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Time-of-flight imaging for assessing soil deformations and improving forestry 7 

vehicle tracking accuracy 8 

Automatically collected forest environment data is essential when developing more accurate and 9 

efficient forestry operations. Reliable position-based data enables efficient wood procurement 10 

operations and helps to avoid damage to the forest floor. A modern forestry vehicle with 11 

extensive sensing capabilities could measure environmental parameters, such as soil type, 12 

topography or weather conditions, while carrying out other wood procurement tasks. 13 

Furthermore, methods to improve positioning accuracy are also called for when the positioning is 14 

based on global satellite navigation systems (GNSS), whose signals are often blocked by the 15 

forest canopy. In this paper, data is collected automatically with two of Microsoft’s Kinect v2 16 

time-of-flight sensors during field tests in a forest environment in Southern Finland. The aim of 17 

the paper is to propose methods which will improve positioning accuracy by enabling the 18 

movements of the forwarder to be detected and also to provide reliable measurements of any soil 19 

deformations caused by the vehicle in real time. The results show that Kinect v2 technology 20 

enables tracking of the vehicle’s movements over short distances with sub-meter accuracy, thus 21 

supporting the GNSS positioning during the short periods of unavailable satellite visibility. 22 

Kinect v2 technology has also been shown to be able to measure the depth of ruts as accurately 23 

as conventional manual measurements. 24 

Keywords: Kinect v2; time-of-flight; depth camera; heavy forestry vehicle positioning 25 
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Introduction 30 

Detailed forest resource management, or precision forestry, means that various modern 31 

technologies are used to gather information about the forest so that its characteristics can be 32 

determined accurately with high spatial resolution (Holopainen et al. 2014). Such information 33 

maximizes the efficiency of forestry operations and minimizes any permanent impact on the 34 

forest floor. Much recent research has been based on the vast amounts of positioning data 35 

gathered from the field operations of modern cut-to-length harvesters (Oliviera et al. 2016). One 36 

particular field of interest is how to combine the harvester data with data from remote sensing, 37 

such as airborne laser scanning (ALS), to record accurate single-tree data (Lindroos et al. 2011; 38 

Holopainen et al. 2014).  39 

A forestry vehicle is a potential platform for automatically collecting data about the forest 40 

environment while carrying out normal wood procurement tasks. Among the parameters of 41 

particular interest are the soil’s characteristics, such as its type, moisture content and topography. 42 

A modern forest vehicle could also collect other data on spatially or temporally varying 43 

parameters, such as the weather conditions. Automatically collected data about the above 44 

characteristics would enable the development of new applications for improving the quality of 45 

forest operations. For example, traversability estimates based on detailed information about the 46 

forest’s resources and operating conditions could be used for routing the forwarder. Data about 47 

soil deformations, for instance, which used to be collected manually, could be collected and 48 

processed automatically for real time usage and better coverage over the driven routes. 49 

In order for the data about the environmental parameters to be used efficiently in 50 

Geographical Information Systems (GIS) it must be positioned accurately. Most heavy forestry 51 

vehicles are positioned with one or other of the three available global navigation satellite systems 52 
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(GNSS): the United States’ Navstar Global Positioning System (GPS), Russia’s GLONASS and 53 

Europe’s Galileo system. The system used, and the receiver technologies, can have a significant 54 

effect on positioning accuracy, as can the forest conditions, which obviously affect how well the 55 

vehicle receives the satellite signals. It is well known that satellite positioning of a moving 56 

vehicle under a forest canopy is difficult because the signal is sometimes blocked and thus 57 

temporarily unavailable, resulting in sudden position jumps or multipath signals. Many studies 58 

have evaluated the positioning systems and the effect that the forest canopies have on their 59 

positioning accuracy (Holden et al. 2001; Lindroos et al. 2011; Dawidowicz & Krzan 2014; 60 

Bakuła et al. 2015; Kaartinen et al. 2015; Blum et al. 2016). It has been shown that systems using 61 

devices which combine two or more satellite systems, e.g. GPS and GLONASS, perform better 62 

than single-technology devices when there is virtually no direct view of the sky (Dawidowicz & 63 

Krzan 2014; Blum et al. 2016). Many studies have focused on achieving the sub-meter accuracy 64 

required for single-tree positioning (Lindroos et al. 2011; Ringdahl et al. 2011). If the exact 65 

position of the harvester head were known, the single-tree information gathered by a modern cut-66 

to-length harvester could be linked to the tree’s location. With an integrated Real-Time 67 

Kinematic (RTK) GNSS system on a harvester, it would indeed be possible to position single 68 

trees with sub-meter accuracy (Hauglin et al. 2017). It is generally accepted that for open land 69 

surveys, RTK-GNSS systems are the most accurate GNSS technologies available. However, so 70 

far no studies on RTK-GNSS devices operating under forest canopies have achieved sub-meter 71 

accuracy (Bakuła et al. 2015; Kaartinen et al. 2015). Nevertheless, there have been some 72 

significant developments. Some researchers have shown that it is possible to increase the 73 

positioning accuracy under a forest canopy by equipping the vehicle with additional sensors, 74 

such as inertial measurement units (IMUs) (Kaartinen et al. 2015) or LiDAR (Qian et al. 2017). 75 
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Ringdahl et al. (2011) used a gyroscope to compensate for the movement of the GNSS device 76 

when the vehicle is at an angle on the often uneven forest terrain. This also improves the 77 

accuracy of the vehicle positioning. 78 

So, previous studies have shown that positioning accuracy can be improved to the level 79 

required, but it requires either clear satellite signal paths or the installation of additional sensors 80 

to the vehicles. Therefore, attention is now focusing on low-cost sensor solutions for improving 81 

positioning accuracy. These are needed in, for example, thinning operations, during which the 82 

forest canopies most interfere with the GNSS positioning system. The precise position of the 83 

vehicle’s body is needed to obtain reliable soil measurements, whereas it is the position of the 84 

harvester head that is needed for single-tree positioning.  85 

There are a number of different sensors on the market for measuring the forest 86 

environment automatically during forest operations. Of particular interest is the use of laser 87 

scanners, which can be used to identify and measure the characteristics of individual trees and 88 

for measuring the terrain (Schmid et al. 2004). However, laser scanner systems are rather 89 

expensive components for forestry vehicles. Photogrammetric systems have been proposed for 90 

measuring wheel ruts (Haas et al. 2016; Pierzchata et al. 2016), but no such automated solutions 91 

have yet been integrated into forestry vehicles. These systems are less expensive than laser 92 

scanners, but their applications are restricted. They are affected by the ambient light, by their 93 

inability to see below the surface of any water in the wheel ruts and by the difficulty of mounting 94 

the cameras on the vehicle. There is another 3D measurement technology, however, which has 95 

not been much studied in forestry applications. This technology is time-of-flight depth imaging, 96 

which determines distances by illuminating the scene with modulated light and observing the 97 

time taken for the light to reflect back from the target (Foix et al. 2011). The travel time is 98 



6 

 

translated into a distance measure for each pixel in the camera sensor. Although time-of-flight 99 

technology shares some of the drawbacks of photogrammetry, like the inability to penetrate 100 

water surfaces, it is far less prone to changes in the ambient light because it utilises near-infrared 101 

ranges.  102 

The first version of Microsoft’s Kinect imaging device has been widely tested in many 103 

fields, including forestry and agricultural applications (Marinello et al. 2015), but the sensor did 104 

not use time-of-flight technology and was reported to be unusable in direct sunlight (Zennaro et 105 

al. 2015). The second version, Kinect (v2), uses an infrared camera and illumination for the time-106 

of-flight measurements and is one of the most efficient low-cost depth camera sensors available, 107 

see e.g. (Butkiewicz 2014; Fankhauser et al. 2015; Zennaro et al. 2015; Pagliari et al. 2016; 108 

Rosell-Polo et al. 2017). The Kinect v2 sells for 100-200€, which is significantly lower than the 109 

price of any other time-of-flight or LiDAR measurement systems on the market. The Kinect v2 110 

camera provides three outputs from its sensors. The color camera sensor records RGB color 111 

images with a resolution of 1920×1080 pixels, and the infrared sensor produces greyscale images 112 

and depth images with a resolution of 512×424 pixels. The fields of view are 84.1×53.8 degrees 113 

and 70×60 degrees, respectively (Microsoft 2017). The Kinect v2 has been tested outdoors in 114 

coastal mapping (Butkiewicz 2014), mobile robot navigation (Fankhauser et al. 2015), and 115 

terrestrial laser scanning (Rosell-Polo et al. 2017), and has proved to be much more robust than 116 

the first version. Pagliari et al. (2016) have reported on outdoor navigations that combine the 117 

Kinect v2 with GNSS measurements. Corti et al. (2016) found that the optimal Kinect v2 118 

measuring range is between one and three meters, with an approximate measurement accuracy of 119 

10mm. Furthermore, they found that the color of the target material has little effect on the 120 

accuracy of the measurements, although temperature variations may cause some errors. Yang et 121 
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al. (2015) obtained a cone model for the depth accuracy of the Kinect v2 which showed that, 122 

within the ranges covered in their study, it had a margin of error of less than 4 mm for indoor 123 

depth measurements. Before the on-machine field tests reported in this paper, the most suitable 124 

measuring range for Kinect sensors has been determined in preliminary forest ground 125 

measurements. Indeed, our preliminary tests confirmed that the Kinect v2 has the potential to 126 

measure outdoor terrain at distances of between one and two meters. Our preliminary 127 

measurements are not reported here as they are completely in line with the results from earlier 128 

studies (Butkiewicz 2014; Fankhauser et al. 2015; Hernandez-Aceituno et al. 2016). 129 

This paper presents a study of the use of the Kinect v2 time-of-flight 3D imaging device, 130 

(designed for indoor use), as an automated outdoor measurement device for forestry operations. 131 

Earlier studies do indicate that Kinect’s optimal measuring range and accuracy, and its sensitivity 132 

to changes in temperature and ambient light are sufficient for our intended application. 133 

Therefore, our overarching aim was to test whether the device can produce suitably accurate 134 

measurements of the relevant forest parameters when mounted on a forwarder in a real forest 135 

environment. The detailed aims were: i) to measure the topography of the immediate 136 

environment around the forwarder, in particular the wheel tracks; and, ii) estimate the velocity 137 

and position of the forwarder independently of the GNSS measurements, in order to improve the 138 

positioning accuracy under forest canopies.  139 

Materials and methods 140 

We mounted two Kinect cameras on a forwarder operating in a real forest environment in 141 

Southern Finland in order to carry out our field tests. We were able to confirm Kinect’s ability to 142 

measure forest soil topography by comparing its measurements for rut depth with manual ones. 143 

In addition, its velocity and position measurements were compared to those from the forwarder 144 
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information system and the on-board GNSS device. 145 

Kinect measurement system 146 

The measurement system for this continuous data collection consisted of two shielded Microsoft 147 

Kinect for Windows v2 sensor units attached to the rearmost bunk of the forwarder trailer 148 

(Figure 1a). There was a shielded measurement computer inside the forwarder’s body for data 149 

collection (Figure 1b). The Kinect sensors were protected with a purpose-built steel box with one 150 

side open to allow for recording the images. This open side was protected with a 6mm thick 151 

Lexan Margard MR5E polycarbonate sheet (SABIC 2017), identical to the protective covers 152 

used in the cabin windows of forestry vehicles. This window was firmly attached against the 153 

Kinect’s measuring face, firstly to prevent the accumulation of moisture and secondly to avoid 154 

infrared flash reflections from the interface between the camera lens and the protective window. 155 

Kinect USB and power cords were fed to the measurement computer through a plastic cable duct 156 

(Figure 1b). 157 

<Placeholder for Figure 1> 158 

Figure 1. Kinect measurement system in the forwarder. 159 

The computer was an Intel NUC minicomputer running the Ubuntu 16.04 LTS operating system. 160 

A Robotic Operating System (ROS) framework (Quigley et al. 2009) was used to connect the 161 

computer with the Kinect device. The Kinects were calibrated before the field tests and the 162 

image feeds were recorded with the open-source package iai_kinect2 (Wiedemeyer 2015).  163 

In the configuration described here, the wheel is partially blocking the Kinect’s field of 164 

view, but this is due to a practical constraint, i.e. the bunk above the rearmost wheels of the 165 

trailer can support the down-facing cameras without the need for any additional supporting 166 
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structures. Both of the Kinects were mounted approximately 1.7 meters above the ground. The 167 

sensors were aligned to face down perpendicularly to the ground, thus minimizing the measuring 168 

distance in order to optimize the device’s outdoor performance. The sensors were 2 meters apart 169 

horizontally (Figure 1b), which is almost the same as the gap between the forwarder’s tracks. In 170 

our configuration, there is no overlap in the fields of view of the two Kinects, so there is a 171 

narrow strip of ground area between the wheels which is not recorded (Figure 1b). One final 172 

consideration is that the GNSS receiver is located on the roof of the forwarder cabin (Figure 1a), 173 

which means that there is an offset of up to 7.8 meters between the receiver and the Kinect 174 

sensors when the front part of the forwarder is in line with the trailer. 175 

The field tests recorded all three types of Kinect images, i.e. RGB, infrared and depth. 176 

The maximum sampling frequency of the Kinect v2 is 30 Hz, but in order to save disk space on 177 

the measurement computer a sampling frequency of 10 Hz was used. This was considered to be 178 

sufficient for aligning consecutive images given the speed of the forwarder. The average speed 179 

of the forwarder in the field tests was around 3 km/h. The RGB image was recorded at a reduced 180 

resolution, i.e. 960×540 pixels, which is one quarter of the full available image size; again to 181 

save disk space. The infrared and depth images were recorded at their full resolution. The 182 

amount of data stored on the disk increased by 1.5 Gb a minute with these image sizes and 183 

sampling frequency. 184 

Test area, equipment and other measurement outputs 185 

The test tracks were located in Vihti, in Southern Finland. The test area was an approximately 186 

100-meter long forest logging road which had been opened up by a harvester 6 months earlier for 187 

other trials. Three 20-meter long straight test tracks were constructed along this logging road. 188 

The starting points of the test tracks were marked, and the 20-meter distances were measured by 189 
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hand. A mark was painted on the ground at one-meter intervals along the tracks. The rut depths 190 

after the forwarder had passed were measured manually with a measurement rod. The rod was a 191 

160 cm-wide tool that was placed perpendicularly over the track. Then the depth of the rut was 192 

measured from the center of the rod using a ruler. The rut depth was measured in relation to the 193 

level of the surrounding ground 80 cm around from the center of the rut. The logging road was 194 

driven over once in both directions, giving a total of six 20-meter test track runs. The forwarder 195 

was an unladen Ponsse Elk 8W equipped with wheel chains. Most of the soil deformation had 196 

been caused by the tests which had been conducted earlier on the same track, when the tracks 197 

had been driven over several times by a harvester and a forwarder with medium-sized loads. 198 

The field tests were conducted on a typical November day in Southern Finland. The 199 

temperature was close to zero, the sky was dark and overcast and there was a little rain and sleet. 200 

However, the ground was free from snow and frost. The soil was quite sandy, which is typical of 201 

this area of forest. The first track was fine, sandy moraine, and the second track was medium-202 

fine sandy moraine. However, the third track consisted of loamy fine and medium-fine sand, so 203 

while the first track was dry and had not suffered from subsidence, the third one was mainly wet 204 

and had suffered large deformations. The second track had been treated earlier with coniferous 205 

litter, so its condition was somewhere between that of the first and third tracks. 206 

In addition to the Kinect measurements, the forwarder’s CAN bus data with GNSS 207 

measurements were collected using the Ponsse Opti7 integrated on-board computer system. CAN 208 

bus is a communication standard for linking different devices together. It is used widely in off-209 

road vehicles for transferring sensor measurements and controlling actuators. The forwarder 210 

speed, calculated from the power transmission, was used from the CAN bus data set. The 211 
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sampling time of the CAN bus was 20 ms. The forwarder stopped before each test track, 212 

allowing time for the synchronization of the Kinect images and the CAN bus measurements. 213 

Image-based analysis for speed and heading 214 

The Kinect images were analysed off-line using Matlab R2015b software, and from this analysis 215 

we were able to develop some algorithms which are suitable for forestry applications. 216 

Throughout this study, the Kinect depth data is used to construct metric measurements based on 217 

the acquired distances (depth image pixel values) and the field-of-view angle of the Kinect v2. 218 

The metric field of view for the image can be calculated using basic trigonometry as in equation 219 

1, 220 

 𝐹𝑂𝑉𝑚 = 2 ∗ 𝐷 ∗ 𝑡𝑎𝑛⁡(
𝐹𝑂𝑉𝑎𝑛𝑔𝑙𝑒

2
) (1) 221 

where 𝐹𝑂𝑉𝑚 is a metric field-of-view of the image in a vertical or horizontal direction with the 222 

camera distance 𝐷 from the imaged target and the vertical or horizontal field-of-view angle, 223 

𝐹𝑂𝑉𝑎𝑛𝑔𝑙𝑒. The size of the infrared images in metres can be easily calculated with this approach, 224 

as the infrared and depth images are produced by the same sensor. 225 

To estimate speed, the offset between the consecutive infrared images is divided by the 226 

time difference of the image time stamps. In this paper, the offset is evaluated with the 2D 227 

normalized cross-correlation function in Matlab (Lewis 1995). This function slides the compared 228 

images over each other pixel by pixel, calculates the cross-correlation coefficient for each step 229 

and normalizes the results between 0 and 1; a coefficient of 1 meaning that identical images are 230 

compared. Rather than computing the cross-correlation over entire images, a small region, 231 

referred to as the measurement region, was cross-correlated. This reduces the effect of high noise 232 

at the image borders. To speed up the calculation, only 10% of the measurement region is used 233 
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from the sequential image for the cross-correlation of the preceding image. A strong peak in the 234 

cross-correlation suggests that the compared image areas represent the same area on the forest 235 

floor. In our coordinate system, the Y-axis of the image is the direction in which the forwarder is 236 

heading, so only the speed along this axis is used. Therefore, the rotation is not taken into 237 

account when calculating the displacement of the image in a single camera. The angle shifts 238 

between the consecutive images are small due to the high sampling frequency relative to the 239 

speeds of the heavy forest vehicles. 240 

Using two sensors allowed us to take an average of the parallel measurements for the 241 

final speed estimate. On the other hand, a difference in the speed measurements indicates that the 242 

forwarder is turning. Similarly, the difference in the distances travelled by the two rear wheels 243 

indicate a change in direction as in:  244 

 𝑠𝑖𝑛⁡(𝛥𝛼𝑘) =
𝐷𝑙𝑒𝑓𝑡,𝑘−𝐷𝑟𝑖𝑔ℎ𝑡,𝑘

𝑑
  (2) 245 

where 𝛥𝛼𝑘 is the angle change of the vehicle at time 𝑘 from the parallel axis of the heading 246 

direction; 𝐷𝑙𝑒𝑓𝑡,𝑘 and 𝐷𝑟𝑖𝑔ℎ𝑡,𝑘 are the measured displacements of the left and right cameras; and 247 

𝑑 is the distance between the cameras. Positive angles indicate the forwarder trailer is making a 248 

right turn, and negative angles, a left one. A horizontal position change can be estimated by 249 

combining the estimates for speed and the change in heading.  250 

The cross-correlation coefficient peak tends to vary between 0.85 and 0.98, depending on 251 

the image noise, camera vibration and the movement in the X-direction. Figure 2a presents a 252 

typical result: a clearly distinguishable peak at 0.95. The abscissa in Figure 2 is the offset in 253 

pixels as the cross-correlation template, created from the sequential image, slides over the 254 

measurement region in the preceding image. 255 
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<Placeholder for Figure 2> 256 

Figure 2. Examples of the normalized cross-correlation results between two consecutive infrared 257 

images in Y-direction: (a) typical result and (b) degenerated result. 258 

When the environment changes rapidly between the consecutive images, the cross-correlation 259 

results are poor. Figure 2b shows an example of such a degenerated cross-correlation function 260 

where all the coefficients fall far below 0.5, lacking a single clear peak. 261 

A weak cross-correlation can cause a sudden change in the calculated image offset. Such 262 

a leap was taken to be an indicator of an unreliable motion measurement, in particular for the 263 

perpendicular direction of the forwarder motion. The motion estimate was considered unreliable 264 

if the change exceeded 10 pixels in the X direction or 100 pixels in the Y-direction. When one or 265 

other of these thresholds was exceeded, the speed estimate was held at its previous accepted 266 

value. Figure 3 shows the X and Y offsets from the third test track, where the puddles on the 267 

track occasionally rendered the cross-correlation method inaccurate. 268 

<Placeholder for Figure 3> 269 

Figure 3. Detected offsets between the consecutive images in the third-track test data. 270 

In addition to the rapid environment changes, the varying topography of the forest ground will 271 

sometimes make the Kinects lean at an angle, thus differing the measurement geometry from the 272 

assumed perpendicular plane. Sideways inclinations are observed in the X-direction cross-273 

correlation results, so they are considered as unreliable measurements, as explained above. The 274 

inclinations in the travel direction are visible in the Y-direction cross-correlation results as rapid 275 

peaks, which are removed with a median filtering. 276 

To improve the reliability of the measurements in such difficult conditions, the cross-277 

correlation was computed over three measurement regions of the infrared image. This approach 278 
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provides three speed measurements for each image pair. In this study, the speed that was closest 279 

to the speed of the preceding measurement is chosen. This is justified by the high inertia of the 280 

heavy forestry vehicle. Figure 4 demonstrates the two different arrangements used in this study 281 

for the measurement regions.  282 

<Placeholder for Figure 4> 283 

Figure 4. Measurement regions for computing the cross-correlation. 284 

The wider uniform white rectangle shows the single measurement region and the three grey 285 

rectangles show the three measurement regions. 286 

3D mapping of the forest floor  287 

Kinect depth images enable the generation of 3D point clouds from the measured profile of the 288 

soil surface. Figure 5 presents an example of the point cloud for one depth image with the X- and 289 

Y-axes being the image plane, and the Z-axis the distance between the sensor and the soil. The 290 

entire depth image is not used due to the noise at the image edges and the forwarder wheel being 291 

visible in the lower part of the image. 292 

<Placeholder for Figure 5> 293 

Figure 5. Soil surface profile as a 3D point cloud. The high-noise edge areas, and area with 294 

forwarder wheel have been removed. 295 

However, the sampling rate ensures that the displacement in the direction of the forwarder 296 

movement is less than the area of the point cloud, so all the soil surface profile data is covered. 297 

An Iterative Closest Point (ICP) algorithm (Besl and McKay 1992) is commonly used for 298 

generating stitched 3D point cloud models from several consecutive point clouds. In this study, 299 
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the ICP algorithm in Matlab (Matlab 2017) is used for evaluating the point cloud generation of 300 

the continuous wheel rut model.  301 

A method for measuring the resulting rut depth directly on fixed measurement areas in 302 

the image was investigated, as an alternative to the full 3D modeling of the soil surface profile. 303 

The measurements can be computed in real time with the on-board computer, which makes the 304 

application more feasible for a forestry domain. It is reasonable to assume that the resulting rut 305 

depth is measurable at the center of each depth image. However, the distance of the camera from 306 

the ground varies when driving over the uneven forest floor. In our study, the ground base level 307 

is measured on the both sides of the depth image. Due to the small-scale topographic changes of 308 

the forest floor and other possible disturbances, such as tree branches, a small number of pixels is 309 

not sufficient to describe the actual rut depth or the ground base level. Therefore, a median from 310 

a larger area of depth pixels was taken. The sections chosen from the depth image are shown in 311 

Figure 6. 312 

<Placeholder for Figure 6> 313 

Figure 6. Depth image sections for the surface base level and rut depth measurements. 314 

The selected sections are in the middle of the image, again to reduce the effects of the noisy 315 

borders in outdoor measurements. Due to the slight offset of the Kinect sensor to the forwarder 316 

rear wheel, the areas are not exactly the middle pixels of the full depth image. 317 

Results 318 

The RGB color images suffered from significant motion blur during the forwarder run, so they 319 

were less useful than the infrared images for the cross-correlation analysis, and were therefore 320 

discarded. The following results are based on only grayscale infrared images and the depth 321 
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images. 322 

Measured travel distances and speed of the forwarder 323 

Table 1 shows comparison of the manual and the Kinect distance measurements every four 324 

meters on the different test tracks. The root-mean-square errors (RMSE) between the manual and 325 

Kinect measurements are also calculated to emphasize the difference between the test tracks. The 326 

distances reported are averages of the two Kinect sensor measurements, i.e. assuming straight 327 

motion. The distances are clearly more accurate with the three measurement regions, thus three 328 

cross-correlation results are combined, instead of just using one measurement region. 329 

Table 1. Distances measured with one and three measurement regions in infrared images. 330 

<Placeholder for Table 1> 331 

Figure 7 shows the speeds recorded for the first two test tracks, where the results are 332 

similar using either one or three measurement regions in the infrared images. Figure 8 shows the 333 

differences in speed estimates for the third test track, where only the use of three measurement 334 

regions in the Kinect images provide results similar to the transmission system measurements 335 

throughout the data. 336 

<Placeholder for Figure 7> 337 

Figure 7. Measured speeds on test tracks one and two. 338 

<Placeholder for Figure 8> 339 

Figure 8. Measured speeds on test track three, using one and three measurement regions for the 340 

Kinect images. 341 

The differences between the speed measurements are collected in Table 2. The mean of the true 342 

difference between the measurements is calculated to demonstrate the tendency of the Kinect and 343 
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GNSS measurements to be lower than the forwarder transmission measurements. The standard 344 

deviation is calculated to show that the difference varies depending on the track and the 345 

measurements. The numbers are consistent with the findings in the distance measurements and 346 

the use of three measurement regions returns more stable results in all of the tracks and running 347 

directions. 348 

Table 2. Comparison between speed measurements. 349 

<Placeholder for Table 2> 350 

Position estimation of the forwarder 351 

Figure 9 shows the estimated tracks separately for the GNSS and the Kinect measurements to 352 

emphasize their different nature if calculated independently of each other. Excluding the initial 353 

location and heading angle, the illustrated Kinect paths are generated based on Kinect data only. 354 

This means that the Kinect path will eventually drift further away from the true path as the 355 

measurement errors accumulate. 356 

<Placeholder for Figure 9> 357 

Figure 9. Forwarder position estimates using GNSS and Kinect measurements. 358 

The calculated absolute difference for the final positions in the first and second runs were 359 

10.45 and 10.82 meters respectively. Here, the GNSS final position was corrected to correspond 360 

to the position of the trailer, as shown in Figure 10. Although the Kinect positioning is capable of 361 

following the path through a 180 degrees turn, the final position difference clearly shows the 362 

drift of the Kinect positions. The RMS error between the GNSS and Kinect positions was 363 

calculated to show that the paths have similar differences in both running directions. The RMSE 364 

for the first and second runs were 7.30 and 5.84 meters respectively. As the GNSS position 365 
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measurement itself was uncertain, the calculated RMSE should not be interpreted as the error 366 

between Kinect measurements and the ground truth. 367 

Measured wheel rut depths after the vehicle pass 368 

For the rut depth analysis it was not feasible to use the ICP algorithm to stitch the measured 369 

forest floor point clouds due to the long processing time and the increase in the memory 370 

requirements. With a regular desktop computer, the stitching of just two point clouds took 371 

several seconds while 50 point clouds took several minutes. The stitching process also 372 

accumulates errors, so the construction of the whole 20-meter path is not suitable for estimating 373 

the rut depths. 374 

The results of the simpler depth measurements using fixed measurement areas of the 375 

images are shown in Figure 10, (left Kinect camera). The results are similar for the right camera. 376 

Figure 10 also reveals the different profiles of the test tracks. The Kinect measurements agreed 377 

with the manual measurements particularly well on test track three. 378 

<Placeholder for Figure 10> 379 

Figure 10. Measured wheel rut depths for the left side of the test tracks.  380 

Table 3 presents the mean difference, standard deviation, and root-mean-square error of 381 

the depth measurements for each test track run. Manual measurements were taken at regular 382 

intervals of one meter, and the Kinect depth measurements were positioned with the Kinect 383 

distance estimate. The results indicate that the Kinect measurements are generally around 5 384 

centimetres higher than the manual measurements and the variation in the measurements depends 385 

on the environmental conditions. 386 

Table 3. Difference between the Kinect depth measurements and the manual measurements. 387 
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<Placeholder for Table 3> 388 

  389 



20 

 

Discussion 390 

The Finnish Forest is a challenging environment for any image-based analysis, as the conditions 391 

affecting the measurements are far from controlled. It is challenging to take into account or 392 

compensate for the varying light, and other seasonal effects. There are many objects blown about 393 

by the wind and there are plenty of other disturbances, too. One of the main problems that we 394 

encountered was the unstable state of the soil structures, which can collapse under a sinking 395 

forwarder wheel. Freely flowing water displaced by the vehicle wheels was also a problem, as 396 

were other rapidly moving objects like swinging tree branches. 397 

In spite of these challenges, the results show that at short distances of less than 20 m and 398 

with three measurement regions to reduce the interference of free water surfaces in the imaged 399 

area, Kinect is able to measure the motion of the forwarder reliably in logging road conditions. 400 

The accumulated distance calculated from the image displacements corresponds to the manual 401 

measurements with an accuracy of tens of centimetres over a distance of 20 m. As the errors of 402 

the distances are cumulative with our approach, the Kinect measurements should be used 403 

together with GNSS measurements for routing over longer distances. Our method for dealing 404 

with partially corrupted image data was found to be efficient. Using three measurement regions 405 

in the image (rather than one) improved the accuracy on all the test tracks, but it was particularly 406 

effective in removing all the false measurements caused by the difficult conditions on Track 3. 407 

Although image cross-correlation is not the ideal solution when there is rotation between the 408 

recorded images, the current results indicate that for slow-moving forestry vehicles, the cross-409 

correlation is accurate enough for most practical purposes and the data can be computed in real 410 

time with practical sampling rates. We also found that filtering out the sudden peaks in the speed 411 

measurements when they exceed a given threshold is an efficient procedure for this application. 412 
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As is evident from Figure 3, large shifts in the X-direction tend to co-occur with unrealistic shifts 413 

in the Y-direction, so filtering the Y-direction shift with the X-direction shift appears to be 414 

justified. 415 

When comparing the Kinect speed measurements to the GNSS and CAN bus 416 

measurements it is obvious that each of them has their own error sources. The GNSS 417 

measurements have errors resulting from blocked and multipath signals due to the forest 418 

canopies around the test tracks, but these errors are not accumulated over time. The recorded 419 

GNSS signal tends to jump between two points generating an erratic path and speed estimate. 420 

The speed estimate from the transmission system via the CAN bus is the best reference 421 

measurement for the Kinect speed measurements. The estimate is produced as an average of the 422 

wheel rotation speeds, and thus subject to integrated errors caused by slippage. As the results in 423 

Table 2 and Figure 8 show, the Kinect speed measurements tend to be lower than the CAN bus 424 

transmission measurements, in particular on the third test track. This is as expected, since the 425 

slipping in the soft soil causes the forwarder’s wheels to spin faster, thus resulting in higher 426 

speed measurements. The difference between the Kinect and CAN bus speeds is thus an 427 

indicator for the driver of slippage and/or the risk of the vehicle sinking. This difference can be 428 

computed in real time at our sampling frequency, so it is a useful warning for the driver. The 429 

results also show that the GNSS speed measurement is lower than the transmission measurement, 430 

but the variation between these measurements is much higher than it is for the Kinect 431 

measurements. Overall, Kinect measurements using three measurement regions seem to offer the 432 

best performance for measuring both the distance and the speed of the forwarder. 433 

The Kinect-based position estimate is also credible when the forwarder is turning. As 434 

long as the initial angle and position were set accurately, the forwarder path constructed from the 435 
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velocity measurements followed the GNSS position measurements fairly closely. As the track in 436 

our tests was around 100 meters long including a total turn of 180 degrees, the difference of 10 437 

meters in the final position is a reasonably good result. In practice, the positioning system would 438 

fuse the Kinect velocity measurements and the GNSS measurements into one position estimate, 439 

e.g. with a Kalman filter. The key to data fusion is to identify the situations where the GNSS 440 

measurements are compromised by the forest canopies, and in these cases the Kinect 441 

measurements should have a higher weight in the estimation. Further results need accurate GNSS 442 

measurements for the ground truth comparisons, but the results presented here suggest that 443 

Kinect is able to support positioning in thinning operations where the satellite signals could be 444 

blocked over long periods of time.  445 

The Kinect infrared camera has enough resolution to take detailed measurements of 446 

variations in the surface profile in close range applications, and even enables the construction of 447 

a full 3D point cloud representing the forest soil surface after the forwarder has passed. The 448 

consecutive 3D clouds from the test tracks were registered and stitched together with the ICP 449 

algorithm. This algorithm is computationally heavy and thus slow, so it would have to be a post-450 

processing operation in the current application. The errors are accumulated, since the consecutive 451 

images are stitched one after another, leading to obviously wrong results in the full 20-meter 452 

long test tracks. Point clouds were not directly applied for the wheel-rut depth estimation, but the 453 

track depth and ground base level were estimated at fixed measurement areas. The resulting 454 

wheel rut depth estimates were compared to the manual measurements performed for each meter 455 

of the test tracks. The results clearly show that the Kinect measurements return similar rut depth 456 

values to the manual measurements, although there seem to be some systematic errors 457 

throughout the compared data. The comparison in Table 3 showed that Kinect tends to 458 
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overestimate the depth of the ruts compared to the manual measurements. The sensor height 459 

could affect the measurements, since it was found that the ground base level around the resulting 460 

rut is barely visible on the depth images. Therefore, it is possible that in cases where the vehicle 461 

is sinking heavily, the base level is measured from too narrow an area compared to the manual 462 

measurements. 463 

There are other possible reasons for the systematic differences in the depth 464 

measurements. Firstly, the methods are slightly different. Kinect measures on top of the visible 465 

soil cover, which includes grass and other light organic materials. The rod and the ruler used in 466 

the manual measurements go deeper into the lightweight soil cover and water. This is especially 467 

noticeable in the depth measurements from the second test track, which had once been covered 468 

with coniferous litter. The third test track did not have much lightweight soil cover left, so for 469 

this track the systematic error is generally smaller, but other disturbances on the track produced a 470 

higher variance of the measurements. Secondly, both the measurement methods themselves can 471 

cause systematic errors. Kinect measures the soil surface through the shielded window, which 472 

can cause a permanent offset for the measurements due to the changed light travel time. The 473 

effect of this was minimized by making the polycarbonate window as thin and transparent as 474 

possible. The manual measurement process may also have shifted measurement values due to the 475 

methods of the measurer, e.g. where to place the ruler on uneven ground. 476 

Our long-term objective is that all the computation and analyses should be done in the 477 

on-board computer of the forestry vehicle. The positioning estimates and the environmental 478 

measurements produced in this way would be of great value in forestry operations. Our image 479 

analysis methods can be computed within the image sampling time and are thus real-time 480 

functionalities.  481 
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The shielding structure constructed for the field tests worked well. However, the 482 

ventilation inside it is poor, whereas when the Kinect is used in indoor applications the device is 483 

freely ventilated with a stream of air. Although the restricted ventilation did not cause problems 484 

in our field tests, which were conducted outside in low temperatures, overheating may turn out to 485 

be more of an issue in summer conditions, and this would need further study.  486 

Kinect also has the capability to record high quality color images. Although these are not 487 

suitable for estimating the motion of the vehicle, they could be useful in future applications for 488 

estimating soil properties based on color and texture for instance, or simply for documenting the 489 

forestry operation. 490 

In conclusion, the Kinect has proved itself to be a versatile sensor capable of making 491 

automated forest environment measurements. The dedicated image-analysis algorithms and the 492 

use of the two protected Kinects were able to cope with the challenges of the forest environment, 493 

enabling the reliable estimation of the motion of the forestry vehicle and the depths of the wheel 494 

ruts. These results are from short-term field tests, so further studies are still needed to cover the 495 

device’s performance in long- term use in different types of forest conditions. Nevertheless, 496 

considering that the last test track (Track 3) was in such harsh condition that it would normally 497 

have been avoided by a forestry vehicle driver, the results indicate that the Kinect system appears 498 

to be usable, at least in the Finnish forest environment.  499 
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Tables 580 

Table 1. Distances measured with one and three measurement regions in infrared images. 581 

Reference 

points (m) 

Kinect measurements (m)  

1 meas. regions / 3 meas. regions 

T1 (1) T1 (2) T2 (1) T2 (2) T3 (1) T3 (2) 

4 3.90 / 3.75 4.03 / 3.96 3.96 / 3.92 4.01 / 3.89 4.36 / 3.65 10.50 / 4.38 

8 8.06 / 7.80 8.14 / 8.00 7.79 / 7.71 7.96 / 7.82 10.91 / 7.97 19.37 / 9.13 

12 12.01 / 11.67 12.41 / 12.15 12.02 / 11.84 12.11 / 11.92 17.40 / 12.06 25.27 / 12.90 

16 16.08 / 15.66 16.33 / 16.02 15.99 / 15.77 16.13 / 15.87 23.97 / 16.67 31.40 / 17.34 

20 20.65 / 20.10 20.39 / 20.03 20.44 / 20.06 20.36 / 20.03 32.25 / 21.27 35.85 / 20.87 

RMSE 0.30 / 0.26 0.30 / 0.07 0.22 / 0.19 0.18 / 0.12 7.09 / 0.66 12.93 / 0.98 

  

Track labeling: Test track 1, run 2 = T1(2) 
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 Table 2. Comparison between speed measurements. 584 

Test track (run) Mean difference [±Standard deviation] (m/s) 

Transmission - Kinect 

 

Transmission - GNSS 

1 meas. region 3 meas. regions 

T1 (1) 0.003 [±0.019] 0.015 [±0.021] 0.022 [±0.069] 

T1 (2) 0.001 [±0.032] 0.013 [±0.035] 0.064 [±0.200] 

T2 (1) 0.014 [±0.027] 0.017 [±0.035] 0.035 [±0.079] 

T2 (2) 0.013 [±0.025] 0.022 [±0.025] 0.068 [±0.155] 

T3 (1) 0.004 [±0.135] 0.045 [±0.046] 0.074 [±0.090] 

T3 (2) -0.076 [±0.187] 0.052 [±0.044] 0.058 [±0.083] 

  585 
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Table 3. Difference between the Kinect depth measurements and the manual measurements. 586 

Side Mean difference [±Standard deviation] (mm) 

T1 (1) T1 (2) T2 (1) T2 (2) T3 (1) T3 (2) 

Left 35 [±36] 38 [±27] 53 [±42] 55 [±41] -4 [±56] -3 [±56] 

Right 29 [±25] 30 [±23] 72 [±73] 73 [±45] 19 [±67] -45 [±55] 

RMSE 44 42 86 77 62 62 

  

Track labeling: Test track 1, run 2 = T1(2) 
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Figures 588 

 589 

Figure 1. Kinect measurement system in the forwarder.  590 

  591 
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 592 

Figure 2. Examples of the normalized cross-correlation results between two consecutive infrared 593 

images in Y-direction: (a) typical result and (b) degenerated result. 594 

  595 
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 596 

Figure 3. Detected offsets between the consecutive images in the third-track test data. 597 
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 599 

Figure 4. Measurement regions for computing the cross-correlation.  600 
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 602 

Figure 5. Soil surface profile as a 3D point cloud. The high-noise edge areas, and area with 603 

forwarder wheel have been removed. 604 
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 606 

Figure 6. Depth image sections for the surface base level and rut depth measurements. 607 
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 609 

Figure 7. Measured speeds on test tracks one and two. 610 

  611 
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 612 

Figure 8. Measured speeds on test track three, using one and three measurement regions for the 613 

Kinect images. 614 
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 616 

Figure 9. Forwarder position estimates using GNSS and Kinect measurements.  617 

  618 
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 619 

Figure 10. Measured wheel rut depths for the left side of the test tracks.  620 


