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A path in an edge-colored graph G is rainbow if no two edges of it are colored the same. The graph G is rainbow-
connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every
pair of vertices, the graph G is strongly rainbow-connected. The minimum number of colors needed to make G
rainbow-connected is known as the rainbow connection number of G, and is denoted by rc(G). Similarly, the
minimum number of colors needed to makeG strongly rainbow-connected is known as the strong rainbow connection
number ofG, and is denoted by src(G). We prove that for every k ≥ 3, deciding whether src(G) ≤ k is NP-complete
for split graphs, which form a subclass of chordal graphs. Furthermore, there exists no polynomial-time algorithm
for approximating the strong rainbow connection number of an n-vertex split graph with a factor of n1/2−ε for
any ε > 0 unless P = NP. We then turn our attention to block graphs, which also form a subclass of chordal graphs.
We determine the strong rainbow connection number of block graphs, and show it can be computed in linear time.
Finally, we provide a polynomial-time characterization of bridgeless block graphs with rainbow connection number
at most 4.
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1 Introduction
LetG be an edge-colored undirected graph that is simple and finite. A path inG is rainbow if no two edges
of it are colored the same. The graph G is rainbow-connected if there is a rainbow path between every
pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph G is strongly
rainbow-connected. The minimum number of colors needed to make G rainbow-connected is known as
the rainbow connection number of G and is denoted by rc(G). Likewise, the minimum number of colors
needed to make G strongly rainbow-connected is known as the strong rainbow connection number of
G and is denoted by src(G). Rainbow connectivity was introduced by Chartrand, Johns, McKeon, and
Zhang [10] in 2008. While being a theoretically interesting way of strengthening connectivity, rainbow
connectivity also has possible applications in data transfer and networking [17]. The study of rainbow
colorings and several of its variants have recently attracted increasing attention in the research community.
For a comprehensive treatment, we refer the reader to the books [9, 16], or the recent survey [17].

Denote by n the number of vertices and by m the number of edges of a graph in question. It is easy
to verify that rc(G) ≤ n − 1; indeed, such an edge-coloring is obtained by coloring the edges of a
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spanning tree of G in distinct colors. On the other hand, we will always need as at least as many colors
as is the length of a longest shortest path in G. Thus, an easy lower bound for rc(G) is given by the
diameter of G, denoted by diam(G). That is, we have that diam(G) ≤ rc(G) ≤ n− 1. It also holds that
rc(G) ≤ src(G), since every strongly rainbow-connected graph is also rainbow-connected. For extremal
cases, it is easy to see that rc(G) = src(G) = 1 if and only if G is a complete graph. Similarly, we have
that rc(G) = src(G) = m if and only if G is a tree (for proofs, see [10]). Chartrand et al. [10] also
determined the exact rainbow and strong rainbow connection numbers for some structured graph classes,
including cycles, wheel graphs, and complete multipartite graphs.

Not surprisingly, determining the rainbow connection numbers is computationally hard. Chakraborty,
Fischer, Matsliah, and Yuster [4] proved that given a graph G, it is NP-complete to decide whether
rc(G) = 2. Ananth, Nasre, and Sarpatwar [1] further showed that for every k ≥ 3, deciding whether
rc(G) ≤ k is NP-complete. Using different ideas, a proof of hardness for every k ≥ 2 is also given
by Le and Tuza [15]. The hardness of computing the strong rainbow connection number was shown by
Ananth et al. [1] as well. In particular, they proved that for every k ≥ 3, deciding whether src(G) ≤ k
is NP-complete, even when G is bipartite. Furthermore, as rc(G) = 2 if and only if src(G) = 2 (for a
proof, see [10]), it follows that deciding whether src(G) ≤ k is NP-complete for every k ≥ 2.

Because rainbow-connecting graphs optimally is hard in general, there has been interest in approxi-
mation algorithms and easier special cases. Basavaraju, Chandran, Rajendraprasad, and Ramaswamy [2]
presented approximation algorithms for computing the rainbow connection number with factors (r + 3)
and (d + 3) respectively, where r is the radius and d the diameter of the input graph. Chandran and Ra-
jendraprasad [6] proved that there is no polynomial-time algorithm to rainbow-connect graphs with less
than twice the optimum number of colors, unless P = NP. Ananth et al. [1] showed that there is no
polynomial time algorithm for approximating the strong rainbow connection number of an n-vertex graph
with a factor of n1/2−ε, where ε > 0 unless NP = ZPP.

There is a line of research studying rainbow connection on chordal graphs (see e.g., [2, 5, 6, 8]). In
this regard, it is known to be NP-complete to decide whether rc(G) ≤ k for every k ≥ 2 even when
G is chordal [5, 8]. Furthermore, the rainbow connection number of a chordal graph can not be approx-
imated to a factor less than 5/4 unless P = NP [6]. Motivated by this result, there has been interest
in a deeper investigation of the rainbow connection number of subclasses of chordal graphs. Chandran,
Rajendraprasad, and Tesař [8] showed that for split graphs, the problem of deciding whether rc(G) = k is
NP-complete for k ∈ {2, 3}, and in P for all other values of k. Chandran and Rajendraprasad [5] showed
split graphs can be rainbow-connected in linear-time using at most one more color than the optimum. In
the same paper, the authors also gave an exact linear-time algorithm for rainbow-connecting threshold
graphs. Furthermore, they noted that their result is apparently the first efficient algorithm for optimally
rainbow-connecting any non-trivial subclass of graphs. To the best of our knowledge, the complexity
of strongly rainbow-connecting chordal graphs is an open question. Moreover, we are not aware of any
efficient exact algorithms for computing the strong rainbow connection number of a non-trivial subclass
of graphs.

Our results. We further investigate the rainbow and strong rainbow connection number of subclasses of
chordal graphs. We extend the known hardness results for computing the strong rainbow connection num-
ber by showing it is NP-complete to decide whether a given split graph can be strongly rainbow-connected
in k colors, where k ≥ 3. As a by-product of the proof, we obtain that there exists no polynomial-time
algorithm for approximating the strong rainbow connection number of an n-vertex split graph with a fac-
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tor of n1/2−ε for any ε > 0 unless P = NP. These negative results further motivate the investigation of
tractable special cases. Indeed, we determine the strong rainbow connection number of block graphs, and
show that any block graph can be strongly rainbow-connected optimally in linear time. Finally, we turn
to the rainbow connection number, and characterize the bridgeless block graphs with rainbow connection
number 2, 3, or 4.

2 Preliminaries
The graphs considered are connected, simple, and undirected. For graph-theoretic concepts not covered
here, we refer the reader to [12].

Let G = (V,E) be a graph. The diameter of G, denoted by diam(G), is the length of a longest shortest
path inG. The degree of a vertex is the number of edges incident to it. The minimum degree ofG, denoted
by δ(G), is the minimum of the degrees of all the vertices in G. If G is obvious from the context, we may
shorten δ(G) to δ. Finally, a dominating set is a subset D ⊆ V of vertices such that every vertex in V \D
is adjacent to at least one vertex in D. If D induces a connected subgraph in G, we say D is a connected
dominating set. The minimum size of a (connected) dominating set in G, denoted by (γc(G)) γ(G), is
known as the (connected) domination number of G.

A chord is an edge joining two non-consecutive vertices in a cycle. A graph is chordal if every cycle of
length 4 or more has a chord. Equivalently, a graph is chordal if it contains no induced cycle of length 4
or more. Let us introduce some subclasses of chordal graphs that are most central for this work. A split
graph is a graph whose vertex set can be partitioned into a clique and an independent set. A cut vertex is
a vertex whose removal will disconnect the graph. A biconnected graph is a connected graph having no
cut vertices. In a block graph, every maximal biconnected component, known as a block, is a clique. In a
block graph G, different blocks intersect in at most one vertex, which is a cut vertex of G. In other words,
every edge of G lies in a unique block, and G is the union of its blocks. A particular property of block
graphs is that they are geodetic, meaning there is exactly one shortest path between every pair of vertices
(see e.g., [18]). Both split graphs and block graphs are chordal.

The concept of separators is central to chordal graphs. A set S ⊆ V disconnects a vertex a from vertex
b in a graph G if every path of G between a and b contains a vertex from S. A non-empty set S ⊆ V (G)
is a minimal separator of G if there exists a and b such that S disconnects a from b in G, and no proper
subset of S disconnects a from b in G. If we want to identify the vertices that S disconnects, we may also
refer to S as a minimal a-b separator. For a more comprehensive treatment on chordal graphs, we refer
the reader to [3].

3 Hardness of strongly rainbow-connecting split graphs
In this section, we show that deciding whether a split graph can be strongly rainbow-connected with k ≥ 3
colors is NP-complete. We remark that it follows from the work of Chandran et al. [8] that the problem is
NP-complete for k = 2; however, to the best of our knowledge, the complexity of the problem for k ≥ 3
has been open even for chordal graphs.

In the k-subset strong rainbow connectivity problem (k-SSRC), we are given a graph G, a set of pairs
P ⊆ V (G) × V (G), and an integer k. The goal is to decide whether E(G) can be colored with k colors
such that each pair of vertices in P is connected by a rainbow shortest path. The problem was shown to
be NP-complete by Ananth et al. [1] even when the graph G is a star.
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Fig. 1: A star graph S on the vertex set {a, 1, 2, 3} transformed to a split graph G′ with P = {(1, 2), (2, 3)}. The
white vertices form an independent set while the black vertices form a clique. The symbol ? marks an edge-coloring
χ of S with k colors under which the pairs in P are connected by a rainbow path.

Lemma 1 ([1]). For every k ≥ 3, the k-SSRC problem is NP-complete when the graph G is a star.

We reduce from this problem, and make use of some ideas of [4] in the following. For convenience, we
denote by k-SRC the problem of deciding whether a given a graph G can be strongly rainbow-connected
in k colors.

Theorem 2. For every integer k ≥ 3, it is NP-complete to decide if src(G) ≤ k, whereG is a split graph.

Proof: Let I = (S, P, k) be an instance of the k-SSRC problem, where S = (V,E) is a star, both p and q
in each (p, q) ∈ P are leaves of S, and k ≥ 3 is an integer. We construct an instance I ′ = (G′) of k-SRC,
where G′ = (V ′, E′) is a split graph such that I is a YES-instance of k-SSRC iff I ′ is a YES-instance of
k-SRC.

Let a be the central vertex of S. For every vertex v ∈ V \ {a}, we add a new vertex xv , and for every
pair of leaves (u, v) ∈ (V × V ) \ P , we add a new vertex x(u,v). Formally, we construct G′ = (V ′, E′)
such that

• V ′ = V ∪ {xv | v ∈ V \ {a}} ∪ {x(u,v) | (u, v) ∈ (V × V ) \ P},

• E′ = E ∪ E1 ∪ E2 ∪ E3,

• E1 = {(v, xv), (a, xv) | v ∈ V \ {a}},

• E2 = {(u, x(u,v)), (v, x(u,v)), (a, x(u,v)) | (u, v) ∈ (V × V ) \ P}, and

• E3 = {(x, x′) | x, x′ ∈ V ′ \ V }.
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Let us then verify that G′ is a split graph. Observe the leaves of S form an independent set in G′. The
remaining vertices {a} ∪ (V ′ \ V ) form a clique, proving G′ is split. Moreover, a is a dominating vertex.
An example illustrating the construction is given in Figure 1.

We will now prove G′ is strongly rainbow-connected with k colors if and only if (S, P ) is k-subset
strongly rainbow-connected. First, suppose (S, P ) is not k-subset strongly rainbow-connected; we will
show G′ is not strongly rainbow-connected with k colors. Observe that for each (p, q) ∈ P , there is
a unique shortest path between p and q in S. Moreover, the same holds for G′. Therefore, any strong
rainbow coloring using k colors must make this path strongly rainbow-connected in G′. But because the
pairs in P cannot be strongly rainbow-connected with k colors in S, the graph G′ cannot be strongly
rainbow-connected with k colors.

Finally, suppose (S, P ) is k-subset strongly rainbow-connected under some edge-coloring χ : E →
{c1, . . . , ck}. We will describe an edge-coloring χ′ given to G′ by extending χ. We retain the original
coloring on the edges of S, that is, χ′(e) = χ(e), for every e ∈ E. The rest of the edges are colored as
follows:

• χ′(e) = c1, for all e ∈ E1,

• χ′(e) = c2, for all e ∈ E3, and

• χ′(ux(u,v)) = c1, χ′(vx(u,v)) = c2, and χ′(ax(u,v)) = c2 for all (u, v) /∈ P .

It is straightforward to verify G′ is indeed strongly rainbow-connected under χ′, completing the proof. �

Ananth et al. [1] reduced the problem of deciding whether a graph G has chromatic number at most k
to k-SSRC. Finally, they reduced k-SSRC to the problem of deciding whether a bipartite graphG′ can be
strongly rainbow-connected in k colors. In this final step, the size of G′ is quadratic in the input graph G
of the chromatic number instance. Moreover, since the chromatic number of an n-vertex graph cannot be
approximated with a factor of n1−ε for any ε > 0 unless P = NP [20], they obtained that src(G′) cannot
be approximated with a factor of n1/2−ε, under the same complexity-theoretic assumptions. We apply
precisely the same reasoning to the split graph G′ obtained in Theorem 2, where G′ has size quadratic
in G (similarly assuming a chain of reductions from an arbitrary instance G of chromatic number). We
obtain the following.

Theorem 3. There is no polynomial-time algorithm that approximates the strong rainbow connection
number of an n-vertex split graph with a factor of n1/2−ε for any ε > 0, unless P = NP.

4 Strongly rainbow-connecting block graphs in linear time
In this section, we determine exactly the strong rainbow connection number of block graphs.(i) Further-
more, we present an exact linear-time algorithm for constructing a strong rainbow coloring using src(G)
colors for a given block graph G. If an explicit coloring is not required (i.e., if the value of src(G)
suffices), the algorithm can be further simplified.

Let B be a block in a block graph G whose edges are colored by using colors from the set R =
{c1, . . . , cr}. Then we say that B is colored and B is associated with each color c1, . . . , cr. In particular,

(i) We remark that the presentation given here is simpler than the one given in the doctoral thesis of the second author [13, Sec-
tion 5.2].
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Fig. 2: (a) Lines 1 to 5 of Algorithm 1 have been executed on an input block graph. (b) A strong rainbow coloring
of G obtained after the execution of Algorithm 1.

if B is associated with a color c and no other block is associated with c, then we say B is uniquely
associated with color c. Furthermore, any color from R can be used as a representative for the color of C.
Thus we may say that B has been colored ci for any i ∈ {1, . . . , r}.

Lemma 4. Let G be a block graph, let B be a block that is uniquely associated with color c, let (u, v)
be an edge in G such that u, v /∈ B, and let y be the minimal a-b separator for any a ∈ B \ {y} and
b ∈ {u, v}. If no shortest y-u path or shortest y-v path contains (u, v), then by coloring (u, v) with the
color c, any shortest path between u or v and w ∈ B contains at most one edge of color c.

Proof: Any shortest path between u or v and y does not contain the edge (u, v), and does not contain any
edges in B, so these paths do not have any edges of color c. Any shortest path between y and w is just an
edge of color c. �

The algorithm for strongly rainbow-connecting a block graph is presented in Algorithm 1. Given a
block graph G, the algorithm partitions the blocks of G into two sets V<3 and V≥3 based on the number
of cut vertices contained in each block. That is, if a block contains less than 3 cut vertices, it is added
to V<3. Otherwise, it is added to V≥3. Then, for each block in V<3, we introduce a new color and use
it to color the edges of the block. At the final step the algorithm goes through every block B ∈ V≥3.
Denote by C(B) the set of cut vertices in B. Fix 3 distinct vertices b1, b2, and b3 in C(B). Observe that
in G \ E(B), we would have at least 3 connected components, and b1, b2, and b3 would be in different
connected components. Suppose E(B) was removed, and from each connected component b1, b2, and b3
is in, pick a block in V<3. The picked three blocks are each associated with a distinct color. These colors
are then used to color the edges of the block B. The algorithm is illustrated in Figure 2: note that there
are several choices of how the blocks in V≥3 are colored in the example, and the illustration shows one
possibility.

The correctness of Algorithm 1 is established by an invariant, which says that we always maintain the
property that if the shortest path between two vertices is colored, then it is rainbow. We refer to this
property as the shortest rainbow path property.

Theorem 5. At every step, Algorithm 1 maintains the shortest rainbow path property.

Proof: Before the execution of the first loop, nothing is colored so the claim is trivially true. Furthermore,
the first loop obviously maintains the property. To see this, consider any shortest path of length ` ≥ 1 at
any step. The path consists of ` edges that are in ` distinct blocks. Since each colored block has received a
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Algorithm 1 Algorithm for strong rainbow coloring a block graph
Input: A block graph G
Output: A strong rainbow coloring of G

1: V<3 := {U | U ∈ B(G) ∧ |C(U)| < 3} . Denote by B(G) the blocks of G
2: V≥3 := B(G) \ V<3

3: for all U ∈ V<3 do
4: Color edges in U with a fresh distinct color
5: end for
6: for all B ∈ V≥3 do
7: Let b1, b2, b3 be distinct cut vertices in C(B)
8: Assume E(B) was removed from E(G)
9: From each connected component C1, C2, C3 is in, find a block in V<3

10: Let c1, c2, c3 be the respective colors associated with the found blocks
11: Color all edges not incident to b1 with color c1
12: Color all edges incident to b1, except (b1, b2), with color c2
13: Color the edge (b1, b2) with color c3
14: end for

distinct color, the shortest path is rainbow. This establishes the base step for the correctness of the second
loop.

Assume after iteration i−1 of the second loop, if the shortest path between any two vertices is colored,
then it is rainbow. We show that this property is maintained after iteration i of the second loop. Consider
any edge (u, v) in B not incident to b1, and let y ∈ C1 be the minimal a-b separator for any a ∈ C1 \ {y}
and b ∈ {u, v}. The algorithm states that (u, v) will be colored with color c1, which is uniquely associated
with a block in C1. Because u and v are both at a distance 1 from b1, it follows that neither shortest path
y-u or y-v contains (u, v). Thus by Lemma 4, if the shortest w-u path, for w ∈ C1 is colored, then it
is rainbow. (The same is true for the shortest w-v path). Therefore, by coloring (u, v) with color c1, the
shortest rainbow path property is maintained.

Consider any edge (u, v) in B not incident to b2, and let y ∈ C2 be the minimal a-b separator for any
a ∈ C2 \{y} and b ∈ {u, v}. By Lemma 4, this edge can be colored with color c2 to maintain the shortest
rainbow path property. Notice that u and v are both at a distance 1 from b2, and because all edges not
incident to b1 have been colored, it follows that b1 must be one of these vertices (i.e., either u = b1 or
v = b1). So we conclude that every edge incident to b1, except (b1, b2), can be colored with c2 to maintain
the shortest rainbow path property.

Now the only uncolored edge in C is the edge (b1, b2). Because b1 and b2 are both at a distance 1
from b3, Lemma 4 assures us that by coloring (b1, b2) with color c3, the shortest rainbow path property is
maintained. �

Let us then consider the complexity of Algorithm 1. It is an easy observation that lines 1 to 5 take
linear time. Observe that on line 9, we essentially perform reachability queries of the form given a block
B ∈ V≥3, return a block containing less than 3 cut vertices that is reachable from cut vertex b ∈ B with
a path containing no cut vertices of B besides b. In our context, such a query is performed for each cut
vertex b1, b2, and b3. The naive way of answering such queries is to start a depth-first search (DFS) from
each b1, b2, and b3, and halt when a suitable block is found. However, such implementation requires Ω(d)
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time, where d is the diameter of the input graph G. Using elementary techniques, we can preprocess the
block graph G before the execution of line 1 using linear time to answer such queries in O(1) time. Thus,
the total runtime will be linear as the for-loop on line 6 loops O(n) times.

Theorem 6. Algorithm 1 constructs a strong rainbow coloring in O(n+m) time.

As Algorithm 1 is correct and uses k colors where k is the number of blocks containing less than 3 cut
vertices, we establish that src(G) ≤ k. In the following, we prove that this is in fact optimal by showing
a matching lower bound.

Lemma 7. Let G be a block graph, and let k be the number of blocks containing less than 3 cut vertices.
Then, src(G) ≥ k.

Proof: Let A be a set of k edges in G, one from each block containing less than 3 cut vertices, selected as
follows. For each block B ∈ B(G), if |C(B)| = 1, pick an edge incident to the cut vertex. On the other
hand, if |C(B)| = 2, pick the edge connecting the two cut vertices. We claim that if we are to strongly
rainbow-connect G, then the edges in A must all receive distinct colors.

Suppose there are 2 edges in A that are of the same color, say (u, x) ∈ E(B) and (v, y) ∈ E(B′).
Without loss, we may assume that u and v are cut vertices of B and B′, respectively, such that d(u, v)
is minimized. As G is geodetic the x-y shortest path is unique, and it contains two edges of the same
color. �

By combining the previous lemma with Theorem 5, we arrive at the following.

Theorem 8. LetG be a block graph, and let k be the number of blocks containing less than 3 cut vertices.
Then, src(G) = k.

If an explicit coloring is not required, then it is easy to see that there is a linear-time algorithm for com-
puting src(G), where G is a block graph. This is obtained by counting the number of blocks containing
less than 3 cut vertices.

Corollary 9. There is an algorithm such that given a block graph G, it computes src(G) in O(n + m)
time.

5 On the rainbow connection number of block graphs
In this section, we consider the rainbow connection number of block graphs. As a main result of the
section, we prove a polynomial-time characterization of bridgeless block graphs with rainbow connection
number at most 4.

Using known results, we begin by observing a tight linear-time computable upper bound on the rainbow
connection number of a block graph of minimum degree at least 2. The following result was obtained by
Chandran et al. [7].

Theorem 10 ([7]). For every connected graph G, with δ(G) ≥ 2,

rc(G) ≤ γc(G) + 2.

Further, the connected domination number of block graphs has been determined by Chen and Xing [11].
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Theorem 11 ([11]). Let G be a connected block graph, let S be the set of cut vertices of G, and ` the
number of blocks in G. Then,

γc(G) =

{
1 for ` = 1,

|S| for ` ≥ 2.

Combining the two previous theorems, we obtain the following.

Theorem 12. Let G be a connected block graph with at least two blocks and δ(G) ≥ 2. Then rc(G) ≤
|S|+ 2, where S is the set of cut vertices of G. Moreover, this bound is tight.

Finally, as the number of cut vertices can be determined in linear time, we remark that the upper bound
can also be computed in linear time.

Before proceeding, let us state the following simple but useful lemma. For this, we recall that a periph-
eral vertex is a vertex of maximum eccentricity, that is, a vertex that is a starting point for some diametral
path.

Lemma 13. Let G be a block graph with at least 3 blocks, and let x and y be two peripheral vertices in
distinct blocks. If G has a cut vertex s adjacent to x and y, then rc(G) > diam(G).

Proof: For the sake of contradiction, assume that rc(G) = diam(G). Let Bx and By be the two distinct
blocks x and y are in, respectively. Choose a vertex z ∈ Bz such that d(x, z) = diam(G), where Bz is
a block different from Bx and By . Let Pxz be the (unique) shortest x-z path. Since rc(G) = diam(G),
it must be the case that each edge in E(Pxz) receives a distinct color in any valid rainbow coloring using
diam(G) colors. Since x and z are in distinct blocks, and because s is a cut vertex, it is clear that
(x, s) ∈ E(Pxz). Without loss, suppose the edge (x, s) was colored with color c1. Then consider each
uncolored edge incident to s in By . Notice we must color each such edge with color c1, for otherwise G
would not be rainbow-connected. But now the (unique) shortest path Pxy repeats the color c1, and thus x
and y are not rainbow-connected. It follows that rc(G) > diam(G). �

Figure 3 (a) illustrates the previous claim: the block graph G has two peripheral vertices adjacent to a cut
vertex s. Both the edges (x, s) and (y, s) would have to receive the same color in a rainbow coloring of
G using diam(G) colors, but then there is no way to rainbow-connect x and y without introducing new
colors. (Here, Figure 3 (a) also shows the bound from Theorem 12 is tight).

We will then characterize the bridgeless block graphs having a rainbow connection number 2, 3, or 4.
The following also determines exactly the rainbow connection number of the windmill graph K(m)

n (n >
3), which consists of m copies of Kn with one vertex in common.

Theorem 14. LetG be a bridgeless block graph. Deciding whether rc(G) = k is in P for k ∈ {1, 2, 3, 4}.

Proof: As k ≤ 4, it is enough to consider bridgeless block graphs with diameter d = diam(G) ≤ 4. In
what follows, we show how such graphs are efficiently and optimally colored.

• Case d = 1. Trivial as G is complete.

• Case d = 2. If G has exactly 2 blocks, it is easy to see that rc(G) = 2. Moreover, if the graph has
rc(G) = 2, it must have exactly 2 blocks. Suppose this is was not the case, i.e., G has at least 3
blocks and rc(G) = 2. By an argument similar to Lemma 13, this leads to a contradiction. Thus,
rc(G) = 2 if and only if G has exactly 2 blocks. When G consists of 3 or more blocks, we will
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Fig. 3: (a) A block graph G with a cut vertex s adjacent to two peripheral vertices x and y in distinct peripheral
blocks. (b) A Kn with n triangles glued to it for n = 5.

show that rc(G) = 3. Let B be the set of all blocks of G, and let a be the unique central vertex of
G. For each B ∈ B, color one edge incident to a with color c1, and every other incident edge with
color c2. Finally, color every uncolored edge of G with color c3. To see G is rainbow-connected,
observe there is a rainbow path from any vertex to the central vertex a avoiding a particular color in
{c1, c2, c3}.

• Case d = 3. The graph G consists of a unique central clique, and at least 2 other blocks. If G has
3 blocks, then rc(G) = src(G) = 3. If G has 4 blocks, there are two cases: either G has a cut
vertex adjacent to two peripheral vertices in distinct blocks (then rc(G) ≥ 4 by Lemma 13) or it
does not (then rc(G) = src(G) = 3). Otherwise, G has at least 5 blocks. Now, if G has exactly
two cut vertices, then by an argument similar to Lemma 13, we have that rc(G) ≥ 4 as there is a
cut vertex that is contained in more than two blocks. We will then color every block that is not the
central clique with 3 colors exactly as in the case d = 2, and color every edge of the central clique
with a fresh distinct color proving that rc(G) = 4. Finally, suppose G has at least 5 blocks, more
than two cut vertices, but every cut vertex is contained in exactly two blocks. Then by an argument
similar to Lemma 7, we have that rc(G) ≥ 4, and the described coloring proves rc(G) = 4.

• Case d = 4. Let us call the set of blocks which contain the central vertex a the core of the graph
G. The set of blocks not in the core is the outer layer. First, suppose the core contains exactly 2
blocks, and the outer layer at most 4 blocks. Furthermore, suppose the condition of Lemma 13 does
not hold (otherwise we would have rc(G) > 4 immediately). When the outer layer contains 2 or
3 blocks, we have that rc(G) = src(G) = 4. Suppose the outer layer contains exactly 4 blocks.
First, consider the case where a core block is adjacent to 3 blocks in the outer layer. Because the
condition of Lemma 13 does not hold, it must be the case that at least one of the core blocks is not
a K3. Clearly, every two vertices x and y, such that d(x, y) = diam(G), have to be connected by
a rainbow shortest path. By an argument similar to Lemma 7, we have that rc(G) > 4. Otherwise,
when a core block is not adjacent to 3 blocks in the outer layer, rc(G) = src(G) = 4. Now suppose
the outer layer has at least 5 blocks. As above, by an argument similar to Lemma 7, we have that
rc(G) > 4. Finally, suppose the core has 3 or more blocks. We argue that in this case, rc(G) = 4
if and only if the outer layer contains exactly 2 blocks. For the sake of contradiction, suppose
rc(G) = 4, and that the outer layer has 3 or more blocks. If the condition of Lemma 13 holds, we
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have an immediate contradiction. Otherwise, by an argument similar to Lemma 13, we arrive at a
contradiction. When the outer layer contains exactly 2 blocks, we will show rc(G) = 4. Let B1

and B2 be the blocks in the outer layer. We color every edge of B1 with the color c1, and every
edge of B2 with the color c4. Then color (b1, a) with c2, and (a, b2) with c3, where a is the central
vertex of G, and b1 and b2 are the cut vertices in B1 and B2, respectively. For every block Bi in the
core, let Qi denote the set of edges in Bi incident to a. Color the uncolored edges of Qi with either
c2 or c3, such that both colors appear at least once in Qi. Then, color every uncolored edge of the
block that contains both a and b2 with the color c1. Every other uncolored edge of G receives the
color c4. We can now verify G is indeed rainbow-connected under the given coloring. �

It appears plausible but tedious that one could extend the theorem for larger values of k as well. Thus, it is
perhaps the case that deciding whether rc(G) = k is solvable in polynomial time for any fixed k where G
is a block graph. However, we conjecture the following.

Conjecture 15. Given a block graph G, it is NP-hard to rainbow color G optimally.

Put differently, the conjecture says the decision problem is NP-complete when the number of colors k is
not fixed but part of the input.

Given that the strong rainbow connection number of a block graph G can be efficiently computed, it is
interesting to ask when rc(G) = src(G), or if the difference between src(G) and rc(G) would always be
small. Because diam(G) ≤ rc(G) for any connected graph G, the following is an easy observation.

Corollary 16. Let G be a block graph, and let k be the number of blocks containing less than 3 cut
vertices. If k = diam(G), then rc(G) = src(G).

However, the difference between src(G) and rc(G) can be made arbitrarily large: attach n triangles to
a Kn, one to each vertex of the Kn (see Figure 3 (b) for an illustration). As n increases, the rainbow
connection number remains 4 by Theorem 14, while the strong rainbow connection number increases by
Theorem 8. This example also shows the difference between the upper bound of Theorem 12 and rc(G)
can be arbitrarily large.

6 Concluding remarks
We studied the complexity of computing the rainbow and strong rainbow connection numbers of sub-
classes of chordal graphs, namely split graphs and block graphs. In particular, Theorem 2 shows the
strong rainbow connection number is significantly harder to approximate than the rainbow connection
number, even on very restricted graph classes. Indeed, the result should be contrasted with the fact that
any split graph can be rainbow colored in linear time using at most one color more than the optimum [5].

We believe our results for rainbow and strong rainbow coloring block graphs can serve as a starting
point for an even more systematic study of strong rainbow coloring more general graph classes — a topic
which has received quite little attention despite the interest. In fact, the investigation of the strong rainbow
connection number has been deemed “much harder than that of rainbow connection number” [17] (see
also [17] for more discussion). Given this observation, it is meaningful to consider the strong rainbow
connection number of a most general restricted graph class (e.g., block graphs) for which the computation
of the number is not known to be NP-complete.
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Finally, to avoid confusion, we note that similar problems have been considered in e.g., [19, 14]: given
an edge-colored graph G, decide whether G is (strongly) rainbow-connected. We stress that known hard-
ness results for these problems do not imply hardness results for finding rainbow colorings. Indeed, the
problems are strictly different.
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Applied Mathematics, 216:98–113, 2017.

[9] G. Chartrand and P. Zhang. Chromatic graph theory. CRC press, 2008.

[10] G. Chartrand, G. Johns, K. McKeon, and P. Zhang. Rainbow connection in graphs. Mathematica
Bohemica, 133(1), 2008.

[11] X.-g. Chen, L. Sun, and H.-m. Xing. Characterization of graphs with equal domination and con-
nected domination numbers. Discrete Mathematics, 289(1–3):129–135, 2004.

[12] R. Diestel. Graph Theory. Springer-Verlag Heidelberg, 2005.

[13] J. Lauri. Chasing the Rainbow Connection: Hardness, Algorithms, and Bounds. PhD thesis, Tam-
pere University of Technology, 2016.

[14] J. Lauri. Further hardness results on rainbow and strong rainbow connectivity. Discrete Applied
Mathematics, 201:191–200, 2016.



Computing minimum rainbow and strong rainbow colorings of block graphs 13

[15] V. B. Le and Z. Tuza. Finding optimal rainbow connection is hard. Technical Report CS-03-09,
Universität Rostock, 2009.

[16] X. Li and Y. Sun. Rainbow connections of graphs. Springer, 2012.

[17] X. Li, Y. Shi, and Y. Sun. Rainbow Connections of Graphs: A Survey. Graphs and Combinatorics,
29(1):1–38, Oct. 2012.

[18] J. G. Stemple and M. E. Watkins. On planar geodetic graphs. Journal of Combinatorial Theory, 4
(2):101–117, 1968.

[19] K. Uchizawa, T. Aoki, T. Ito, A. Suzuki, and X. Zhou. On the Rainbow Connectivity of Graphs:
Complexity and FPT Algorithms. Algorithmica, 67(2):161–179, 2013.

[20] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic
number. Theory of Computing, 3(6):103–128, 2007.


	1 Introduction
	2 Preliminaries
	3 Hardness of strongly rainbow-connecting split graphs
	4 Strongly rainbow-connecting block graphs in linear time
	5 On the rainbow connection number of block graphs
	6 Concluding remarks

