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Abstract

Various classifiers for scent classification based on measurements using an
electronic nose (eNose) have been studied recently. In general, classifiers rely
on a static database containing reference eNose measurements for known
scents. However, most of these approaches require retraining of the classifier
every time a new scent needs to be added to the training database. In this
paper, the potential of a K nearest neighbors (KNN) classifier is investigated
to avoid the time-consuming retraining when updating the database. To
speed up classification, a k-dimensional tree search in the KNN classifier
and principal component analysis (PCA) are studied. The tests with scents
presented to an eNose based on ion-mobility spectrometry (IMS) show that
the KNN method classifies scents with high accuracy. Using a k-dimensional
tree search instead of an exhaustive search has no significant influence on the
misclassification rate but reduces the classification time considerably. The
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use of PCA-transformed data results in a higher misclassification rate than
the use of IMS data when only the first principal components explaining 95%
of the total variance are used but in a similar misclassification rate when the
first principal components explaining 99% of the total variance are used. In
conclusion, the proposed method can be recommended for classifying scents
measured with IMS-based eNoses.

Keywords:

Machine learning, K nearest neighbours, Ion-mobility spectrometry, Scent
classification
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1. Introduction

Classifying scents measured with an electronic nose (eNose) is useful in
several areas of interest. Traditionally, classification of eNose-measured scents
has been used to maintain quality control in the food industry and to analyze
curative and aromatic plants used in medicines, perfumes and cosmetics
(e.g., Wilson and Baietto (2009) and references therein). One interesting
area of application that could benefit considerably from the use of eNose
measurements and classification of the data is scent production using olfactory
displays. Olfactory displays refer to devices built to stimulate human olfaction
while, for instance, watching a movie, interacting in a virtual reality, or
using an educational interface (Nakamoto et al. (2008); García-Ruíz and
Santana-Mancilla (2013)). Olfactory displays were developed because the
sense of olfaction has a considerable role in human performance and behavior.
For example, research suggests that different scents can evoke emotions and
memories, modulate the functioning of the autonomic and central nervous
system, and modulate the way we process information from other senses
(García-Ruíz and Santana-Mancilla (2013); Vernet-Maury et al. (1999); Robin
et al. (1999)). Olfactory displays are typically built to spray only a pre-
determined set of scents in the air. However, this approach limits the number
of scents used, does not provide the system any kind of information about the
quality of the scent (e.g., intensity or the identification of the scent), and most
specifically, does not allow the olfactory display to adapt to communicate an
unlabeled scent distantly from one user to another. The last approach in
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particular requires the system to be able to measure scents and classify them
rapidly.

In this paper, we focus on classifying scents, which is one of the key
issues for our research on digitizing scents.1 Analogous to cameras digitizing
photons, the research is focused on developing a system that digitizes scents,
thus, enabling us to save and transfer scents over time and space. Scent
transfer has three steps. First, measurements from a scent source, such
as a lemon or strawberry, are taken at location A. Second, the scent is
classified based on the measurements, and the resulting label is transferred
with the measurements to location B. Third, a synthetic scent is generated by
a so-called scent synthesizer at location B. The synthetic scent is built from
chemical key odor components and has to be as similar as possible to the
original scent at location A. By using a scent classifier, the search space for
the scent synthesizer can be narrowed down to a small number of key odor
components that are likely to be part of the original scent. Thus, a good
classifier speeds up the production of a synthetic scent and saves resources,
because fewer key odor components need to be tested.

For the purpose suggested above, two different solutions are needed:
analyzing scents and classifying them. Scents can be analyzed in different
ways. One approach is to use high-demand laboratory instruments, such
as mass spectrometers and gas chromatographs. The major disadvantages
of these instruments are that they are difficult to miniaturize and they
cannot be implemented cheaply as consumer-grade instruments. A low-cost
and portable alternative is an eNose, which mimics the biological sense of
smell and its communication with a biological brain (Kiani et al. (2016)).
Traditional eNoses are based on a gas sensor array and the appropriate
algorithms. However, ion-mobility spectrometry (IMS) technology can func-
tion in a similar way. In addition, IMS-based eNoses have been shown to be
suitable for fast analysis (Loutfi et al. (2015) and references therein). For
an overview of the major eNose techniques, we refer the reader to Wilson
and Baietto (2009) and Loutfi et al. (2015) and references therein. In this
paper, we use the Environics ChemPro 100i eNose, which is based on IMS
and analyzes scents by separating and identifying ionized molecules in the gas
phase based on their mobility in a carrier buffer gas (Utriainen et al. (2003)).

1Of course it is also of interest in the food industry, the cosmetics industry, biomedical
applications, etc.

3



Unlike mass spectrometry, IMS does not require a vacuum. Furthermore,
the sensors and electrodes of the IMS-based eNose do not age, unlike metal-
oxide sensor-based eNoses. This means, that the IMS sensors experience
signal drift mainly due to environmental changes.

Scents have been classified based on different eNose measurements using
various approaches. In general, supervised learning methods are used. This
means that measurements from known scents are stored in a training database.
An unlabeled scent is then classified by comparing its measurements with the
measurements in the database. Examples of classification algorithms used
for quality assessment of medicinal and aromatic plant products can be found
in Kiani et al. (2016) and references therein. In general, supervised learning
trains the various classifiers. Classification methods include, but are not
limited to, principal component analysis (PCA; e.g. in Mamat et al. (2011)),
linear discriminant analysis (Martín et al. (2001)), canonical discriminant
analysis (Seregély and Novák (2015)), discriminant functions analysis (Zheng
et al. (2015)), hierarchical cluster analysis (Lin et al. (2013)), cluster analysis
(Yang et al. (2009)), support vector machine (SVM; Längkvist et al. (2013)),
fuzzy artificial neural networks (ANNs; Singh et al. (1996)), and multilayer
perceptron (MLP)-type classifiers (e.g. in Zhang and Tian (2014)). For
additional approaches and details we refer the reader to, for example, Kiani
et al. (2016) and Loutfi et al. (2015) and references therein.

In the literature, to our knowledge, the ability to update scent training
databases without using often time-consuming and cumbersome classifier
retraining has not been considered. However, for real-world applications,
such as digital scent transfer and quality control of cosmetic products, this
property is desirable. Therefore, the use of the simple but effective K nearest
neighbors (KNN) approach seemed to be a promising starting point because
this method does not require generating the classifier in advance (Khan
et al. (2002)). The fact that the KNN algorithm has no training phase
is an advantage over its competitors, making it a better option than the
methods mentioned above. For these methods adding new samples to the
training database is possible but requires always retraining the classifiers. It
is noteworthy that modern proposals for efficient KNN, such as the KNN-IS
in Maillo et al. (2017), the clustering-based KNN in Gallego et al. (2018),
and the efficient KNN in Zhang et al. (2018) also do not allow dynamic
insertion of new samples meaning that they also require retraining when the
training database is modified.

The standard KNN has been used by Martín et al. (2001) to characterize
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vegetable oils and by Tang et al. (2010) to classify fruity scents. KNN
compares the IMS sample for the scent, measured by the eNose, with the
samples in the training database, picks the K training samples closest to the
unlabeled scent’s sample, and then classifies the scent based on the labels of
these K training samples. This method has strong consistency results, and
its misclassification rate can be controlled by adjusting K (Duda et al., 2001,
p. 174 ff.).

The two major drawbacks of using the KNN classifier are that it is
slow for large training databases, because it compares a new sample with
all samples in the database,2 and it can be fooled by irrelevant features. The
latter drawback affects the majority of classifiers to some extent. Therefore,
feature transformation and/or feature selection methods should be applied
to the IMS samples before the classifier is learned and applied. To speed
up the classification performed by KNN, three general techniques could be
used: computing partial distances, prestructuring, and editing the training
samples (Duda et al., 2001, p. 185 f.). (Duda et al. (2001), p. 185 ff.).

To understand how large the training database can get, let us consider the
following example. For each scent from our scent library, we should store at
least 5 minutes of IMS measurements, with a measurement frequency of 1Hz,
in the training database. In order to remove the influence of environmental
conditions, measurement noise, etc., it would be ideal to repeat the measure-
ments at least 5 times. This means that for each scent in the library we
should store at least 1 500 IMS samples in the training database, although
a much larger number of samples per scent would be desirable. Thus, it
becomes obvious that a comprehensive training database would grow very
large.

The contribution of this paper is threefold. First, the tests show that a
KNN classifier is a suitable choice for classifying scents using ion-mobility
spectrometry measurements, even for cases in which the IMS measurement
data of different scents vary only slightly. At the same time, the KNN
classifier works with a nonstatic training database of IMS measurements
without the need to constantly retrain the classifier. The classifier is tested
successfully with three chemicals and a wide selection of food scents. Second,
quick classification of the original scent is desirable in many applications,

2This means that the classification time for KNN is linear to the number of samples
in the training database (Abidin and Perrizo (2006)).
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such as digital scent transfer and quality control. Therefore, this paper
demonstrates that the classification time can be reduced considerably by
using a prestructuring technique called k-dimensional trees (Bentley (1975).
In the tests the classifier that uses k-dimensional trees needs approximately
1/8 of the time that the standard KNN needs). The test results show that
this acceleration of the classification task does not cause any (significant) loss
in classification accuracy. Third, the results show that principal component
analysis (Duda et al., 2001, p. 580) can further accelerate the classification
process without significant performance degradation. This furthermore im-
plies that the channels of an IMS-based electronic nose are dependent. How-
ever, the tests also reveal that care has to be taken when choosing the number
of principal components for classification to prevent loss of classification
accuracy. Thus, the classifier presented in this paper is a crucial step in the
development of a scent transfer system and will simplify and accelerate the
production of synthetic scents that are copies of the scent to be transferred.

This paper is organized as follows. In Section 2, we describe the scent
production method and the eNose we used, explain the KNN classifier and
discuss ways to reduce the computation time for classifying scents. We test
the classification performance of our KNN using data from scents presented
to the eNose in different ways in Section 3. Finally, we discuss the test results,
draw conclusions and give an outlook on future research in Section 4.

Notation: In this paper a denotes a scalar, b denotes a vector, and C

denotes a matrix.

2. Methods

2.1. Description of scent production, eNose and data collection

In this paper, three different methods for presenting scents to an eNose are
used. A carefully controllable olfactory display prototype is used to present
three central chemical components of jasmine. In addition, seven food scents
are presented on a plate and in a sealed jar to understand whether the
presentation method affects eNose measurements and classification results.

The goal of olfactory display design is to produce synthetic scents that are
close to the original scents by mixing significantly fewer odorous chemicals
than comprise the originals. Jasmine, for example, consists of more than ten
odorous molecules (Edris et al. (2008)). However, it is likely that jasmine
can be synthesized using only three of its components: benzyl acetate, cis-
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Jasmone, and indole. These components are used as the starting point for
controlled scent production for the tests in Section 3.

For the test, we developed a scent production prototype that transfers
liquid chemical compounds into the gas phase. In this olfactory display,
which is shown in Fig. 1, the carrier gas, flow intensity, and scent intensity
can be carefully controlled to mix key odor components, and the prototype
can produce several scents in the gas phase reliably and continuously for a
long time.

Scent samples are produced in three separate channels using programmable
Newera NE-500 syringe pumps. The syringes are connected to evaporation
units, which contain heat-resistant polyether ether ketone (PEEK) tubes that
lead to the surface of the ceramic heater elements (see Fig. 2).

The scent concentration in the carrier gas is adjusted by changing the
pumping speed of the pumps. The power of the heater elements is controlled
with an Arduino power control unit. A linear relationship between the
heater’s power and the pumping speed has been discovered. Thus, in order
to achieve stable evaporation the power of the heater elements needs to be
adjusted according to the pumping speed.

The olfactory display has also an output for the ChemPro 100i eNose
(Environics (2017)) shown in Fig. 1. The eNose is based on ion-mobility
spectrometry. It analyzes scents by grouping ionized molecules in the gas
phase based on their mobility in a carrier buffer gas. The ChemPro 100i
produces channel data from 16 ion electrodes. Data sequences from 14
channels (electrodes 1 to 7 and 9 to 15) are used to classify scents. Electrodes
8 and 16 are used to control the carrier gas flow speed and therefore, provide
no useful information for scent classification.

The Environics ChemPro 100i has a sampling frequency of 2Hz. However,
previous analysis of the channel readings revealed that the measurements do
not change markedly within half a second. Therefore, for better readability
of the data we used a sampling frequency of 1Hz instead.

Due to the design of the olfactory display, the measurements for each
channel require a few minutes to stabilize. Fig. 3 shows the channel 4 response
for benzyl acetate with a concentration of 15%, with propylene glycol as
diluent. In this example, it takes approximately 80 sec for the measurement
signal to reach the steady state level (of 95). In the remainder of the paper,
we distinguish the phase in which the signal stabilizes (the transient phase
aka the stabilization phase) and the phase in which the signal is stable (the
stable phase).
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Figure 1: Compact olfactometer used for the tests in Section 3. The programmable Newera
NE-500 syringe pumps can be seen in the center of the upper figure, and the ChemPro 100i
eNose can be seen in the lower right corner. The lower figure summarizes the olfactometer’s
working principle.
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Figure 2: Ceramic heater elements used by the olfactory display.

In order to avoid skewed class distributions in the training database, each
scent has the same (or at least very similar) number of training samples in
the database.

2.2. K nearest neighbors classifier in a nutshell

For classifying an unlabeled scent the K nearest neighbors classifier is used.
The idea behind KNN is to compare the scent’s 14-dimensional IMS sample
x(us) = [x

(us)
1 .. x

(us)
14 ] with IMS training samples in a training database, find

the K training samples closest to x(us) and label the scent based on the labels
of the K closest training samples.

The training database contains N IMS samples xi = [xi,1 .. xi,14], i =
1, .., N and their corresponding labels (i.e. the name of the scents they belong
to). The closeness between the new sample x(us) and the ith training sample
is computed as the Euclidean distance between the two, which is defined as

dE(x
(us),xi) =

√

√

√

√

14
∑

j=1

(

xij − x
(us)
j

)2

. (1)

The analyzed scent is then classified as belonging to the same scent as the
majority of its K closest neighbors (i.e., the samples for which dE(x

(us),xi) is
minimal). For example, let two neighbors belong to lemon and one to orange.
Then the scent will be labeled as lemon.
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Figure 3: Temporal response on IMS channel 4 for 15% benzyl acetate with propylene
glycol as diluent. The IMS reading stabilizes after approximately 80 seconds (dashed line).
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In order to avoid ties in the majority vote, K should be odd (Duda et al.,
2001, p. 183). However, even for an odd K, we might get a tie, for example, if
the three nearest neighbors are from three different scents. In this classifier,
in such a case we choose the label of the closest training samples as the label
for the scent. This means that we use the nearest neighbor (NN), which is a
special case of the KNN with K = 1, to break the tie.3 The pseudo-code for
classification with KNN is given in Algorithm 1. We discuss the algorithm
details in the remainder of this section. For a more thorough discussion of
KNN estimation, we refer the reader to (Duda et al., 2001, p. 174 ff.).

2.3. Choice of K and data preprocessing

For classification, the choice of K is crucial. In general, a large K is preferred
as it reduces the effect of measurement noise on the classifier. However, a
large K also weakens the boundaries between the scent classes, which could
result in poorer classification performance. Using a small K has advantages.
For example, if N → ∞, then all K nearest neighbors will converge to the
new sample x(us) (Duda et al., 2001, p. 183). Thus, one could simply use K

= 1 and could assume that the nearest neighbor is sufficiently close to the
new sample. However, in real-world applications N is finite: in this case, a
compromise between a reliable estimate for the scent’s label, which favors
large K, and all K neighbors close to x(us), which favors a small K (Duda
et al., 2001, p. 184). Typically, K is 3, 5 or 7 (Khan et al. (2002)).

Instead of using a fixed K for a test sample x(us), optimal K values for
each x(us) can be determined. For example, Wang et al. (2006) propose
the confident nearest neighbor rule, which is based on statistical confidence.
Rather than setting K before classification, the user defines a confidence level
p for the classifier’s label. The classifier then adjusts K such that the label
for x(us) is believed to be correct with probability p or higher. Cheng et al.
(2014) propose a KNN algorithm based on sparse learning. The method
takes into account the correlation between samples and learns a specific test
sample’s K value by reconstructing it as a linear combination of training
samples before determining the sample’s label using KKNN. The drawback
of these two and other methods, which also search for optimal K values, is
that the optimization process is often time-consuming. Therefore, Zhang et

3Using weights based on the distances to the new sample for the K nearest neighbors
is another option to avoid as it almost always results in a tie. Note that this weighted
KNN differs from the weighted KNN presented by Voulgaris and Magoulas (2008).
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Algorithm 1 Classification by KNN
Input: training data X = (xij) and corresponding scent labels s = (si)
with i = 1, .., N and j = 1, .., 14, number of nearest neighbours K, window
length w for sliding moving average (set w = 1 to use raw data), sample
x(us) from unlabeled scent, percentage of total variance p explained by PCA
features
Offline phase:

(i) Smooth training data: compute x̃ij(t) for w using (2) for all i and j

(ii) Standardise training data: compute {µj}
14
j=1, {σj}

14
j=1, and x̄ij for all i

and j using (3)
(iii) Transform data by PCA (optional): compute Y = (yij), µPCA, C
(iv) Generate k-d trees for IMS and PCA-transformed data (optional)
Online phase:

(v) Smooth data from scent: compute x̃
(us)
j for w using (2) for all j if more

than one sample is available
(vi) Standardise data from scent: compute x̄

(us)
j for all i using (3), {µj}

14
j=1,

and {σj}
14
j=1

(vii) Transform data by PCA (optional): compute y(us) = (y
(us)
j ) using (4),

µPCA, and C

(viii) Find K training samples closest to x̄(us) based on IMS measurements,
choose label s(us) based on labels of the labels of the K nearest neighbours
in s by majority vote
(viii) Find K training samples closest to y(us) based on PCA-transformed
features that explain p% of the variance, choose label s(us)

PCA based on labels
of the labels of the K nearest neighbors in s by majority vote (optional)
Output: s(us) and (optional) s(us)

PCA
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al. (2018) propose an approach that builds a decision tree for predicting the
optimal values of K for different test samples. The drawback of their method
is that it requires a training stage, unlike KNN with a fixed K. Thus, we
refrain from using these approaches and work with a fixed K for any test
sample.

In order to reduce the effect of measurement noise on the classifier,
instead of using a large K, we apply a sliding moving average (MA) to the
training data and the scent’s IMS samples. The reasons for using an MA
are twofold. First, we are interested only in the time domain. Ideally, the
reading on any channel should grow linearly to a stable level and then stay
at this level until the eNose is switched off or no more scent is presented
to it. Second, the ultimate goal is online classification, meaning we must
constantly switch between taking measurements and classifying the scent
based on these measurements. A sliding MA allows us to smooth the data
online and classify the scent a few seconds after a new measurement is taken.
The IMS measurement xij(t) at time t is replaced with the MA smoothed:

x̃ij(t) =
1

w

w−1

2
∑

τ=−
w−1

2

xij(t+ τ), (2)

where w is the window length of the sliding MA, which is an odd natural
number. If there are not enough samples before and/or after the ith sample
with the same label (i.e., from the same scent) available, then we average
over fewer samples and adjust w accordingly.

The KNN classifier uses the Euclidean distance for measuring the closeness
between the new sample and the training samples. This is problematic,
because the absolute values and the fluctuations in the IMS readings differ for
the 14 channels. Therefore, we standardize the smoothed data by centering
it and dividing it by the standard deviations of all measurements for any IMS
channel. This means that for IMS channel j mean µj and standard deviation
σj are computed over all training measurements on channel j. Then the
normalized IMS measurement

x̄ij =
x̃ij − µj

σj

. (3)

is computed. Samples from the scent are standardized accordingly using the
means {µj}

14
j=1 and standard deviations {σj}

14
j=1. The standardized sample is

denoted as x̄(us).
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Another crucial point that has to be taken care of in data preprocessing is
the composition of the training database. Due to the use of majority voting
for classifying a scent, for each (known) scent in the database, approximately
the same number of training samples must be stored. Otherwise, one scent
might dominate another scent in the database, causing the first scent’s samples
to be among the K closest samples to the new sample due only to the
large number (Voulgaris and Magoulas (2008)). If the scent distribution is
skewed, that is, that the number of samples of various scents varies markedly,
weighted KNN (WKNN) could be used. In WKNN, the K closest training
samples are weighted by their distance to the new sample.

2.4. KNN’s search method

The computational complexity of KNN described above depends on the
number of samples N in the training base and the dimensionality k of the
samples. In this paper, k = 14 because measurements from the 14 IMS
channels are used. For better classification accuracy, N should be large. If
the aim is to classify a large variety of scents using the KNN classifier, then
we need IMS samples from any of these scents, which would result in a large
N and high computational complexity (Moreno-Seco et al. (2003)).

However, quick classification of a scent is desirable. Therefore, the compu-
tational complexity of KNN has to be reduced. Three different techniques
can be used: computing partial distances, prestructuring, and editing the
training samples (for details, see (Duda et al., 2001, p. 185 f.)).

For the presented KNN, we choose a prestructuring technique called k-
dimensional trees (k-d trees aka multidimensional binary search trees), which
was introduced in Bentley (1975). Note that k has no connection to K, and
that generally k 6= K will hold. The idea of the k-d tree search is to split
the training data into subsets, use the binary k-d tree to address the new
sample to a certain subset, and choose the nearest neighbors only from the
training samples in this subset. A k-d tree with depth k splits the original
data set into 2k subsets. This means that the training database is split into
214 = 16, 384 subsets, and the new sample is compared only with training
samples from the subset to which the sample is addressed by the k-d tree.

One property of k-dimensional trees is that they are especially suited
for low-dimensional, real-valued data, such as the IMS data. The major
advantage, however, is that new nodes can be added to an existing k-d tree,
which means that there is no need to retrain the whole tree when updating
the training database with measurements from new scents. The algorithm
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for adding new nodes to an existing k-d tree is described in detail in Bentley
(1975). The major drawback is that k-d tree can miss the true nearest
neighbors, because the k-d tree search is an approximate method. However,
for a large N this method generally works well, because as N → ∞ all nearest
neighbors will converge to the new sample (Duda et al., 2001, p. 183).

2.5. Feature transformation and reduction

Although the data are already low-dimensional, techniques for reducing the
dimensionality could be considered. Furthermore, we should address the
problem that KNN can be fooled by irrelevant features, that is, IMS channels
whose data are irrelevant for classification.4

A technique that addresses both issues at once is PCA. The object of PCA
is to find a lower-dimensional representation that accounts for the variance of
the features (Duda et al., 2001, p. 580). This new, improved representation
of the full data space is provided by the eigenvectors of the covariance matrix
that have the largest eigenvalues (Duda et al., 2001, p. 580 ff.). In general,
the covariance matrix has only a few large eigenvalues, and the dimensions
associated with the remaining, small eigenvalues contain only noise (Duda
et al., 2001, p. 568). The dimensionality of the new data generated by PCA is
chosen based on the value of the total variance in the original data that should
be explained by the transformed features. For example, assume that at least
95% of the total variance should be explained. If the three transformed
features with the highest eigenvalues explain 95% or more of the variance,
then only these three features will be used for classification, and the rest can
be discarded. This means that PCA can transform and reduce the features.

We use PCA to transform the observed IMS channel measurements, which
most likely are correlated, into a set of new, artificial measurements that are
linearly uncorrelated by orthogonal transformation. The drawback of PCA is
that we end up with a set of new features that are difficult to interpret. This
means that we cannot directly see on which IMS channels a certain scent is
observed and on which only air or the diluent is detected.

Before classifying scents, PCA should be applied to samples in the training
database that are in the offline phase. This requires us to be able to transform
the IMS samples measured for the new scent into the same format as the

4An irrelevant channel is, for example, a channel whose reading is independent of the
analyzed scent.
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PCA-transformed training data. When transforming the training data with
PCA, we obtain as side products the empirical means for all 14 channels
µPCA = [µ

(PCA)
1 .. µ

(PCA)
14 ] and the 14-by-14 matrix C that contains the principal

component coefficients. A new standardized IMS sample x̄(us) from an un-
labeled scent can then be transformed into a 14-dimensional PCA-transformed
sample with

y(us) = (x̄(us) − µ)C. (4)

In the same way new IMS training data can be transformed into new PCA-
transformed training data. This means, adding new scents to the training
database does not require modifying the existing PCA-transformed data.

For classifying a scent using PCA-transformed data, we can use KNN.
Depending on the percentage of total variance p that should be explained by
the PCA features we use only data from the first nPCA transformed features.
This means the closeness between the new sample y(us) and the ith PCA-
transformed training sample yi is computed with

dE(y
(us),yi) =

√

√

√

√

nPCA
∑

j=1

(

yij − y
(us)
j

)2

. (5)

2.6. Comparison of KNN and alternative methods

KNN has three strengths. First, despite its simplicity it is very effective and
can give very good results if the training data contain IMS readings similar
to the reading of the scent. Second, KNN has strong consistent results. By
increasing the number of training samples, the misclassification rate can be
reduced, and K can be used to control the misclassification rate. Third,
KNN enables us to constantly add new training samples without the need
to retrain the classifier.

The two main drawbacks of KNN are its slowness for large datasets,
because its classification time is linear to the size of the dataset, and its
vulnerability to irrelevant features. In order to mitigate the influence of
these two drawbacks on the presented KNN classifier, we use a k-d tree
search to accelerate the search process. This way, we need to compare the
new sample only to a subset of training samples. PCA removes the irrelevant
features. It generates a new set of features that contribute to the variance in
the data. By choosing, for example, features that explain 99% of the data’s
total variance irrelevant features can be completely removed.
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An alternative is a multiclass SVM (M-SVM) classifier. These classifiers
are accurate and in general do not overfit the data, which means that they
can handle new data well. M-SVMs are fast classifiers, because they need to
be trained only once, and afterward, the training data can be discarded.
However, for this application we need to update the classifier once new
training data are available. Another strength of M-SVMs is that they handle
complex, nonlinear classification generally well, which could be beneficial for
IMS data.

The weaknesses of M-SVMs are that the parameters are difficult to inter-
pret, and its training and tuning are time-consuming. Thus, constantly
updating the classifier for new training data is not recommended. In addition,
M-SVMs can be slow when the training data contain large numbers of different
scents, because the scents are separated pairwise by SVMs. This means for
a classifier that has to distinguish m different scents the M-SVM consists of
m or m(m−1)

2
SVMs, depending on the strategy.

ANNs could also be used for classification and perform well for nonlinear
data with a large number of features. Furthermore, their classification time
is independent on size of the training database. However, also for low-
dimensional data, such as the 14-dimensional IMS measurements studied
in this paper ANNs could be used. Neural network techniques have two
challenges that need to be considered. First, the number of free parameters
need to be chosen such that the network generalizes well. With too few
parameters the training data is learned inadequately and with too many
parameters the classifier will generalize poorly (Duda et al., 2001, p. 283).
Second, they require large amount of data compared to the network size. The
data sets studied in the next section would not suffice. For the application
studied in this paper it is furthermore problematic that the network would
need to be retrained every time the training database would be modified.

Other classification methods can be and have been used for scent classifi-
cation. The interested reader is referred to, for example, the references in
Section 1. These methods are not discussed in detail in this paper.

3. Classification results

This section assesses the classification performance of the KNN algorithm
using IMS data and PCA-transformed data. In the first experiment three
organic compounds are presented to the eNose using the olfactory display
in Subsection 2.1, which ensures that only the organic compound and the
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diluent are measured. In the second experiment seven food scent sources
are presented to the eNose on a plate and in a sealed jar. In latter case
also other scents present in the experimental facilities during the experiment
are measured simultaneously with the food scents. by the eNose. This
experiment was done in order to study how sensitive the developed classifi-
cation system is to random distractions, which are common in real-world
use. The measurement data for both experiments is available for download
(Müller et al. (2018)).

In order to test the KNN classifier with a database that is as large as
possible, all the data is used for the different runs of both experiments.
This means that the training database is static during each run, and any
classifier could be applied without the need to retrain it. However, the
training databases for any two runs differ from each other, which would
require retraining the classifier for any run. Furthermore, for later application
in real world the training database has to be flexible. Therefore, it would be
beneficial if the classifier does not need to be retrained any time the database
is modified (e.g. a new scent is added).

3.1. Tests with key odor components of jasmine

In this subsection, the classifier is tested with the three key odor components
of jasmine: benzyl acetate (BEA) using concentrations of 40 and 70 parts
per million (ppm), cis-Jasmone (CIS) using concentrations of 39 and 69 ppm,
and indole (IND) using concentrations of 4 and 7 ppm. For all three scents,
propylene glycol (PG) is used as the diluent. BEA, CIS, and IND were
purchased from Sigma Aldrich R©. Their Chemical Abstract Service (CAS)
Registry Numbers are 140-11-4 (BEA), 488-10-8 (CIS), and 120-72-9 (IND),
respectively.

The data consist of 10 measurement sets for 10min for each component-
concentration (CC) combination, measured with a frequency of 1Hz. The
measurement sets for any specific CC combination were collected in the
following way. After the first measurement set was collected, the eNose
was cleaned by pumping only air for approximately 20 sec. Then the second
measurement set was collected. The eNose was cleaned again, and the third
set was collected, etc. Therefore, only the first measurement set of any SC
combination contains data from the full transient phase. Sets 2 to 10 contain
only the last fraction of the data from the transient phase, and we cannot
say for certain how large this fraction is.
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Before the classification test, the data are smoothed using a sliding moving
average with window length w = 11 and normalized. As a compromise, K =
3 is used. For searching the three nearest neighbors, exhaustive and k-d tree
searches are applied. For the test a setup inspired by cross-validation (CV)
is used. In each run different training and test sets are used. For example,
in run 1 all measurement sets with identifier (ID) 1 are used as test data
and all sets with IDs 2 to 10 are used as training data. Then, in run 2 all
measurement sets with ID 2 are used as test data and all sets with IDs 1 and
3 to 10 are used as training data, etc.

Fig. 4(a) shows the misclassification rates in percent, that is, the percen-
tage of test samples that are classified incorrectly, in each of the ten runs for
both search methods. The two search methods provide the same misclassifi-
cation rate,5 which was expected because for each CC combination 5 400
training samples are stored in the database. As mentioned in Subsection 2.4,
large number of training samples ensure that k-d tree search works well,
because as N → ∞ all nearest neighbors will converge to the new sample (Duda
et al., 2001, p. 183). For classifying a test sample k-d tree search requires,
on average, only 13.6% of the computation time of exhaustive search.

The misclassification rate in run 1 for both search methods is 14.6%,
but in runs 2 to 10, less than 3% of the test samples are misclassified.
The slightly higher misclassification rates in run 10 can be explained by
the fact that the pumps of the olfactory display in this run are closed a
few seconds before the end. After the pumps are closed, the IMS readings
change instantly. The reason for the poor performance of the KNN in the
first run is that the test sets (i.e. sets with ID 1) contain measurements from
the transient phase, while the training sets lack data from this phase. For
example, if we consider only test data samples that are taken in the first
3min of the first cycles, which corresponds to the transient phase, then the
misclassification rate is 42.0% (for data from the first 2min and from the
first minute, the misclassification rates are 54.4% and 78.1%, respectively).
For the test samples that are taken after the first 3min (in the stable phase),
the misclassification rate is only 2.7%, which is close to the results for runs
2 to 10.

It can be concluded that it is important to have training data from the

5The k-d tree might still miss some or all of the true nearest neighbors, but that does
not change the label the KNN classifier yields.
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Figure 4: Misclassification rates in percent for the test in Subsection 3.1. 3.1. (a) shows the
rates for the IMS measurements, and (b) shows the rates for the first two PCA-transformed
components for classifying scents.
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transient and stable phases to classify scents based on IMS readings from
these two phases. Furthermore, this test shows that the scent concentration
has a considerable influence on the IMS readings, and that the classifier
distinguishes two scents even if their IMS values differ only slightly.

Classification with PCA-transformed data

Fig. 4(b) shows the percentage of misclassified test samples in each of the ten
runs for the exhaustive and k-d tree searches, but this time, PCA-transformed
data are used to classify the scents. In this test, the requirement is that the
PCA features explain 95% of the total variance in the data. Using this
value, each run ends up with the first two principal components, meaning
that only 1/7 of the number of features from the test with IMS data is
used. This reduces the computation time for classification considerably.
Using PCA-transformed data with an exhaustive search requires 34.5% of
the computation time required for the exhaustive search used on IMS data;
using PCA-transformed data with the k-d tree search requires only 3.1% of
the computation time using IMS data with an exhaustive search and 22.6%
of the computation time using IMS data with a k-d tree search.

The reduction comes at the cost of higher misclassification rates in all
ten runs. However, for runs 2 to 10 the classifier still performs well. In this
run, the test data contain measurements from the transient and stable phases
while the training data contain data only from the stable phase, which leads
to the poor performance.

Thus, using PCA for transforming and reducing features is advisable as it
helps to reduce the computation time considerably. Especially for real-world
applications with considerably larger training datasets, PCA should be used
to ensure reasonably fast classification of scents.

3.2. Tests with food scents

For these tests, seven sources of scents are presented to the eNose on a
plate and in a sealed jar. The sources of the scents are cinnamon (crushed
cinnamon sticks from Indonesia), coffee (crushed, non-brewed Roasted Ara-
bica coffee beans), grape (red grape, Sharad from India), lemon peel (grated
peel of a ripe lemon), pineapple (fresh and ripe pineapple), strawberry (sliced,
fresh Marilyn strawberry from Spain), and vanilla (sliced dried vanilla fruit
from Indonesia).

Each source is first put on a plate on a table approximately 2–3 cm
from the eNose. For the second set, each source is placed in a sealed jar
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and presented to the eNose by manually opening a valve that controls warm
airflow. In both cases, five measurement sets for 5min measurement frequency
is again 1Hz) are taken for each source of scent. In both sets, the scent
source is approximately 5ml.6 The gap between taking two consecutive
measurement sets for a source is set at 3min to ensure that each set contains
data from the transient phase. Because the scent reaches the IMS channels
faster than when using the olfactory display in Subsection 3.1, the transient
phase is considerably shorter in this test. In the sets tested within this
subsection, it is approximately 20 to 30 sec long.

Visual inspection of the IMS readings for scents measured on a plate shows
no significant variation for different scents. Thus, it could be expected that
the classifier has more difficulty labeling correctly scents that are measured
on a plate than correctly labeling scents that are measured from a closed jar.

A similar setup as described in Subsection 3.1 is used for this test. For
each of the 14 scents (seven sources of scent in two presentation methods),
one set is chosen as the test set and the remaining four sets as the training
set. This is repeated five times, so that each set is the test set one time and
part of the training set four times. As before, the data are smoothed using a
sliding moving average with window length w = 11. and normalized, and K

is set to 3. Here a test scheme similar to the one in 3.1 and based on 5-fold
CV is used.

Fig. 5(a) shows the percentage of misclassified test samples in each of the
five runs for the exhaustive and k-d tree searches. Again, the two search
methods provide the same results, meaning that using the k-d tree search
is preferred due to its lower computational demand (on average, over the
five runs 12.1% of the exhaustive search’s computation time). The reason
for the similar performance are as in the previous test the large number of
training samples per scent (1 200 for any presentation method) and the low
dimensionality of the data.

As in the test described in Subsection 3.1, the misclassification rate in
the first run is considerably higher than in the remaining runs, although
here all five sets contain data from the transient phase. However, when
measuring data for sets 2 to 5, which are used as training sets in run 1, the

6The amount was measured using a teaspoon (1 US teaspoon equals 5 ml). We did not
use water, alcohol, or anything to dilute the odorants.
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Figure 5: Misclassification rates in percent for the test in Subsection 3.2. (a) shows
the rates for the IMS measurements and (b) shows the rates for the first three PCA-
transformed components, which explain at least 95% of the total variance, and the first
four PCA-transformed components, which explain at least 99% of the total variance, for
classifying scents.
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IMS channels were not completely cleansed.7 If we consider, for example,
only test data samples that were taken in the first 3min of the first cycles,
which corresponds to the transient phase, then the misclassification rate is
20.1%, compared to 14.6% when we use all the data from the first cycles (for
data from the first 2ṁin and from the first minute the misclassification rates
are 22.8% and 21.7%, respectively). For test samples that were taken after
the first 3min (mainly in the stable phase), the misclassification rate is only
6.0%, which is close to the results for runs 2 to 5.

Looking at the confusion matrices of the five runs, some typical misclassifi-
cation patterns can be noticed. For example, in each run a considerable
number of samples from strawberry on a plate are misclassified as coffee on
a plate and vice versa. In run 1, in addition, 44.1% of all samples from grape
in a jar are misclassified as lemon peel in a jar, and 35.0% of all samples from
grape on a plate are misclassified as vanilla on a plate, which explains the
considerably higher misclassification rate in run 1.

Table 1 contains a summary of all major misclassifications (i.e., at least
5% of all samples from one scent are misclassified as another scent) when we
use the exhaustive search. Switching to the k-d tree search has no significant
effect on those numbers. The majority of the misclassification happens for
scents that are presented to the eNose on a plate. These results confirm
what we expected when we looked at the IMS readings from the 14 scents.
If a scent is presented in a sealed jar to the eNose, then the classifier has a
higher chance of classifying the scent correctly compared to when the scent is
presented on a plate. Nevertheless, the results for both presentation methods
are encouraging.

From Table 1, it can be seen that a large portion of the strawberry and
coffee samples presented on a plate are misclassified while no significant
number of cinnamon samples is misclassified. When we map the 14-dimension
IMS measurements for the five measurement sets of cinnamon, coffee, and
strawberry on a plate to two dimensions we can get an idea why that is. For
cinnamon, the samples from the five sets are grouped into one big cluster (the
top of Fig. 6). In contrast, for coffee (the middle of Fig. 6) and strawberry
(the bottom of Fig. 6) on a plate the plots show five distinctive clusters.
This means that for coffee and strawberry on a plate the IMS readings vary

7Cleansing the channels completely after measuring one set would require impractical
long breaks between taking measurements for the different sets.
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Table 1: Major misclassifications in test in Subsection 3.2 using exhaustive search method
and IMS data. Column misclassifications shows the percentage of samples from true scent

that are misclassified as predicted scent.

run misclassifications true scent predicted scent

1 44.1% grape (jar) lemon peel (jar)

35.0% grape (plate) vanilla (plate)

78.1% strawberry (plate) coffee (plate)

15.5% strawberry (plate) pineapple (plate)

24.2% pineapple (plate) lemon peel (plate)

2 40.7% strawberry (plate) coffee (plate)

11.1% coffee (plate) vanilla (plate)

3 22.9% coffee (plate) strawberry (plate)

4 31.7% coffee (plate) strawberry (plate)

5 38.7% coffee (plate) strawberry (plate)

5.1% pineapple (jar) grape (jar)
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Figure 6: Metric multidimensional scaling of IMS data from five measurement sets of
cinnamon (top), coffee (middle), and strawberry (bottom) presented to the eNose on a
plate.
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more than those for cinnamon on a plate. Visual inspection of the channel
readings revealed that for coffee, strawberry, and pineapple the initial IMS
readings (i.e., the first few measurements of each set) vary markedly for the
five measurement sets, while for cinnamon the readings are similar for each
set. Furthermore, we notice that for coffee, strawberry, and pineapple the
initial IMS readings of one measurement set are usually close to the last IMS
readings of the previous measurement set, which suggests that the 3-min gap
was not long enough to cleanse the IMS channels. One reason could be that
furaneol (aka strawberry furanone aka pineapple ketone) is a shared odor
component for strawberry and pineapple. When we analyzed furaneol with
the olfactory display, we noticed that it stayed in the tubes for a long time.
Thus, it is likely that furaneol might have prevented the full cleansing of the
IMS channels for strawberry and pineapple.

Classification with PCA-transformed data

Fig. 5(b) shows the percentages of misclassified test samples in each of the
five runs for the exhaustive search applied to the PCA-transformed data.
The results for the k-d tree search are similar and therefore, are omitted.
When we use data only from the first three principal components, which
explains at least 95% of the total variance of the data (blue bars in the figure),
the misclassification rates increase markedly to unsatisfying levels of 10% to
20%. However, by also using data from the fourth principal component,
which together with the first three components explains at least 99% of the
variance, the misclassification rates can be reduced considerably (yellow bars
in the figure). The misclassification rates are similar to those when we use
IMS data, and at the same time, the classification process is speeded up
because only 2/7 of the number of features from the test with IMS data are
used.

A summary of all major misclassifications when we use data from the
first four principal components and exhaustive search is presented in Table 2.
The most stable misclassification patterns are classifying coffee on a plate as
strawberry on a plate and vice versa, and strawberry on a plate as vanilla
on a plate and vice versa. One possible reason for these misclassifications is
that the three food scents have odor components with chemical similarities.
However, this question remains open for further research.

Influence of K on the misclassification rate

As discussed in Subsection 2.3, the choice of K is a compromise between
reliable estimates for the labels of unlabeled scents and the closeness of all
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Table 2: Major misclassifications in test in Subsection 3.2 using exhaustive search
method and data from first 3 principal components. Column misclassifications shows
the percentage of samples from true scent that are misclassified as predicted scent.

run misclassifications true scent predicted scent

1 12.5% cinnamon (jar) strawberry (jar)

47.5% grape (jar) lemon peel (jar)

35.0% grape (plate) vanilla (plate)

37.0% pineapple (plate) lemon peel (plate)

40.4% strawberry (plate) coffee (plate)

6.7% strawberry (plate) pineapple (plate)

48.2% strawberry (plate) vanilla (plate)

2 33.7% coffee (plate) vanilla (plate)

59.9% strawberry (plate) coffee (plate)

3 20.5% coffee (plate) strawberry (plate)

10.1% coffee (plate) vanilla (plate)

26.6% grape (jar) pineapple (jar)

7.4% strawberry (plate) coffee (plate)

4 25.9% coffee (plate) strawberry (plate)

9.8% grape (jar) pineapple (jar)

5 43.8% coffee (plate) strawberry (plate)

5.7% pineapple (jar) grape (jar)

13.5% vanilla (plate) coffee (plate)
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Figure 7: Misclassification rates in percent for test in Subsection 3.2 with varying K. (a)
shows the rates when IMS measurements are used with the exhaustive search, and (b)
shows the rates when first four PCA-transformed components are used, which explain at
least 99% of the total variance with the exhaustive search.

K neighbors to x(us) due to the finite number of training samples. To check
how different values of K influence the misclassification rates, we repeat the
tests of this subsection and set K to 5 and 7.

Fig. 7 shows the misclassification rates for K set to 3, 5, and 7 with the
exhaustive search on the IMS data (upper plot) and on the first four principal
components (lower plot), which explain 99% of the total variance. Again,
the results using the k-d tree search are similar to those for the exhaustive
search and therefore, are omitted due to space restrictions. From the figure,
we can see that the influence of K, for the three options we tested, on the
misclassification rate is marginal. Thus, we can set K at 3, because it is
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slightly faster than the larger Ks. For exhaustive search on IMS data, K set
to 5, on average, uses 102.6% and K set to 7, on average, uses 107.9% of the
running time of K set to 3, because during the search more potential nearest
neighbors have to be stored and compared.

4. Discussion and Conclusions

Our goal is to develop a scent classification algorithm for scents that will
enable, for example, product quality control or digital transfer of scents in
space and time. This system needs to consist of a scent analyzer, a scent
classifier, and a scent synthesizer. Such a classifier needs to be reasonably
fast and accurate, to update the training database without requiring classifier
retraining, and be easily understandable for user friendliness.

This paper provided a detailed analysis of the scent classifier: a K nearest
neighbors algorithm using ion-mobility spectrometry data from an electronic
nose. In the classifier’s basic form, i.e. when using the exhaustive search
on IMS data, the KNN classifier performed well in the tests reported in
Section 3. In most cases, KNN classified the scents correctly, regardless of
how the scents were presented to the eNose.

In order to solve the problem of slow classification for large training
databases, the k-dimensional tree search was applied. The results showed
that this approach required only 12-13% of the time needed for the exhaustive
search. In all tests, the k-d tree search yielded exactly the same misclassifi-
cation rates, meaning that the reduction in search time did not attenuate
the classification performance. Another advantage of the k-d tree search is
that the tree can be generated in the offline phase, that is, before classifying
a scent, and the tree can be updated when new samples are added to the
training database instead of constructing a new tree.

The effect of principal component analysis on the misclassification rate
was also tested. PCA revealed that the channel readings of the ion-mobility
spectrometry-based eNose are dependent. Using only data from the first few
principal components, which explained 99% of the total variance in the IMS
data, only a minor increase in the misclassification rate was observed. At
the same time, the search time can be reduced considerably by using PCA-
transformed data instead of IMS data. Details were presented in Subsection
3.1. By using (4) IMS measurements from new scents can be transformed
into PCA measurements and simply be added to the existing PCA training
database, meaning that no retraining is required.
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Finally, the influence of three suitable alternatives for K on the misclassifi-
cation rate and the running time were tested. No significant influence of
K = {3, 5, 7} on either the misclassification rate or the running time was
found.

Conclusion

Thus, we can conclude that the proposed KNN algorithm can be recommended
for classifying scents based on IMS readings from an eNose, which is one of the
main contributions of this paper. However, the data should first be smoothed,
for example, with a sliding moving average to filter out noise in the data, and
then normalized. In addition, the results show that by using k-dimensional
tree search and principal component analysis the classification process can be
tremendously accelerated. Furthermore, it is advisable to consider methods
for reducing the size of the training database (see, e.g., Mainar-Ruiz and
Perez-Cortes (2006) and references therein for an overview). Which of these
methods works best for a database that is regularly updated by adding
measurements from new scents needs further research. For example, it has
to be ensured that from each scent the same or at least a similar amount
of training data exists in the database to avoid the problem of skewed class
distributions.

Outlook

Future research should consider how to reduce the misclassification rate
further. Especially when a scent on a plate was presented to the eNose, the
IMS readings often differed only slightly for various scents, which made it
difficult for the KNN to classify the scent based on one IMS measurement or
its PCA-transformed equivalent. One method we will in-vestigate is the use
of sequences of IMS measurements over several seconds or minutes, instead
of (smoothed) single measurements to classify scents. The aim is to check
whether the temporal behavior of IMS readings for different scents follows
different patterns, which can be used for classification. Furthermore, we will
study the use of fuzzy KNN. Fuzzy KNN classifiers have been successfully
applied, for example, for cardiac arrhythmia classification (Castillo et al.
(2012)). Instead of a simple label, fuzzy KNN provides probabilities for all
potential labels, and thus, information on how trustworthy the labels are.
In addition, a conditional KNN classifier could be developed. For instance,
if additional information on the scent source is available (e.g., "The scent
source is a fruit"), then the nearest neighbors need to be searched only in a
subset of the training set. In the example, only samples from fruits should
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be considered in the search for K nearest neighbors.
In order to make the classification more generalizable IMS-based eNoses

will be studied for device heterogeneity (aka signal shift). Device heterogeneity
describes the phenomenon that two devices (even of the same brand and
model) yield different results in identical sensing conditions (see e.g. Zhang
et al. (2017)). If IMS-based eNoses indeed suffer from device heterogeneity,
then device (aka shift) calibration methods have to be used to make the
results from multiple eNoses comparable. For a short overview on device
calibration methods the reader is referred to Vaupel et al. (2010); Haeberlen
et al. (2004); Laoudias et al. (2012); Koski et al. (2010); Zhang et al. (2017)
and references therein.

Furthermore, signal drift should be investigated. Although IMS sensors
do not age (i.e. there responses do not get weaker), their readings depend
on environmental factors, such as temperature and humidity. Therefore, the
use of drift compensation methods will be studied. These methods can be
divided into 1) component correction methods, 2) adaptive methods, and
machine learning methods (see e.g. Zhang and Zhang (2015) and references
therein).

For developing the scent transfer system mentioned in the introduction, it
has to be studied how many scents can be distinguished by the KNN classifier
using only IMS measurements. This number will be limited. However, it is
important to note that only a limited number of scents need to be stored
in the training database, because humans have difficulties to distinguish
between, for example, the scent of jasmine oil and the scent of a mixture of
its three key odor components that were tested in this paper (Surakka et al.
(2016)). Furthermore, the final scent detection system could be enhanced by
using additional chemical sensors.

Classification of scents has various real-world applications in areas such as
the food industry, where classification includes detecting aroma compounds
in dairy products and checking the quality of grains, eggs, meat, fish, and
seafood (Wilson and Baietto (2009) and Baldwin et al. (2011) and references
therein). There is even evidence that our approach can be used to distinguish
different rooms in indoor localization (Müller et al. (2017)). Considering
a wider and more ambitious perspective of digitizing human senses, the
classification of odors is a necessary step required to develop systems that
imitate human perception of scents. The present results showed promise
to develop the science of odor further. As the famous scientist Alexander
Graham Bell said in 1914: "But until you can measure their likeness and
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differences, you can have no science of odor. If you are ambitious to find a
new science, measure a smell." This is where we are heading.
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