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Abstract—Utilization of drones as aerial access points (AAPs)
is a promising concept to enhance network coverage and area
capacity promptly and on demand. The emerging millimeter-
wave (mmWave) communication technology may in principle
deliver higher data rates, thus making the use of AAPs more
effective. By extending the conventional (planar) stochastic geom-
etry considerations, we construct a novel three-dimensional model
for drone-based mmWave communication that captures the high
directionality of transmissions as well as the random heights
of the communicating entities. Choosing signal-to-interference
ratio (SIR) as our primary parameter of interest, we assess system
performance with an emphasis on the impact of the ‘vertical’
dimension in aerial mmWave connectivity. We also demonstrate
that accurate performance assessment is only possible with
simplified models for certain ranges of input parameters.

I. INTRODUCTION

Drones have recently received much attention by demon-
strating the potential to be deployed as dedicated aerial access
points (AAPs) for cellular users [1] or as mobile relay stations.
The utilization of drones as AAPs may provide (i) on-demand
capacity boost, (ii) prompt coverage by offering service in the
so-called “blind spots”, (iii) increased reliability and quality
of service (QoS) by augmenting applications based on the use
of licensed spectrum, and (iv) support for seamless session
continuity as users move around [2], [3]. Provisional drone-
based networks show a lot of promise to support future
5th generation (5G) services. Recently, both academia and
industry studies have reported on the test trials of drone-
assisted communication [4].

The use of drones as AAPs or relays brings novel unique
challenges related to efficient spectrum management [5], [6].
Performance of drone-based communication from the per-
spective of service provisioning has been addressed already
in the context of microwave 4th generation (4G) systems.
The importance of accurate air-to-ground channel modeling
was further stressed in [1]. In [7], the authors proposed
a heuristic solution to enable drone-based AAPs and thus
increase the spectral efficiency by 34% as well as the 5-
percentile packet throughput by 50%. The effects of mobility,
path loss, and elevation angle have additionally been taken
into account. In [8], the authors elaborated a software-defined
networking (SDN) solution for drone-based connectivity.
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Several studies addressed the question of integrating AAPs
as part of the future cellular networks. With extensive simu-
lations, the authors of [9] studied the application of drones as
intermediate aerial nodes between the macro and the small cell
tiers in a heterogeneous network (HetNet). They revealed that
the proposed concept allows to improve the spectral efficiency
by 38% and reduce the delay by up to 37.5% as compared
to the terrestrial network baseline without drones. The cov-
erage probability of mobile AAPs with underlaid device-to-
device (D2D) communication capability has been addressed
in [10], where the authors emphasized the importance of drone
mobility in serving randomly scattered users. The study in [11]
considered the optimal positioning strategies for drones.

One of the challenges in the emerging 5G millimeter-
wave (mmWave) communication is the blockage of the line-
of-sight (LoS) signal path between a user terminal and the
mmWave access point (AP) [12]. To alleviate it, the concept of
multi-connectivity has recently been proposed by 3GPP [13].
The use of drones as mmWave AAPs may thus bring decisive
benefits to the network operators as both air-to-ground and
backhaul links remain mostly in LoS conditions [14]. Shifting
the focus to mmWave frequencies requires an extension of
the conventional models by including specific features of
inherently three-dimensional nature, such as highly directional
antenna radiation patterns in both horizontal and vertical
planes as well as random heights of communicating enti-
ties [14]. As most of past studies have been performed by
assuming omnidirectional antennas, and hence rely on planar
stochastic geometry, the effects of the ‘vertical’ dimension
in drone-based mmWave communication have been addressed
only marginally.

Extending the methods of stochastic geometry to the third
dimension, we construct a novel mmWave AAP communi-
cation model by explicitly taking into account the random
heights of drones and user equipment (UE) as well as the
highly directional nature of mmWave links. We derive ex-
pressions for both the mean interference and the signal-to-
interference ratio (SIR). Having these metrics at our disposal,
we carry out a comprehensive numerical analysis that reveals
the crucial effects in the considered characteristic scenario.

The following are the main contributions of this work:
• developing a methodology that allows to capture the

effects of random heights of communicating entities
and the directionality of antennas in interference and
SIR modeling across the mmWave AAP communication
scenarios;

• confirming that simpler models, which neglect the afore-
mentioned effects, do not provide accurate assessment of



2

Transmission
Beam

Interference RT

dT

RI

HR

U0

T0

HT

T1

HT

Fig. 1. Drone-based mmWave communication scenario in 3D.

SIR across the feasible range of system parameters;
• identifying the ranges of system parameters where sim-

pler models provide sufficiently accurate approximations.

II. SYSTEM MODEL AND ASSUMPTIONS

Our scenario of interest is displayed in Fig. 1. We concen-
trate on the downlink channel from the drone-based AAP to
the UE on the ground. Assume that the locations of users are
labeled as Ui, i = 1, 2, . . . , and modeled by a Poisson point
process in <2 with the intensity of λ. The UEs are deployed
at the height of HR that is assumed to follow an exponential
distribution with the parameter µR.

Each UE is associated with its corresponding serving AAP
labeled as Ti. Positions of the AAPs are distributed uniformly
within the circle of radius RT centered at the UE of inter-
est. The altitude distribution of drones is exponential with
the parameter µT . Without loss of generality, all AAPs are
assumed to utilize the same frequency, thus effectively acting
as interferers for the tagged UE. Among the AAP-UE pairs,
we randomly tag an arbitrary one as well as limit the area
around such tagged UE to the radius of RI . The interference
created by the AAPs located outside of it is assumed to be
negligible, i.e., lower than the noise floor. RI is computed
as a function of the propagation model, transmit power, and
antenna directivity.

In the considered scenario, each UE benefiting from the
AAP service is associated with a randomly chosen drone
located not farther than a fixed planar distance away from it. In
practice, this is implemented by listening on the air interface
for the first beacon that can be correctly received/decoded and
then associating with the AAP that had transmitted it.

Our selected path loss model is LP (r) = Cr−γ , where γ
is the path loss exponent, while A is the factor accounting
for the transmit power and antenna gains. Following [15],
we assume a cone antenna model, where the radiation pat-
tern is represented as a conical zone with the angle of α.
This model is a simple abstraction assuming no side lobes
as well as constant power at a certain distance from the
AAP. One can determine C and γ by utilizing a propagation
model for the frequency band of interest e.g., [16] for the
spectrum range of 0.5 − 100 GHz. Particularly, we have1

C = 10−2 log10(π/λ)+0.49 and γ = 2.1.

1At the moment of writing, there are no standardized air-to-ground prop-
agation models for UAV in mmWave bands. For this reason, we utilize the
closest AP to UE propagation model by 3GPP.

Antenna directivity gain is given by G = (4πR2)/SA,
where 4π is an area of the ideal isotropic radiator wavefront at
the distance of R and SG is the antenna wavefront area [17].
In our case, this is a spherical cap area, which implies that
SG = 2πRh, where h can be derived from the antenna
directivity angle as h = R(1 − cos[α/2]), see Fig. 2, where
the model of the radiation pattern and the geometry of the
model are illustrated. Assuming that all the radiation is now
concentrated within the considered area, the antenna gain in
question can be approximated by

A =
4π

SG
=

2

1− cos[α/2]
. (1)

We introduce the coefficient A = PTGC, where PT is the
transmit power, while the received power is P = PTGCr

−γ =
Ar−γ . The LoS path between the mmWave AAP and the UE
in urban environments can be blocked by (i) large stationary
objects, such as buildings, and (ii) smaller moving objects,
such as humans. According to 3GPP [16], the probability of
blockage by the former is referred to as the non-LoS state of
the channel. Here, we consider an open-space scenario typical
for drones, where there are no buildings; thus, we address only
the LoS state of the channel. We also disregard blockage by
humans, since the relatively high altitudes of drones as com-
pared to e.g., stationary APs make this component negligible.

III. PROPOSED 3D MODELING APPROACH

We concentrate on evaluating the SIR that is expressed as

S =
P

I
=

Ad−γ0

A
∑N
i=1 d

−γ
i

=
d−γ0∑N
i=1 d

−γ
i

, (2)

where P is the received power, I is the aggregate interference
power, N is a Poisson random variable (RV) with the mean
of λπR2

I , d0 is the <3 distance between the communicating
entities, and di, i = 1, 2, . . . , N , are the <3 distances corre-
sponding to the interference paths to each interferer.

To obtain the mean SIR, we employ the Taylor series
expansion of the SIR function, S = g(x, y) = P (x)/I(y). The
second-order approximation is obtained by expanding g(x, y)
around ~µ = (E[P ], E[I]) = (µP , µI) as

E[g(~µ)] ≈ g(~µ) +
g′′xx(~µ)σ2

P + 2g′′xyKP,I + g′′yy(~µ)σ2
I

2
, (3)
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Fig. 2. Illustration of antenna model and associated geometry.
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where KP,I is the covariance between P and I , while σ2
P and

σ2
I are the variances of P and I . Observing that g′′xx(x, y) = 0,
g′′x,y(x, y) = −y−2, and g′′yy(x, y) = 2x/y2, we arrive at

E[P/I] ≈ µP /µI −KP,I/µ
2
I + σ2

IµP /µ
3
I . (4)

The moments of interference can be obtained as in [18],

E[In] =

∫
S

E
[
In1 (r)

]
pC(r)dS, (5)

where dS = 2λπr is the probability that there exists an
interferer in the infinitesimal increment of the circumference,
pC(r) is the probability that the transmit antenna at a drone
acting as interferer and located at the planar distance of x
from the tagged UE is oriented such that the interference
power reaches the tagged UE, named here directional exposure
probability, and E

[
In1 (r)

]
are the moments of interference

from a single transmitter at the distance of r.
Note that our proposed methodology can be employed

to obtain other metrics of interest, including the signal-to-
interference-plus-noise ratio (SINR), spectral efficiency, and
Shannon capacity. The only modification needed is to expand
the appropriate function into a Taylor series similarly to (3).
To obtain the mean SIR, the following is required: (i) mean
received signal strength, (ii) first two conditional moments
of interference from a single AAP, (iii) directional exposure
probability, and (iii) covariance between the received signal
and interference. The propositions below establish these.

Proposition 1 (Mean Received Power). The moments of the
received signal power are given by

E[Pn] = An2
1
2−γn

[
W (µT , µR) +W (µR, µT )

]
×

×
π

3
2 csc

(
πγn
2

)
sec
(
πγn
2

)
R
−(nγ−5

2 )
T

µ2
Rµ

2
T (µR + µT ) Γ

(
nγ
2

)
Γ
(
nγ−1

2

) , (6)

where W (x, y) is characterized as

W (x, y) = x3
[
2
√

2yγnR
nγ+1

2

T +R2
T 2

γn
2 y

nγ+3
2 Γ

(
nγ − 1

2

)
×

×
(

cos
(πγn

2

)
HyRT

3−nγ
2

− JyRTnγ−3
2

− sin
(πγn

2

)
JyRT3−nγ

2

)]
,

where Γ(z) is the Euler Gamma function, Jzn is the Bessel
function of the first kind, and Hz

n is the Struve function.

Proof. The power of the received signal can be expressed as

P = A
(√

(HT −HR)2 + r2
)−γ

, where HT , HR, and r are
the corresponding RVs. Since HT and HR follow the expo-
nential distribution, the joint probability density function (jpdf)
of |HT −HR| is

f|HT−HR|(y) =
(e−yµR + e−yµT )µRµT

µR + µT
, y > 0. (7)

Based on [19], the moments E[Pn(r)], n = 1, 2, . . . , of the
received signal power can be expressed as

E[Pn] =

RT∫
0

∞∫
0

An (e−yµR + e−yµT )µRµT 2r

(r2 + y2)
nγ
2 (µR + µT )R2

T

dydr. (8)

Evaluating the integrals in (8), we arrive at (9).
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Fig. 3. An illustration of interference in three dimensions.

Corollary 1 (Conditional Moments of Interfering Signal from
a Single AAP). The conditional moments of interference are
obtained by fixing the distance between the AAP and the UE
on the ground as

E[In1 (r)] =

[
(µR + µT ) Γ

(
nγ
2

)] [
W1(µT ) +W1(µR)

]
2−

nγ+1
2 Anπ

3
2µRµT

, (9)

where 1(x) is given by

W1(x) =
[ r
x

] 1−nγ
2
[
2Jrxnγ−1

2

csc (nπγ)−

− Jrx1−nγ
2

sec
(nπγ

2

)
+ csc

(nπγ
2

)
Hrx

1−nγ
2

]
. (10)

The directional exposure probability pC(r) can be ap-
proximated by pC(r) = pV (r)pH(r), where pH(r) is the
probability that the interferer exposes the tagged UE in two
dimensions, pV (r) is the probability that this also occurs in
the third (‘vertical’) dimension. The two-dimensional exposure
probability, pH , is pH(r) = αr/2πr = α/2π.

Proposition 2 (‘Vertical’ Exposure Probability). The ‘vertical’
exposure probability, pV (r), is established by integrating the
jpdf of angles β and θ over |β−θ| < α/2 (see Fig. 3), that is,

pV (r) =

∫ π
2

−π2

∫ y4+
α
2

y4−α2
Wβ,θ (y1, y4)dy1dy4, (12)

where Wβ,θ (y1, y4) is the jpdf of β and θ in the form of (11).

Proof. Let ξn1 = {ξ1, ξ2, . . . , ξ4} = {HR, HT , dT , HI}. Ob-
serve that the jpdf of these RVs has a multiplicative form due
to their independence, which yields

ωξn1 (rn1 ) = µRe
−µRx1µT e

−µT x22x3µRe
−µRx4/R2

T . (13)

Relabeling the target RVs as ηm1 = {η1, η4} = {β, θ}, we
note that m < n. Complementing the set of target RVs as

ηn1 = {η1, η2, . . . , η4} = {β,HT , dT , θ}, (14)

we define the transformation as
y1 = tan−1 ([x1 − x2]/x3) = β,

y2 = x2,

y3 = x3,

y4 = tan−1 ([x4 − x2]/r) = θ.

(15)
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Wβ,θ (y1, y4) =



−2rµT cot(y1)csc
2(y1)sec

2(y4)
R2
TµR(2µR+µT)

e−µR(RT tan(y1)+r tan(y4))×
×
(
2− 2eRTµR tan(y1)+ 2RTµR tan(y1)+R2

Tµ
2
Rtan2(y1)

) y1 ≥ 0 ∧ y4 ≥ 0

2rµT cot(y1)csc
2(y1)sec

2(y4)
R2
TµR(2µR+µT)

e−RTµR tan(y1)+r(µR+µT) tan(y4)×
×
(
−2+ 2eRTµR tan(y1)− 2RTµR tan(y1)−R2

Tµ
2
Rtan2(y1)

) (y1 ≥ 0 ∧ y4 < 0)∨

(y4 < 0 ∧RT tan(y1) ≥ r tan(y4))
2e−rµR tan(y4)rµ2

RµT cot(y1)csc
2(y1)sec

2(y4)

R2
T(µR+µT)

3(2µR+µT)
×

×

(
−2+ eRT(µR+µT) tan(y1)×
×
(

2+RT (µR+ µT) tan(y1)
(
−2+RT (µR+ µT) tan(y1)

)) )y1 < 0 ∧ y4 ≥ 0

−2e−rµR tan(y4)rµT cot(y1)sec
2(y4)

R2
TµR(µR+µT)

3(2µR+µT)
×

×



2eRT(µR+µT) tan(y1)RTµ
3
R(µR+ µT) csc(y1) sec(y1)−

−eRT(µR+µT) tan(y1)R2
Tµ

3
R(µR+ µT)

2
sec2(y1)+ csc2(y1)×

×

 2

(
−eRT(µR+µT) tan(y1)µ3

R− er(2µR+µT) tan(y4)(µR+ µT)
3
+

+er(µR+µT) tan(y4)(2µR+ µT)
(
µ2
R+ µRµT + µ2

T

) )
+

+er(µR+µT) tan(y4)rµR(µR+ µT)(2µR+ µT) tan(y4)×
×
(
2µT + rµR(µR+ µT) tan(y4)

)



elsewhere

(11)

The inverse transform is a one-to-one mapping in the
domains of β and θ = (−π/2, π/2) (bijection). Therefore,

x1 = ϕ1 (yn1 ) = y2 + y3tan y1,

x2 = ϕ2 (yn1 ) = y2,

x3 = ϕ3 (yn1 ) = y3,

x4 = ϕ4 (yn1 ) = y2 + rtan y4.

(16)

The sought jpdf is then given by

Wηn1
(yn1 ) = ωξn1 [ϕ1 (yn1 ), . . . , ϕn (yn1 )] |J | , (17)

where the Jacobian is computed as J = y3rsec
2y1sec

2y4,
while ωξn1 [ϕ1 (yn1 ), . . . , ϕn (yn1 )] can be produced as

2e−y2µT−µR(y2+y3 tan[y1])−µR(y2+r tan[y4])y3µ
2
RµT

R2
T

. (18)

Evaluating the subject integrals leads to

Wη1,η4 (y1, y4) =

∫∫
<2

ω(ξn1 ) [ϕ1 (yn1 ), . . . , ϕn (yn1 )]

|J |−1
dy2dy3 =

=

RT∫
0

∞∫
m(y1,y4)

2y3µ
2
RµT ry3sec2 (y1) sec2 (y4)dy2dy3

R2
T e

y2µT+µR(y2+y3 tan(y1))+µR(y2+r tan(y4))
=

=

RT∫
0

2ry23µ
2
RµT sec2 (y1) sec2 (y4) (2µR + µT )

−1
dy3

e(2µR+µT )m(y1,y4)+µR(y3 tan(y1)+r tan(y4))
, (19)

where m(y1, y4) = max {0,−y3 tan (y1) ,−x tan (y4)}. Con-
sidering the last integral, we obtain the jpdf Wη1,η4 (y1, y4) in
its closed form (11).

Proposition 3 (Covariance KP,I ). The covariance between
the interference and the received signal may be determined as

KP,I = A2λπR2
IpCE[(XiX0)−γ ]− µPµI , (20)

where E[(X0Xi)
−γ ] is obtained by numerical integration,

RI∫
0

RT∫
0

∞∫
0

∞∫
0

∞∫
0

[
(x1 − x2)2 + x25

]− γ2
[
(x1 − x3)2 + x24

] γ
2

f(x1, .., x5)dx1..dx5,

(21)

with the associated jpdf provided in the following form

f(x1, . . . , x5) =
µTµ

2
Re
−µT x1−µR(x2+x3)4x4x5

(RTRI)2
. (22)

Proof. Rewrite KP,I as KP,I = E[PI] − µPµI , where µP
and µI have been established previously. Next, the Wald’s
identity [19] is applied to E[PI] as

KP,I = E[PI]− µPµI =

= E
[
AX−γ0

N∑
i=1

AX−γi

]
− µPµI =

= A2λπR2
IpCE[(XiX0)−γ ]− µPµI , (23)

where X0 is the distance between the AAP and the UE of
interest, Xi, i = 1, 2, . . . , N , are the distances between the
interferers and the said UE, and N is the number of interferers;
E[N ] = λπR2

IpC and E[(X0Xi)
γ ] are the only unknowns.

Note that here we apply the Wald’s identity [19] and thus can
rewrite E[(X0Xi)

−γ ] by using the random heights as

E
[([

(HR −HT )2 − r0
][

(HR −HI)
2 − ri

])− γ2 ]
, (24)

where r0 is a constant; we thus arrive at (20).

The complexity of the numerical integration in (21) depends
on the integration order. By choosing it as shown in (21), only
two latter integrals needs to be evaluated numerically.
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(b) λ = 2.0
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(c) α = 2◦

Fig. 4. Mean SIR as a function of antenna directivity α and intensity of AAP–UE pairs λ.

IV. NUMERICAL ANALYSIS

Our developed 3D model is rather complex as it involves
numerical integration of (11) according to (12) and in (21).
Assuming fixed heights of both the AAPs and the UEs, the
solution becomes much simpler since the joint distribution
of β and θ depends only on one RV. Further, disregarding
the heights of AAPs and UEs leads to a two-dimensional
formulation, where the expressions for the moments of SIR are
available in the closed form [15]. A natural research question is
then “can we still apply simpler (e.g., 2D) models to accurately
represent SNR?”

Below, we first assess the accuracy of our proposed model
and then conduct a numerical study on the discrepancy that
arises as a result of replacing the true 3D model with its
simplifications. We concentrate on the carrier frequency of 28
GHz. The propagation coefficients C and γ that correspond
to this frequency are computed to be 28935037 and 2.1,
respectively. The maximum association distance of RT is
15 m, while the interference radius is calculated dynamically,
since it is affected by the antenna directivity angle α.

A. Accuracy of models

We first assess the accuracy of our developed 3D model
and its simplified formulation by comparing the corresponding
results with simulations. Fig. 5 illustrates the mean SIR as
a function of antenna directivity α for the intensity of AAP
arrival process λ = 0.5, where RH and FH represent the
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Fig. 5. Accuracy assessment of our developed model.

random and fixed heights of AAPs and UEs, respectively, PV
is the ‘vertical’ exposure probability, while sign ‘+’ implies
that pV is taken into account. The mean heights of the AAPs
and the UEs are set to E[HT ] = 40 m and E[HR] = 1.7 m.
Our simulation results are displayed by using ticks of the same
color. Both the proposed 3D model as well as its simplified
version agree well with the simulations. Similar observations
can be made for different intensities λ and various mean
heights E[HT ] and E[HR].

B. Comparison of models

The mean SIR as a function of the antenna directivity angle
α and the intensity of AAP arrivals λ is illustrated in Fig. 4
for E[HT ] = 40 m and E[HR] = 1.7 m. First, we note
that for the considered models the mean SIR decreases as α
grows, thus implying that they correctly capture the qualitative
system behavior. However, the quantitative difference between
these results is due to the ‘vertical’ exposure probability pV ;
it increases as α becomes smaller. Particularly, the model with
fixed heights and without considering the ‘vertical’ exposure
probability for λ = 0.5 underestimates the mean SIR by
approximately 7 dB for α = 60◦ and by 27 dB for α = 2◦.
Similar figures are observed for λ = 2. The model with
random heights that does not take into account the ‘vertical’
exposure probability converges to the formulation with the
‘vertical’ exposure probability accounted for as α grows.

RH+PV RH-PV

FH+PV FH-PV

10 20 30 40 50 60 70

-10

0

10

20

Mean drone height (m)

M
ea
n
S
IR

(d
B
)

Fig. 6. Effect of AAP height on mean SIR.

The closest approximation with regards to our developed
model is given by the approach that takes pV into account
and has fixed heights of AAPs and UEs. However, this
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approximation depends on the antenna directivity angle. For
smaller values of α, the model with fixed heights overestimates
the actual mean SIR. After increasing α, the model begins
to underestimate the mean SIR, and the gap may reach
several decibels for α > 80◦. In this regime, the use of
the model with random heights that disregards the ‘vertical’
exposure probability is more appropriate. The results presented
in Fig. 4(c) indicate that the value of λ does not affect the
discrepancy between the models drastically, since the distance
between the curves is preserved across the entire range of the
considered intensities.

The effect of the mean height of the AAPs on the average
SIR for α = 2◦, λ = 0.5, and E[HR] = 1.7 m is displayed
in Fig. 6. The model that neglects the ‘vertical’ exposure
probability drastically underestimates the mean SIR for all
the considered values of E[HT ]. Furthermore, significant
underestimation is observed for the model with fixed heights
and ‘vertical’ exposure probability at E[HT ] > 20.

V. CONCLUSIONS

In this paper, we developed a 3D model for drone-based
mmWave communication that explicitly takes into account the
random heights of drone-transceivers, or AAPs, and the UEs
as well as the ‘vertical’ exposure probability. Our simulations
confirmed the accuracy of the proposed model. The subsequent
numerical analysis demonstrated that capturing the ‘vertical’
exposure probability as well as the random heights of AAPs
and UEs to assess the aggregate interference is of crucial
importance. The simpler models are not capable of providing
accurate approximations of the mean SIR across the entire
feasible range of input parameters.

For the specific ranges of antenna directivity values α, one
can however resort to such simpler formulations. Particularly,
when α > 60◦ the model without the ‘vertical’ exposure prob-
ability delivers an adequate approximation for the considered
AAP arrival intensities. When α < 10◦, the model with the
‘vertical’ exposure probability as well as the fixed heights of
AAPs and UEs that are equal to their mean values becomes
sufficiently accurate.
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