OpenCL SDK, seems not to be optimized for task parallel
execution. Our evaluation suggests that AMD’s SDK, unlike

@ Springer

the proposed runtime, is not currently making data locality
aware scheduling decisions based on the command queue
buffer dependencies, but schedules from command queues
“fairly” which had severe impact on the platforms with more
limited cache resources of this case study.

8 Conclusions

OpenCL enables multiple ways to explicitly describe
parallelism across multiple commands (tasks) utilizing out-
of-order command queues and event synchronization. In
addition, starting from version 2.0 of the standard, implicit
extraction of task parallelism from in-order command
queues is allowed.

We used a case study of an advanced multi-kernel image
denoising application to measure how well the vendor
OpenCL CPU implementations can exploit task parallelism
when the commands are pushed in different ways to
command queues by the host program. In addition, we
developed a task scheduling runtime to the open source pocl
implementation which can exploit task parallelism from the
explicit command queue scenarios, and also from in-order
queues based on the buffer dependencies.

We found that the tested OpenCL implementations were
generally able to exploit task parallelism when independent
tasks were pushed to separate in-order or out-of-order
command queues, which is the most explicit way to describe
task parallelism in OpenCL. Intel’s implementation was
able to also parallelize multiple independent task graphs
pushed to a single out-of-order-queue. None of the vendor
SDKs were currently able to parallelize in-order command
queues. The speedups measured from the implicit task
parallelism that the proposed runtime could utilize were on
par with the explicit ones for the case study application.

One important aspect in task graph execution is to utilize
the task graph’s dependencies to schedule dependent tasks
(those that share data) closer to each other both spatially
and temporally. The case study indicated that AMD’s SDK
seems not to do this, but use some kind of round robin
scheme as the rather high number (30) of command queues
actually resulted in a slow down. The proposed runtime and
the Intel’s were able to utilize data locality and were not
affected inversely by distributing the task graphs to their
own command queues.

This article described internals of a key component
used in the ALMARVI project’s image processing software
stack. The project used an OpenCL centric stack that was
supported with unified hardware interfaces and higher level
programming models. The OpenCL task scheduling runtime
described in this article was utilized to accelerate multiple
kernel execution of complex image filtering algorithms.
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