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Inverse analysis is a known mathematical approach, which has been used to solve physical problems of a particular nature.
Nevertheless, it has seldom been applied directly for loss reconstruction of electrical machines. This paper aims to verify the accuracy
of an inverse methodology used in mapping power loss distribution in an induction motor. Conjugate gradient method is used to
iteratively find the unique inverse solution when simulated temperature measurement data are available. Realistic measurement
situations are considered and the measurement errors corresponding to thermographic measurements and temperature sensor
measurements are used to generate simulated numerical measurement data. An accurate 2-D finite-element thermal model of a
37 kKW cage induction motor serves as the forward solution. The inverse model’s objective is to map the power loss density in the
motor accurately from noisy temperature measurements made on the motor housing’s outer surface. Furthermore, the sensitivity
of the adopted inverse methodology to variations in the number of available measurements is also considered. Filtering the applied
noise to acceptable ranges is shown to improve the inverse mapping results.

Index Terms— Heat transfer, induction motor, inverse problems.

I. INTRODUCTION

ATHEMATICALLY and statistically based iron-loss

models in rotating electrical machines aim to estimate
losses both qualitatively and quantitatively. Nevertheless, var-
ious manufacturing defects and material peculiarities mani-
fest, making measurements necessary to verify their accuracy.
When models deviate from loss measurements, they are diffi-
cult to resolve, since certain machine parts are inaccessible to
local measurements of temperature or flux density. Moreover,
no-load measurement of core loss too is not always accurate;
existing standards concern only sinusoidal voltage supply,
whereas inverter supplied machines are on the rise [1].

The capability to measure local power loss in machines will
be of considerable use and the concept of inverse thermal
analysis is apt for the task, as it facilitates a body’s unmeasur-
able heat losses to be determined from its measurable temper-
ature rises. However, when the known temperatures are fewer
than the unknown sources, the generally well-posed inverse
heat problem becomes ill-posed. This causes the system to
have many possible source solutions as opposed to a unique
one. In addition, noise in measured temperature can also
heavily destabilize it. Ill-posed problems are usually solved by
“regularizing” or approximating them to a well-posed system
through various means [2].

Inverse thermal methods in electrical machinery have much
scope: in thermal parameter estimation, locating 3-D source
from 2-D measurements and source strength determination
from transient temperature measurements. Power loss in a
3-D volume of a current carrying bar was reconstructed
from simulated surface thermographic measurements in [3].
Similarly, stator tooth losses in electrical motors were obtained
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from local temperature measurements in [4], albeit with some
measurement inaccuracy. Time-dependent heat flux in the 3-D
domain of a high-speed motor’s housing is determined from its
surface temperature in [5], through iterative steepest descent
method. Other iterative and direct regularization methods have
been studied in [6] and [7], respectively, to address inverse
heat conduction problems in single-domain structures with
simplistic geometries.

Inverse thermal mapping has mostly been restricted to
singular domains of isotropic thermal properties. When multi-
ple domains were considered, as in [3], they were “visible”
also on the temperature measurement surface or boundary.
In [5] and [6], the temperatures measured directly correspond
to the heating surface’s flux. These scenarios are relatively
straightforward for inverse thermal mapping, since the mea-
surement surfaces chosen are completely representative of the
heat dynamics of the whole system. However, in rotating
electrical machines such a characterization is difficult because
of its complex structure. Moreover, there exist different power
loss components that are generated in and propagated via
conduction, convection, and radiation through the materials
of different thermal properties. There is much scope for study
here, and a detailed analysis still needs to be undertaken to
choose the best inverse or optimization methodology to use
with electrical motors as well as to assess its sensitivity to the
number and nature of measurements.

In this paper, we present the possibility of applying the
inverse approach to the whole machine such that all the heat
sources are mapped, when all the intervening materials and
modes of heat dissipation are considered. Thus far, inverse
mapping has been applied at a lower scale, for simplistic cases.
To address its applicability to a more complex scenario, this
paper aims to reconstruct the power loss distribution through-
out the whole 2-D motor geometry, from boundary tempera-
tures. First, the forward problem of determining temperature
distribution in the motor from volumetric power density is
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TABLE I
TOTAL MEASURED AND COMPUTED ELECTRICAL LOSSES AND
COMPONENTS OF COMPUTED LOSS AT DIFFERENT LOADS
. Iron loss™ (W)  Copper loss™ (W) Total loss (W)
Loading(Nm) Stator  Rotor  Stator Rotor Compu.  Meas.
Full (237) 1215 912 542 171 2840 2945
Half (121) 368 199 478 132 1177 1182
No-load (1) 128 9 454 112 703 671

* Computed power loss components.

presented. The succeeding sections detail the inverse model
and the choice of minimization technique used. In the interest
of solution uniqueness, conjugate gradient (CG) method is
used for inverse mapping, as opposed to constrained linear
least squares in preceding studies [8]. The inverse model is
tested for its accuracy in mapping heat flux, when simulated
temperature data of the motor’s frame (housing) is used. Each
mesh node on the motor’s frame is considered as a temperature
measurement point with random measurement noise. Finally,
the effect of number of measurements and measurement noise
on numerical test data is discussed.

II. FORWARD THERMAL SOLUTION

The 37 kW induction motor’s stator and rotor cores are
stacks of radially laminated electrical steel sheets. They have
a thermal conductivity of 28 W/mK in the radial and circum-
ferential direction and a much lower conductivity of 0.6 W/mK
in the axial direction. Hence, the majority of the heat dissipates
outward toward the machine’s housing, rather than axially to
its end spaces. To obtain a temperature distribution faithful to
the actual scenario of motor operation, 2-D numerical thermal
analysis of the motor is carried out with power loss distribution
as the source. A separate electromagnetic finite-element (FE)
analysis of the motor generates the nodal power loss density
in the 2-D cross section of the motor including the stator and
rotor cores, slot windings and rotor bars. The accuracy of the
electromagnetic loss computed this way was verified through
measurements.

The motor’s total loss was obtained from a temperature rise
test following IEC 60034-2-1 standard. It is determined as the
difference between the measured input power and the output
power (measured from the torque transducer) at steady state.
Once the motor reached steady state, the power was switched
OFF, and the stator resistance was measured as a cooling down
curve and extrapolated to the instant of power switch OFF.
The average temperature of the stator winding was obtained
from this resistance, which along with the measured stator
current was used to calculate the stator resistive loss. Error
analysis of the resistance measurement at full load (instrument
error and extrapolation error) indicated the error limit to be
+1.4 °C, which is not too high. Friction loss was measured
separately through deceleration tests. The agreement between
the computed and measured total electromagnetic loss was
good and is shown in Table 1.

The FE source distribution is then interpolated to the
2-D mesh of a sector of the motor’s circular cross section
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Fig. 1. (a) 2-D mesh of the motor’s cross section. (b) Steady-state temperature

solution. Two legends: first referring to the rotor side and other to the stator
side and frame.
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Fig. 2. Stator winding temperature: measured versus numerical results at
different loads.

shown in Fig. 1(a). This is the model for further numerical
thermal analysis. The forward thermal solution is the motor’s
temperature distribution obtained from the solution of the 2-D
steady state forward thermal problem expressed as

oT
pep>, TV -q4=20Qo M

The heat capacity of the material is established by p (denisty)
and ¢, (specific heat capacity). ¢ = —kVT is the conductive
heat flux, where k is the thermal conductivity of the medium
and T is the temperature. Qo is the mapped volume power-loss
density in W/m?3. Convection is imposed as Robin boundary
conditions on the solid—fluid boundaries along the air gap
and machine’s frame. The convection thermal coefficients
used were calibrated to match the temperatures measured at
the stator end-winding, end spaces, and motor frame. The
temperature distribution resulting from steady state analysis is
shown in Fig. 1(b). The mean temperatures of regions match
the measurements well. Fig. 2 indicates that the measured
mean temperatures of the stator winding at different loads
closely agree with those from the FE thermal analysis.

IIT1. INVERSE THERMAL MODEL

The FE analysis of heat distribution in the motor is reduced
to a system of linear equations, which in vector notation is

y = Ax. 2)
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Here, the nodal temperatures y are determined as linear
combinations of different load (heat source) components x,
as described by the system matrix A that is the linear
operator. In terms of a thermal network, A is the thermal
admittance matrix that quantifies the heat transfer between
different regions. Thus, forward formulation solves for the
nodal temperature y, provided the source x and other thermal
parameters are known. On the other hand, the inverse problem
aims to estimate the unknown source x, provided the tempera-
ture y is known. If all the temperatures are known accurately,
the solution is straightforward and a unique solution can be
found simply as x = A~'y, which is known as the basic
solution.

However, this formulation fails to return an acceptably
accurate estimate of x if the known temperature data are
not accurate. The temperatures are “known” through measure-
ments, which always have errors. Thus, even if all the nodal
temperatures are known from measurements y°, the resulting
basic solution can be inaccurate. However, an approximate
solution x, can be found, for instance through constrained
linear least square minimization as in [8] which satisfies

y0 & Axy. 3)

The constraints forced the solution to be within the range of
the true values and also stipulated that the sum of the elements
equal the motor’s total power loss. Here, x, is the solution with
the least residual ||7||

Il = | Axs — ¥°). 4

However, there can be more than one such solution which
returns the least residual. In such cases, typically, the unique
solution to the problem xi, is the least residual solution
| Axgse—y? || with minimum norm, min||x||. A set of solutions
may be acceptable as possible causes behind a desired effect.
However, there could be only one specific source solution
which is the cause behind an observed effect. Therefore,
uniqueness of inverse solution is important for electrical
machines.

The initial point of the inverse formulation is the forward
numerical thermal solution of the motor and forms the basis
of the inverse mapping. The temperatures are assumed to
be known (measured) on the frame boundary and the 2-D
source distribution in the motor has to be found from this
boundary data. Any available boundary measurement can be
used, but here the frame or motor’s housing is the chosen
site of measurements, since it is the part most accessible
and realistically available for non-invasive measurements in
a fabricated motor. As indicated in the FE forward thermal
solution, the frame section in contact with the stator core is
of interest. The frame’s outer boundary that is exposed to
the ambient air is the boundary considered for measurements,
as indicated in Fig. 1(a). The mesh node points here are chosen
as the temperature measurement points. In the FE geometry,
the actual ribbed frame was approximately modeled with a
mean frame height.

To resemble measurements, noise of standard deviation o is
added to true nodal temperatures obtained on the outer frame
boundary y,, to give noisy measurements y/‘;. In addition,

in order to simulate the real measurement scenarios where
the instrument error can be compounded by other random
measurement errors, a normally distributed random variable
with zero mean, r, is factored into the simulated measurement
noise. This simulated measurement data yf‘s with random
measurement error are the given input to the inverse problem

Y/dZYf+r"0' ®)

The number of noisy measurements is N (yfd) = 70. If this
is the only known temperature data of the motor, it is rather
challenging to find the heat source vector xi,, where N (xgy) =
4368. A fine mesh such as in Fig. 1(a) leads to strong linear
dependencies causing noise in measurement to propagate and
prevent a good inverse mapping. It is possible to employ direct
regularization techniques like Tikhonov regularization here,
but there is uncertainty regarding the optimal regularization
parameter to use.

IV. CONJUGATE GRADIENT METHOD

CG method iteratively regularizes the inverse problem,
so there is no need to identify regularizing parameters for the
problem at the outset. Also, it is robust, with low computa-
tional cost when dealing with large matrices. It iteratively con-
verges to the unique global minimum x4, of the system when
used with a suitable stopping criterion such as Morozov’s
discrepancy principle

Iy° — Axell < [W/No || (©6)

N being the number of measurement points, in this case 70.
CG regularization with normal equations was carried out for
the present FE system to solve for 4368 unknown sources
from 70 noisy temperatures. However, the results were far
from accurate. It was observed that the many intervening yoke
and winding domains lead to loss of information across the
material boundaries. Since the measurements are all on one
boundary of the motor, computed heat fluxes are observed to
get damped as we move further from the measurement surface.

Therefore, it is not possible to obtain loss distribution in the
motor from frame measurements alone. A new temperature

vector is assembled
)
Y = B } @)

where y,, is the temperature vector used for inverse solution.
It has the noisy frame temperatures y_/‘s but is augmented with
the true forward temperature solution of the other nodes y. The
system is now fully defined since N(y,,) = 4368 and an opti-
mal source distribution xx, can be found through CG. Iteration
began from an initial assumption of zero nodal sources. The
linear system A was preconditioned with a diagonal matrix
composed of the diagonal elements of A, which reduced the
solution time of CG.

The inverse mapped load vector xj, is used as the new
source (load vector) to the numerical model of the motor,
and the steady state thermal problem is solved again. The
flux distribution obtained thus is compared with the original,
to identify any irregularities. The errors in the inverse recon-
struction thus obtained are quantified in terms of maximum
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and mean relative error
Xise — X Xk — X
X
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Another way of quantifying error is relative error norm

)

€max = Max ( .

ks — x|l
enorm =
flx]]
While the mean relative error and relative error norm serve
to denote the overall effectiveness of the inverse formulation,
the maximum relative error is worth consideration, to under-
stand the extent of the worst mapping and its repercussions.

A. Sensitivity Analysis

In order to evaluate the stability of the solution returned
by CG, the noise level and the number of measurement points
taken are varied. At steady state, the temperature along one
circular perimeter of the motor’s frame is mostly the same and
was found to be 54.3 °C from the FE simulation. To account
for the possible errors in temperature measurement, two fea-
sible measurement scenarios for the frame are considered.

1) Sensor Measurements: This will resemble a situa-
tion where thermocouples or resistance temperature
devices (RTDs) are placed on the frame. The lowest
temperature measurement error is reportedly for Class
A platinum RTDs, with an error of 0.35% in measuring
100 °C. Here, standard deviation of measurement error
is o = 0.0035.

2) Thermal Camera Measurements: Thermographic mea-
surements using a thermal camera give the frame tem-
perature distribution with a high resolution. The error in
thermal camera measurements is 2%, so ¢ = 0.02.

Fig. 3 shows the total heat flux in the motor surface originally
and with the reconstructed source vector. The variation is the
most prominent along the frame boundary and along the stator
teeth tips. The maximum heat flux in the motor originally
is 10048 W/m?; with the reconstructed load vector, it is
more than doubled, 25900 W/m?. However, this difference
is dominant only in minor parts, as seen in Fig. 4.

Table II enumerates the difference between the expected and
inverse mapped heat fluxes with the different error indicators
mentioned earlier. The variation in this error with different
numbers of measurement points at the two different noise
levels is also shown. Owing to the ribbed structure of the
frame, it is realistically not possible to fix RTD’s in a tightly
knit fashion resembling the measurement points on the mesh.
Still, the comparison serves to shed light on the effect of mea-
surement noise on inverse mapping’s accuracy. The scenario
with fewer number (N = 30) of non-adjacent measurement
points, which is more in line with RTD measurements is
considered also.

From the error margins, it is evident that the more the
number of measurements considered, the higher the error.
Fig. 4 shows the absolute difference in the original and mapped
heat fluxes. The maximum relative variation is observed to be
in the stator teeth tips. Nevertheless, the mean error in the
overall mapping of the heat flux was not more than 4% at
either noise levels.
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Fig. 3. (a) Original total flux distribution. (b) Total flux distribution with
reconstructed source vector (70 measurement points, noise of ¢ = 0.02).

TABLE II
ERROR IN RECONSTRUCTION WHEN TWO DIFFERENT NOISE BOUNDS
ARE USED FOR DIFFERENT NUMBER OF MEASUREMENT POINTS

Meas. Points N =170 N =30 N =1
o= 0.02 0.0035 | 0.02 0.0035 | 0.02 0.0035
emean % 3.7 0.5 2.3 0.36 0.3 0.04
emax % 639 86.2 683 69 66.4 7.8
€norm% 22.6 2.6 14 1.9 1.8 0.2

Absolute error in total heat-flux (W/m?)
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A

Fig. 4. Absolute error in heat flux mapping on the motor’s surface. Enlarged
region of the stator tooth shows that the maximum variation occurs here.

B. Need for Noise Smoothing

It is seen from the reconstruction in Figs. 3 and 4 that the
inverse mapped heat flux varies from the original, particularly
in the frame and tooth regions. The reason could be the
highly fluctuating measured temperature data used. While
temperature distribution can drastically change over material
boundaries, within a domain of isotropic thermal conductivity
such as the frame, the temperature change from node to
node is gradual. Moreover, the frame boundary considered



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAIR et al.: SENSITIVITY ANALYSIS OF INVERSE THERMAL MODELING

TABLE III
ERROR IN INVERSE MAPPING AFTER NOISE SMOOTHING, FOR ¢ = 0.02

N €mean % emax % €norm %
70 0.5 90 3
30 0.004 0.7 0.01

Original total heat-flux (W/m?)
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(a)
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(b)

Fig. 5. (a) Original total flux distribution. (b) Total flux distribution with
reconstructed source vector after smoothing (N = 70, noise of ¢ = 0.02).

for measurement is more or less isothermal. In such a case,
the simulated random error imposed on the frame’s measure-
ment points has the effect of causing high variations in the
temperatures from node to node on the same boundary. This
is especially pronounced for N = 70 with ¢ = 0.02, where a
higher noise bound caused high variation in temperature across
adjacent nodes.

To counter this, the measurement error between adjacent
nodes is filtered using a Gaussian function of a specified
standard deviation. This approach was found to be suitable
in [9] to improve the inverse power mapping at the microar-
chitectural level where the grid used was very dense. This
approach to curbing high spatial variation was referred to as
“smoothing” and is found to improve the inverse mapping.
Table III lists the reduction in mapping error after noise
smoothing was implemented.

The improvements are most pronounced in the case when
N = 70. The same smoothing index trivializes the applied
measurement error when N = 30, resulting in very low
error margins. Since the measurement points here were non-
adjacent, the variation in noise from one measurement point
to another need not be suppressed to the same extent. A more
relevant filter index needs to be used here, after observing the
noise levels between the measurement points. Fig. 5 shows that
the reconstructed flux after smoothing is well in the range of
the original heat flux. The maximum variation, albeit lesser
than before, was noted to be again in the teeth region.

V. DISCUSSION

Inverse power mapping in the motor’s 2-D domain through
iterative regularization with CG was not successful with only
simulated measurements of frame boundary. Therefore, origi-
nal surface temperature data from the rest of the domains were
also used, to achieve a decent mapping accuracy. This became
necessary since frame temperatures alone were insufficient
to preserve the dynamics of heat transfer across different
material boundaries. An improvement would be to consider
measurements from additional, dissimilar boundaries and also
few from motor domains. However, in a practical sense this
would mean invasive measurements that are not always feasi-
ble in real scenarios. Hence, it has to be investigated further if
isolated measurements of inner motor domains will augment
boundary measurements enough to improve the regularized
inverse solution. This is less likely in a dense mesh such as
this one which represents the power distribution of the motor.
Nevertheless, it is of use in inverse power mapping in a more
discrete system, such as the motor’s lumped thermal network.

Preconditioned CG converges fast and manages to effec-
tively map the motor’s heat flux. However, the maximum
error in certain nodes was quite high. It was observed that
the simulated measurement error caused high variations in
temperature between adjacent measurement points. This is
not realistic in a fine mesh; so high relative fluctuation in
the simulated measured temperature across adjacent nodes is
suppressed to a certain degree by filtering. With this, improved
source fitting is achievable. Even without knowledge of the
motor’s original heat distribution, CG can still converge to the
expected value.
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